ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXI, 7

SECTIO A

1967

Instytut Matematyki Uniwersytetu Marii Curie-Skłodowskiej Département de Mathématiques, Université de Montréal Montréal, Canada

JAN KRZYŻ and QAZI IBADUR RAHMAN

Univalent Polynomials of Small Degree

Wielomiany jednolistne małego stopnia

Однолистные многочлены небольшой степени

1. Introduction and statement of results

Let S denote the class of functions $f(z) = z + a_2 z^2 + ...$ regular and univalent in the unit disk $K = \{z: |z| < 1\}$. The subclass of S consisting of polynomials of degree n will be denoted by \mathscr{P}_n . It was believed (see for example [1]) that the transformation

$$f(z) o F(z) = \int\limits_0^z \zeta^{-1} f(\zeta) \, d\zeta$$

preserves the class S. But in 1963 it was observed by Krzyż and Lewandowski [5] that the function

$$f(z) = z \exp \{(i - 1) \operatorname{Log} (1 - iz)\} = \sum_{k=1}^{\infty} a_k z^k,$$

where Log denotes the principal branch of the logarithm, belongs to S but the corresponding F(z) does not. In fact, F(z) assumes the same value at the points

$$z_1 = i(e^{2\pi}-1)(e^{2\pi}+1)^{-1}, \quad z_2 = -z_1,$$

i.e. the function

$$\int\limits_{0}^{z} \exp \left\{ (i - 1) \log (1 - i\zeta) \right\} d\zeta = \sum_{k=1}^{\infty} k^{-1} a_k z^k$$

is at least 2-valent in $|z| < e^{2\pi}(e^{2\pi}+1)^{-1}$.

A theorem of Montel ([8], p. 8) states that if the sequence of functions

 $f_1(z), f_2(z), \ldots, f_n(z), \ldots$

each regular and p-valent in a domain D converges uniformly to a nonconstant function f(z), then f(z) is at most p-valent in D. It follows that

the *n*-th partial sums $S_n(z) = \sum_{k=1}^n k^{-1} a_k z^k$ of the function

$$F(z) = \int_{0}^{z} \zeta^{-1} f(\zeta) d\zeta = \sum_{k=1}^{\infty} k^{-1} a_k z^k$$

are at least 2-valent in $|z| < e^{2\pi} (e^{2\pi} + 1)^{-1}$ if n is sufficiently large, say $n \ge N_1$. According to another theorem of Montel ([8], p. 9) if a sequence of functions

 $f_1(z), f_2(z), \ldots, f_n(z), \ldots$

each regular in a domain D converges uniformly to a function f(z) at most p-valent in D then on any given compact subset D' of D the functions $f_n(z)$ are at most p-valent if n is sufficiently large. Thus the n-th partial sums $s_n(z) = \sum_{k=1}^n a_k z^k$ of the function $f(z) = z \exp \{(i-1) \operatorname{Log}(1-i\zeta)\} = \sum_{k=1}^{\infty} a_k z^k$

are univalent in

 $|z| < 2^{-1}(2e^{2\pi}+1)(e^{2\pi}+1)^{-1} = \lambda$ sav.

if $n \geqslant N_2$. We see that if $n \geqslant \max(N_1, N_2)$ then $p_n(z) = \lambda^{-1} s_n(z\lambda)$ is univalent in |z| < 1 but $P_n(z) = \int_0^z \zeta^{-1} p_n(\zeta) d\zeta$ is not. Hence the transformation

$$p_n(z) \rightarrow P_n(z) = \int_0^{\zeta} \xi^{-1} p_n(\zeta) d\zeta$$

does not preserve the class \mathscr{P}_n if n is large enough.

We prove

Theorem 1. If the polynomial $p_n(z) = z + \sum_{k=2}^n a_k z^k$ is univalent in |z| < 1then the polynomial $P_n(z) = \int_0^z \zeta^{-1} p_n(\zeta) d\zeta$ is univalent in $|z| < 2 \sin \pi/n$. Hence the transformation $p_n(z) \to \int_0^z \zeta^{-1} p_n(\zeta) d\zeta$ preserves the class \mathscr{P}_n if n < 6 $n \leq 6$.

We show that for polynomials of degree 2, 3 the hypothesis can be slightly weakened. In fact, it is enough to assume that $p'(z) \neq 0$ in |z| < 1.

With reference to Theorem 1 we may ask the converse question:

If $p_n(z) \in \mathcal{P}_n$ what is the radius ϱ_n of the largest disk centred at the origin in which $zp'_n(z)$ is necessarily univalent? While trying to answer this question we restrict ourselves to polynomials of degree 3.

The polynomial $p_3(z) = z - \frac{2\sqrt{2}}{3}z^2 + \frac{1}{3}z^3$ which is univalent in |z| < 1 and for which $[zp_3(z)]'$ vanishes at $z = \frac{1}{9}(4\sqrt{2} - \sqrt{5})$ shows that $\rho_3 \leq \frac{1}{9}(4\sqrt{2} - \sqrt{5}) = 0.380087$ approximately.

Theorem 2. If $p(z) = z + a_2 z^2 + a_3 z^3$ is univalent in |z| < 1 then the polynomial zp'(z) is univalent in $|z| < 1/\sqrt{7}$. Hence $\varrho_3 \ge 1/\sqrt{7}$.

Since $1/\sqrt{7}$ is approximately equal to 0.377964 we have determined ϱ_3 with an error of at most 0.56 per cent.

In analogy with Theorem 1 we prove

Theorem 3. If the polynomial $p_n(z) = z + \sum_{k=2}^n a_k z^k$ is univalent in |z| < 1 then the polynomial $p_n(z) = 2z^{-1} \int_0^z p_n(\zeta) d\zeta$ is univalent in $|z| < 2\sin \pi/(n+1)$. Hence the transformation $p_n(z) \to p_n(z) = 2z^{-1} \int_0^z p(\zeta) d\zeta$ preserves the class \mathscr{P}_n if $n \leq 5$.

It has been shown by Libera [6] that if $f(z) = z + a_2 z^2 + ...$ is closeto-convex with respect to g(z) then $\check{f}(z) = 2z^{-1} \int_{0}^{z} f(\zeta) d\zeta$ is close-to-convex with respect to $\check{g}(z) = 2z^{-1} \int_{0}^{z} g(\zeta) d\zeta$. The radius of close-to-convexity for functions belonging to S was determined [4] to be r_0 where $0.80 < r_0$ < 0.81. Hence if $f(z) = z + \sum_{k=2}^{n} a_k z^k$ is univalent in |z| < 1 then $\check{f}(z) =$ $2z^{-1} \int_{0}^{z} f(\zeta) d\zeta$ is univalent in $|z| < r_0$. It is still an open question whether $\check{f}(z)$ is univalent in |z| < 1.

2. Lemmas

Lemma 1. (Dieudonné Criterion). The polynomial $p_n(z) = z + \sum_{k=2}^n a_k z^k \epsilon \mathscr{P}_n$ if and only if the associated polynomial

$$1 + a_2 \frac{\sin 2\theta}{\sin \theta} z + \ldots + a_n \frac{\sin n\theta}{\sin \theta} z^{n-1}$$

does not vanish in |z| < 1 for $0 \leq \theta \leq \pi/2$.

Lemma 1 is proved in ([3], p. 310).

Lemma 2. If all the zeros of the polynomial

$$f_n(z) \,=\, \sum_{k=0}^n {n \choose k} A_k z^k$$

6 - Annales

lie in the circle $|z| \leq r_i$ and if all the zeros of

$$g_n(z) = \sum_{k=0}^n {n \choose k} B_k z^k$$

lie in the circle $|z| \leq r_o$, then all the zeros of

$$h_n(z) = \sum_{k=0}^n {n \choose k} A_k B_k z^k$$

lie in the circle $|z| \leq r_f \cdot r_g$.

For a proof of Lemma 2 see [7], pp. 65-66.

The following result is due to D. A. Brannan [2].

Lemma 3. Suppose $p(z) = z + a_2 z^2 + tz^3$ where t is real and positive, and $a_2 = a + i\beta$. Then

a) For $0 \le t \le 1/5$, $p(z) \in \mathcal{P}_3$ iff:

$$\left(\frac{2a}{1+3t}\right)^2 + \left(\frac{2\beta}{1-3t}\right)^2 \leqslant 1$$

b) If $1/5 \leq t \leq 1/3$, $p(z) \in \mathcal{P}_3$ iff:

$$lpha+ieta\,\epsilon igcap_{(1-2\ell)\ell^{-1}\leqslant d\leqslant 3} E_d$$

where we have a second s

$$E_d = \left\{a + i\beta \colon \frac{a^2}{\left(\frac{1 + td}{\sqrt{1 + d}}\right)^2} + \frac{\beta^2}{\left(\frac{1 - td}{\sqrt{1 + d}}\right)^2} \leqslant 1\right\}.$$

Suppose t is a fixed nonnegative number $\leq \frac{1}{3}$. Let H(t) be the region of possible values of a_2 in order that $p(z) = z + a_2 z^2 + t z^3 \epsilon \mathscr{P}_3$. From Lemma 3 it follows that H(t) is a closed and bounded convex set containing the origin and symmetric with respect to the coordinate axes. For $0 \leq \varphi$ $\leq 2\pi$ let $K(\varphi) = \max_{\xi \in H(t)} \operatorname{Re}(\xi e^{-i\varphi})$ be the supporting function of H(t). We shall need the following estimates for $K(\varphi)$.

Lemma 4. If $0 \leq t \leq 1/5$ then

(2.1)
$$K(\varphi) = \frac{1}{2}(1+9t^2+6t\cos 2\varphi)^{1/2}.$$

If 1/5 < t < 1/3 and φ_0 is the unique root of the equation

(2.2)
$$\cos 2\varphi = (2t)^{-1}(1-15t^2)$$

contained in $(0, \pi/2)$, then

(2.3)
$$K(\varphi) \leq \{2t(1+t^2-2t\cos 2\varphi)^{1/2}+2t\cos 2\varphi-2t^2\}^{1/2}$$

for
$$|\varphi| \leqslant \varphi_0$$
, $|\varphi - \pi| \leqslant \varphi_0$, whereas for $\left|\varphi - \frac{\pi}{2}\right| < \frac{\pi}{2} - \varphi_0$, $\left|\varphi - \frac{3\pi}{2}\right| < \frac{\pi}{2} - \varphi_0$,

(2.4)
$$K(\varphi) \leq \frac{1}{2}(1+9t^2+6t\cos 2\varphi)^{1/2}$$

If t = 1/3, then

(2.5)
$$K(\varphi) = \frac{2\sqrt{2}}{3} |\cos \varphi|.$$

Proof.

(i) The case $0 \leq t \leq \frac{1}{5}$.

Since $H(0) = \{z: |z| \leq \frac{1}{2}\}\)$, the formula (2.1) obviously holds for t = 0. If $0 < t \leq \frac{1}{5}$, then H(t) is the ellipse $\left\{x + iy: \frac{x^2}{\left(\frac{1+3t}{2}\right)^2} + \frac{y^2}{\left(\frac{1-3t}{2}\right)^2} \leq 1\right\}$. It is easy to verify that the supporting function of the ellipse $E = \left\{x + iy: \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1\right\}$ has the form

(2.6)
$$K(\varphi) = (a^2 \cos^2 \varphi + b^2 \sin^2 \varphi)^{1/2}$$

Thus we see that the supporting function of H(t) is given by (2.1).

(ii) The case $\frac{1}{5} < t < \frac{1}{3}$.

Because of obvious symmetry we may restrict ourselves to φ in $\left[0, \frac{\pi}{2}\right]$. Let $K(d, \varphi)$ be the supporting function of the ellipse E_d mentioned above. According to (2.6)

(2.7)
$$K^{2}(d,\varphi) = (1+d)^{-1}(1+t^{2}d^{2}+2td\cos 2\varphi).$$

Lemma 3 says that for $\frac{1}{5} < t < \frac{1}{5}$ the set H(t) is the intersection of the family of ellipses E_d where d varies over the interval $I_t = [t^{-1}-2, 3]$. Hence

(2.8)
$$K(\varphi) \leqslant \inf_{d \in I_t} K(d, \varphi).$$

For t > 0, the equation $\frac{\partial}{\partial d} K^2(d, \varphi) = 0$ has a unique, positive root d_1 where

$$(2.9) d_1 = -1 + t^{-1} (1 + t^2 - 2t \cos 2\varphi)^{1/2}.$$

Moreover, $\frac{\partial}{\partial d} K^2(d, \varphi) < 0$ for $0 < d < d_1$, $\frac{\partial}{\partial d} K^2(d, \varphi) > 0$ for $d > d_1$. If $d_1 \in I_t$, then for a fixed φ , $K(d, \varphi)$ attains its absolute minimum at $d = d_1$, whereas, if $d_1 \notin I_t$ then the absolute minimum is attained at one of the end points of I_t . In view of (2.9), $d_1 < t^{-1}-2$ is not possible. For a fixed $t, d_1 \ge 3$ if and only if

(2.10)
$$\cos 2\varphi \leqslant (2t)^{-1}(1-15t^2).$$

If 1/5 < t < 1/3, then $-1 < (2t)^{-1}(1-15t^2) < 1$ and equation (2.2) has a unique solution φ_0 in $(0, \pi/2)$. If $\varphi_0 \leq \varphi \leq \pi/2$ then $\cos 2\varphi \leq (2t)^{-1}(1-15t^2)$ and hence $d \geq 3$. This implies that $K(d, \varphi)$ is a strictly decreasing function of d in I_t and

$$\inf_{d \in I_{\ell}} K(d, \varphi) = K(3, \varphi) = \frac{1}{2} (1 + 9t^2 + 6t \cos 2\varphi)^{1/2}.$$

On the other hand, if $0 \leqslant \varphi \leqslant \varphi_0$, then

(2.11)
$$\cos 2\varphi \ge (2t)^{-1}(1-15t^2),$$

and this implies that $d_1 \in I_t$. Hence

$$K(\varphi) \leqslant \inf_{d \in I_t} K(d, \varphi) = K(d_1, \varphi) = \{2t(1 + t^2 - 2t\cos 2\varphi)^{1/2} + 2t\cos 2\varphi - 2t^2\}^{1/2}.$$

(iii) The case $t = \frac{1}{3}$.

It follows from Lemma 3 that $H\left(\frac{1}{3}\right) = \left[-\frac{2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3}\right]$ and formula (2.5) can be easily verified.

Lemma 5. Let H_1 and H_2 be two convex sets containing the origin. If K_1 and K_2 are respectively their supporting functions then $H_1 \subset H_2$ if and only if $K_1(\varphi) \leq K_2(\varphi)$ for $0 \leq \varphi < 2\pi$.

Proof. If $H_1 \subset H_2$ then clearly

$$K_1(\varphi) = \max_{\zeta \in H_1} \operatorname{Re}(\zeta e^{-i\varphi}) \leqslant \max_{\zeta \in H_2} \operatorname{Re}(\zeta e^{-i\varphi}) = K_2(\varphi).$$

On the other hand,

$$H_j = igcap_{0\leqslant arphi < 2\pi} \{x+iy\colon x\cos arphi + y\sin arphi\leqslant K_j(arphi)\}, \quad j=1,2.$$

Hence $H_1 \subset H_2$ if $K_1(\varphi) \leq K_2(\varphi)$ for $0 \leq \varphi < 2\pi$.

3. Proofs of the theorems

Proof of Theorem 1. Set $2\sin\frac{\pi}{n} = \mu$. It is clearly enough to prove that

$$Q_n(z) = \mu^{-1} P_n(\mu z) = z + rac{1}{2} \, \mu a_2 z^2 + rac{1}{3} \, \mu^2 a_3 z^3 + \ldots + rac{1}{n} \, \mu^{n-1} a_n z^n$$

is univalent in |z| < 1. According to Dieudonné Criterion the polynomial $Q_n(z)$ is univalent in |z| < 1 if and only if the polynomial

$$H_{n-1}(z) = 1 + \frac{1}{2} \mu a_2 \frac{\sin 2\theta}{\sin \theta} z + \frac{1}{3} \mu^2 a_3 \frac{\sin 3\theta}{\sin \theta} z^2 + \ldots + \frac{1}{n} \mu^{n-1} a_n \frac{\sin n\theta}{\sin \theta} z^{n-1}$$

does not vanish in |z| < 1 for $0 \le \theta \le \pi/2$. Thus we need to show that the zeros of

$$\begin{split} h_{n-1}(z) &= z^{n-1} H_{n-1}(z^{-1}) \\ &= z^{n-1} + \frac{1}{2} \,\mu a_2 \frac{\sin 2\theta}{\sin \theta} z^{n-2} + \frac{1}{3} \,\mu^2 a_3 \frac{\sin 3\theta}{\sin \theta} z^{n-3} + \ldots + \frac{1}{n} \,\mu^{n-1} a_n \frac{\sin n\theta}{\sin \theta} \\ &= z^{n-1} + \binom{n-1}{1} \frac{1}{2 \,\binom{n-1}{1}} a_2 \frac{\sin 2\theta}{\sin \theta} z^{n-2} + \ldots + \binom{n-1}{k-1} \frac{1}{k} \,\frac{\mu^{k-1}}{\binom{n-1}{k-1}} a_k \frac{\sin k\theta}{\sin \theta} z^{n-k} + \\ &+ \ldots + \binom{n-1}{n-1} \frac{1}{n} \,\mu^{n-1} a_n \frac{\sin n\theta}{\sin \theta} \end{split}$$

lie in $|z| \leqslant 1$ for $0 \leqslant \theta \leqslant \pi/2$.

Since $p_n(z)$ is univalent in |z| < 1, the polynomial

$$1+a_2rac{\sin2 heta}{\sin heta}z+a_3rac{\sin3 heta}{\sin heta}z^2+\ldots+a_nrac{\sinn heta}{\sin heta}z^{n-1}$$

does not vanish in |z| < 1 for $0 \le \theta \le \pi/2$. Hence the zeros of the polynomial

$$egin{aligned} f_{n-1}(z)&=z^{n-1}+inom{n-1}{1}inom{1}{rac{1}{\left(n-1
ight)}}a_2rac{\sin2 heta}{\sin heta}z^{n-2}+\ &\dots+inom{n-1}{k-1}rac{1}{\left(n-1
ight)}a_krac{\sink heta}{\sin heta}z^{n-k}+\dots+inom{n-1}{n-1}a_nrac{\sinn heta}{\sin heta} \end{aligned}$$

lie in $|z| \leq 1$. Now let us set

$$\begin{split} g_{n-1}(z) &= z^{n-1} + \binom{n-1}{1} \frac{1}{2} \, \mu z^{n-2} + \binom{n-1}{2} \frac{1}{3} \, \mu^2 z^{n-3} + \\ &+ \dots + \binom{n-1}{k-1} \frac{1}{k} \, \mu^{k-1} z^{n-k} + \dots + \frac{1}{n} \, \mu^{n-1} \\ &= \frac{1}{\mu n} \left\{ \left[z^n + n \mu z^{n-1} + n \binom{n-1}{1} \frac{1}{2} \, \mu^2 z^{n-2} + \dots + n \binom{n-1}{k-1} \frac{1}{k} \, \mu^k z^{n-k} + \\ &\dots + \mu^n \right] - z^n \right\} = \frac{1}{n\mu} \left[(z+\mu)^n - z^n \right] \end{split}$$

which vanishes at the points $z_k = \mu/(e^{i2kn/n}-1)$ where k = 1, 2, ..., n-1.

Hence the zeros of $g_{n-1}(z)$ lie in $|z| \leq 1$. From Lemma 2 it follows that the zeros of $h_{n-1}(z)$ lie in $|z| \leq 1$ for $0 \leq \theta \leq \pi/2$. This completes the proof of Theorem 1.

If
$$p(z) = z + a_2 z^2 + rac{1}{3} z^3$$
 then for $-rac{2\sqrt{2}}{3} \leqslant a_2 \leqslant rac{2\sqrt{2}}{3}$ the polyno-

mial p(z) is univalent in |z| < 1. It is easy to verify that the derivative of $\int_{0}^{z} \zeta^{-1} p(\zeta) d\zeta$ vanishes on $|z| = \sqrt{3}$. This shows that Theorem 1 is sharp for polynomials of degree 3.

We wish to show now that for polynomials of degree 2, 3 the conclusion remains unchanged if instead of univalence we assume $p'(z) \neq 0$ in |z| < 1. For n = 2 it is trivial. So let $p(z) = z + a_2 z^2 + a_3 z^3$ be a polynomial of degree 3 such that $p'(z) = 3a_3 z^2 + 2a_2 z + 1$ does not vanish in |z| < 1, i.e. the polynomial

$$f_{2}(z) = z^{2} + {2 \choose 1} a_{2} z + 3 a_{3}$$

has both its zeros in $|z| \leq 1$. We wish to show that the polynomial

$$P(z) = \int_{0}^{z} \zeta^{-1} p(\zeta) d\zeta = z + \frac{1}{2}a_{2}z^{2} + \frac{1}{3}a_{3}z^{3}$$

is univalent in $|z| < \sqrt{3}$ or equivalently the polynomial

$$H_2(z) = 1 + \frac{1}{2}a_2 \frac{\sin 2 heta}{\sin heta} z + \frac{1}{3}a_3 \frac{\sin 3 heta}{\sin heta} z^2$$

does not vanish in $|z| < \sqrt{3}$ for $0 \le \theta \le \pi/2$. The latter holds if the reciprocal polynomial

$$h_2(z) = z^2 + \frac{1}{2} a_2 \frac{\sin 2\theta}{\sin \theta} z + \frac{1}{3} a_3 \frac{\sin 3\theta}{\sin \theta} = z^2 + {\binom{2}{1}} \frac{1}{2^2} a_2 \frac{\sin 2\theta}{\sin \theta} z + \frac{1}{3} a_3 \frac{\sin 3\theta}{\sin \theta}$$

has both its zeros in $|z| \leq 1/\sqrt{3}$ for $0 \leq \theta \leq \pi/2$. Now let

$$g_2(z) = z^2 + {\binom{2}{1}} \frac{1}{2^2} \frac{\sin 2\theta}{\sin \theta} z + \frac{1}{3^2} \frac{\sin 3\theta}{\sin \theta}$$
$$= \left(z - \frac{-3\cos \theta + \sqrt{-3 + 7\sin^2 \theta}}{6}\right) \left(z - \frac{-3\cos \theta - \sqrt{-3 + 7\sin^2 \theta}}{6}\right)$$

It is easy to verify that for $0 \le \theta \le \pi/2$

$$|(-3\cos\theta\pm\sqrt{-3}+7\sin^2\theta)/6|\leqslant 1/\sqrt{3}.$$

Hence for $0 \le \theta \le \pi/2$ the zeros of $g_2(z)$ lie in $|z| \le 1/\sqrt{3}$, and so do the zeros of $h_2(z)$ by Lemma 2.

In the same way we can prove that if $p(z) = z + \sum_{k=2}^{n} a_k z^k$ is a polynomial of degree *n* such that $p'(z) \neq 0$ in |z| < 1 then the polynomial $\int_{0}^{0} \zeta^{-1} p(\zeta) d\zeta$ is univalent in $|z| < \varrho_n$ where ϱ_n is the minimum modulus of the zeros of the polynomial

$$egin{aligned} H^*_{n-1}(z) &= 1 + inom{n-1}{1} rac{1}{2^2} rac{\sin 2 heta}{\sin heta} z + \ldots + inom{n-1}{k-1} rac{1}{k^2} rac{\sin k heta}{\sin heta} z^{n-1} + \ \ldots + rac{1}{n^2} rac{\sin n heta}{\sin heta} z^{n-1}. \end{aligned}$$

It is clear that

$$F_{n-1}^{*}(z) = 1 + \binom{n-1}{1} \frac{1}{2} \frac{\sin 2\theta}{\sin \theta} z + \dots + \binom{n-1}{k-1} \frac{1}{k} \frac{\sin k\theta}{\sin \theta} z^{k-1} + \dots + \frac{1}{n} \frac{\sin n\theta}{\sin \theta} z^{n-1} = \frac{(1 + ze^{i\theta})^n - (1 + ze^{-i\theta})^n}{2inz}$$

and hence its zeros are

$$z_k = - e^{i heta} \; rac{1 - \exp{(2\pi i k/n)}}{\exp{(2i heta)} - \exp{(2\pi i k/n)}} \,, k = 1, 2, ..., n \!-\! 1 \,.$$

Since $\min_{1 \le k \le n-1} |z_k| = \sin(\pi/n)$ it follows that the zeros of the polynomial

$$egin{aligned} f^*_{n-1}(z) &= z^{n-1}F^*_{n-1}(z^{-1}) &= z^{n-1}+inom{n-1}{1}rac{1}{2}rac{\sin 2 heta}{\sin heta}z^{n-2}+\ &\dots+inom{n-1}{k-1}rac{1}{k}rac{\sin k heta}{\sin heta}z^{n-k}+\dots+rac{1}{n}rac{\sin n heta}{\sin heta} \end{aligned}$$

lie in $|z| \leq \operatorname{cosec}(\pi/n)$. On the other hand,

$$egin{aligned} g^*_{n-1}(z) &= z^{n-1} + \ &+ inom{(n-1)}{1} rac{1}{2} \, z^{n-2} + \ldots + inom{(n-1)}{k-1} rac{1}{k} \, z^{n-k} + \ldots + rac{1}{n} = rac{1}{n} \, \left[(z+1)^n - z^n
ight] \end{aligned}$$

and hence its zeros lie in $|z| \leq \frac{1}{2} \operatorname{cosec}(\pi/n)$.

By Lemma 2 the zeros of the polynomial

$$h_{n-1}^*(z) = z^{n-1} + \left(\binom{n-1}{1}\frac{1}{2^2}\frac{\sin 2\theta}{\sin \theta}z^{n-2} + \dots + \binom{n-1}{k-1}\frac{1}{k^2}\frac{\sin k\theta}{\sin \theta}z^{n-k} + \dots + \frac{1}{n^2}\frac{\sin n\theta}{\sin \theta}\right)$$

lie in $|z| \leq \frac{1}{2}\operatorname{cosec}^2(\pi/n)$ and those of the reciprocal polynomial $H_{n-1}^*(z)$ lie in $|z| \geq 2\sin^2(\pi/n)$. It follows that if $p(z) = z + \sum_{k=2}^n a_k z^k$ is a polynomial of degree *n* such that $p'(z) \neq 0$ in |z| < 1 then the polynomial $\int_0^z \zeta^{-1} p(\zeta) d\zeta$ is univalent in $|z| < 2\sin^2(\pi/n)$. This result is by no means sharp but it shows in particular that if $p(z) = z + \sum_{k=2}^4 a_k z^k$ is a polynomial of degree 4 such that $p'(z) \neq 0$ in |z| < 1 then $\int_0^z \zeta^{-1} p(\zeta) d\zeta \in \mathscr{P}_4$.

Proof of Theorem 2. Without loss of generality we may suppose that $p(z) = z + a_2 z^2 + tz^3$ where $0 \le t \le 1/3$. Set $1/\sqrt{7} = \gamma$. The polynomial $zp'(z) = z + 2a_2 z^2 + 3tz^3$ is univalent in $|z| < \gamma$ if and only if the polynomial $zp'(\gamma z) = z + 2a_2\gamma z^2 + 3t\gamma^2 z^3$ is univalent in |z| < 1. We note that $3t\gamma^2 < 1/5$. Hence by Lemma 3 the region of possible values of $2a_2\gamma$ in order that $zp'(\gamma z) \in \mathscr{P}_3$ is

$$H_{1} = \left\{ x + iy : \left(\frac{2x}{1 + 9t\gamma^{2}}\right) + \left(\frac{2y}{1 - 9t\gamma^{2}}\right)^{2} \leqslant 1 \right\}.$$

Since $p(z) = z + a_2 z^2 + t z^3 \epsilon \mathscr{P}_3$ by hypothesis, a_2 lies in a convex domain H(t) whose supporting function $K(\varphi)$ has been estimated in Lemma 4. It follows that $2a_2\gamma$ lies in a convex domain H_2 whose supporting function is $K_2(\varphi) = 2\gamma K(\varphi)$. In order to prove that $zp'(\gamma z) \epsilon \mathscr{P}_3$ it is clearly enough to show that $H_2 \subset H_1$. If $K_1(\varphi)$ is the supporting function of H_1 then according to Lemma 5 this holds if and only if $K_2(\varphi) \leq K_1(\varphi)$ for $0 \leq \varphi < 2\pi$. Hence $zp'(\gamma z) \epsilon \mathscr{P}_3$ if for $0 \leq \varphi < 2\pi$

(3.1)
$$2\gamma K(\varphi) \leqslant K_1(\varphi) = \frac{1}{2} (1 + 81t^2 \gamma^4 + 18t\gamma^2 \cos 2\varphi)^{1/2}.$$

In order to verify (3.1) we have to distinguish many cases. Case (i). $0 \le t \le 1/5$.

In this case $K(\varphi)$ is given by (2.1) and we have to show that for $0 \leqslant \varphi < 2\pi$

$$\gamma (1+9t^2+6t\cos 2\varphi)^{1/2} \leq \frac{1}{2} (1+81t^2\gamma^4+18t\gamma^2\cos 2\varphi)^{1/2},$$

or

$$6t\gamma^2\cos 2\varphi \leq 1-4\gamma^2+81t^2\gamma^4-36t^2\gamma^2.$$

Hence it is enough to prove that

(3.2)
$$\psi(t) = 1 - 4\gamma^2 - 6t\gamma^2 + 81t^2\gamma^4 - 36t^2\gamma^2 \ge 0.$$

 $\text{Since } \frac{d}{dt}\,\psi(t)<0 \ \text{for} \ t\geqslant 0 \ \text{and} \ \psi(1/5)>0, \ (3.2) \ \text{holds for} \ 0\leqslant t\leqslant 1/5,$

Case (ii).
$$1/5 < t < 1/3$$
, $\cos 2\varphi \leq \frac{1-15t^*}{2t}$

In this case $K(\varphi) \leq \frac{1}{2} (1+9t^2+6t\cos 2\varphi)^{1/2}$ and hence $2\gamma K(\varphi) \leq K_1(\varphi)$ if:

$$4\gamma^2(1+9t^2+6t\cos 2arphi)\leqslant 1+81t^2\gamma^4+18t\gamma^2\cos 2arphi$$

or

$$6t\gamma^2\cos 2\varphi \leq 1 + 81t^2\gamma^4 - 4\gamma^2 - 36t^2\gamma^2.$$

This latter inequality surely holds if

$$6t\gamma^2 \, rac{1 - 15t^2}{2t} \leqslant 1 + 81t^2\gamma^4 - 4\gamma^2 - 36t^2\gamma^4$$

OT

$$\psi_1(t) = 1 + 81t^2\gamma^4 + 9t^2\gamma^2 - 7\gamma^2 \ge 0$$

This is certainly true since $\psi_1(1/5) > 0$ and $\frac{d}{dt} \psi_1(t) > 0$ for positive t.

Case (iii).
$$1/5 < t < 1/3$$
, $\cos 2\varphi > \frac{1 - 15t^2}{2t}$

In this case $K(\varphi) \leqslant [2t(1+t^2-2t\cos 2\varphi)^{1/2}+2t\cos 2\varphi-2t^2]^{1/2}$ and hence $2\gamma K(\varphi) \leqslant K_1(\varphi)$ if

 $16\gamma^2 [2t(1+t^2-2t\cos 2\varphi)^{1/2}+2t\cos 2\varphi-2t^2]\leqslant 1+81t^2\gamma^4+18t\gamma^2\cos 2\varphi$ or

$$egin{aligned} A\left(\cos2arphi
ight) &= 196t^2\gamma^4\cos^22arphi + [2048t^3\gamma^4 - 28t\gamma^2(1 + 32t^2\gamma^2 + 81t^2\gamma^4)]\cos2arphi \ &+ (1 + 32t^2\gamma^2 + 81t^2\gamma^4)^2 - 1024t^2\gamma^4(1 + t^2) \geqslant 0 \,. \end{aligned}$$

For a given t in the range the minimum of $A(\cos 2\varphi)$ occurs for

$$\cos 2\varphi = -(288t^2\gamma^2 - 7 - 567t^2\gamma^4)/(98t\gamma^2)$$

and is 0. Hence $2\gamma K(\varphi) \leqslant K_1(\varphi)$ for $0 \leqslant \varphi < 2\pi$. Case (iv). t = 1/3.

In this case we have to verify that for $0 \leq \varphi < 2\pi$

$$8V_2\gamma |\cos \varphi| \leqslant 3 (1+9\gamma^4+6\gamma^2 \cos 2\varphi)^{1/2}$$

or

$$-9 + 64\gamma^2 + 10\gamma^2 \cos 2\varphi - 81\gamma^4 \le 0$$

which certainly holds if

$$-9 + 74\gamma^2 - 81\gamma^4 \leqslant 0$$
 .

But indeed $-9+74\gamma^2-81\gamma^4 < 0$ and the proof of the theorem is complete.

The proof of Theorem 3 is analogous to that of Theorem 1 and we therefore omit it. The example $p(z) = z + \frac{2\sqrt{2}}{3}z^2 + \frac{1}{3}z^3$ shows that the result is best possible as far as polynomials of degree 3 are concerned.

REFERENCES

- Biernacki, M. Sur l'intégrale des fonctions univalentes, Bull. Acad. Polon. Sci., Ser. soi. math., astr. et phys., vol. 8 (1960), pp. 29-34.
- [2] Brannan, D. A., On univalent polynomials and related classes of functions, Thesis, University of London, 1967.
- [3] Dieudonné, J., Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d'une variable complexe, Ann. Ecole Norm. Sup. 3, vol. 48 (1931), pp. 247-358.
- [4] Krzyż, J., The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., vol. 10 (1962), pp. 201-204.
- [5] Krzyż, J. and Lewandowski, Z., On the integral of univalent functions, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys., vol. 11 (1963), pp. 447-448.
- [6] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., vol. 16 (1965), pp. 755-758.
- [7] Marden, M., Geometry of polynomials, Amer. Math. Soc. Math. Surveys, No. 3 (1966).
- [8] Montel, P., Leçons sur les fonctions univalentes ou multivalentes, Gauthier-Villars, Paris 1933.

STRESZCZENIE

W pracy tej autorzy wykazują, że jeśli wielomian $p(z) = z + ... + a_n z^n$ jest jednolistny w kole jednostkowym K, to wielomiany $\int_{0}^{z} \zeta^{-1} p(\zeta) d\zeta$, $\frac{2}{z} \int_{0}^{z} p(\zeta) d\zeta$ są również jednolistne w kole K o ile stopień p nie przekracza 6 (w pierwszym przypadku), względnie 5 (w drugim przypadku).

РЕЗЮМЕ

В работе доказано, что, если многочлен $p(z) = z + ... + a_n z^n$ есть однолистным в единичном круге K, то многочлены $\int_{0}^{z} \zeta^{-1} p(\zeta) d\zeta$, $\frac{2}{z} \int_{0}^{z} p(\zeta) d\zeta$ также однолистны в K, если степень p не больше 6 (в первом случае) или 5 (во втором случае).