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Однолистные многочлены небольшой степени

I. Introduction and statement of results

Let $ denote the class of functions f(z) — z+a2z2 +... regular and 
univalent in the unit disk K — {z: \z\ < 1}. The subclass of $ consisting 
of polynomials of degree n will be denoted by ^n. It was believed (see for 
example [1]) that the transformation

z
f(z)^F^ = Jr7(?№

0

preserves the class N. But in 1963 it was observed by Krzyz and Lewan
dowski [5] that the function

f(z) = »exp{(t-l)Log(l-i«)} = ^akzk,
k=l

where Log denotes the principal branch of the logarithm, belongs to N 
but the corresponding F(z) does not. In fact, F(z) assumes the same 
value at the points

Zl = i(e2”—l)(c2”+l)-1, z2 = -elf
i.e. the function

Jexp{(i—l)Log(l —
0 fc=l

is at least 2-valent in |s| < e2n(e2n+l)-1.
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A theorem of Montel ([8], p. 8) states that if the sequence of functions 

A («)»/•(«)> •••,/„(«)> •••
each regular and p-valent in a domain D converges uniformly to a non
constant function /(«), then f(z) is at most p-valent in D. It follows that

n
the n-th partial sums Sn(z) — £ k~1akzk of the function

k-i
z oo

0 Jt=l

are at least 2-valent in |z| < e2n (e2”+l)_1 if n is sufficiently large, say 
n Nv According to another theorem of Montel ([8], p. 9) if a sequence 
of functions

fiW,f2(z), ...,fn(z),...

each regular in a domain I) converges uniformly to a function /(«) at 
most p-valent in D then on any given compact subset D' of D the functions
fn(z) are at most p-valent if n is sufficiently large. Thus the n-th partial 

n
sums sn(z) — £ akzk of the function

*-i
OO

/(s) = zexp{(i—l)Log(l —i£)} = ^ak^ 

k=l

are univalent in
|z| < 2-1(2e2n+l)(e2rt+l)"1 = A say,

if « > A2. We see that if n > max(A\, A2) then pn(z) = A~1 s„(zA) is
z

univalent in |z| < 1 but PB(z) = / £-1 pn(Ç)dÇ is not. Hence the trans
formation 0

z

pn(z)^Pn^=Jr1pn(C)d^
0

does not preserve the class if n is large enough.
We prove n
Theorem 1. If the polynomial pn(z) = z + f? akzk is univalent in |#| < 1

z k=2

then the polynomial Pn(z) = J f_1p„(.C)d£ is univalent in |«| <2sinjr/».
0 z

Hence the transformation pn(z) -* f £-1 pn(£)dÇ preserves the class if 
6. 0
We show that for polynomials of degree 2, 3 the hypothesis can be 

slightly weakened. In fact, it is enough to assume that p'(z) 0 in |«| < 1.
With reference to Theorem 1 we may ask the converse question:
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1/ pn (z) e &n what is the radius gn of the largest dish centred at the origin 
in which zp'n(z) is necessarily univalent "I While trying to answer this 
question we restrict ourselves to polynomials of degree 3.

2/2 1
The polynomial p3(z) = z-------- z2+ — z3 which is univalent in

|z| < 1 and for which [zp3(z)]' vanishes at z = j (4/2 —/5) shows that 
Pa C 5 (4/2 —/5) = 0.380087 approximately.

Theorem 2. If p(z) = z + a2zt + a3z3 is univalent in |z| < 1 then the 
polynomial zp'(z) is univalent in |z| < 1//7. Hence p3>l//7.

Since 1//7 is approximately equal to 0.377964 we have determined 
q3 with an error of at most 0.56 per cent.

In analogy with Theorem 1 we prove n
Theorem 3. If the polynomial pn(z) = z + £ akzk is univalent in

Z fc=2
|z| < 1 then the polynomial p„(z) = 2z-1 f pn(tf)d!i is univalent in 

0 z

\z\ < 2sin7t/(w+l). Hence the transformation. pn(z) -> pn(z) = 2z_1 J" p (£)d£ 
preserves the class &n if n < 5. 0

It has been shown by Libera [6] that if f(z) — z+a2z* +... is close-

-to-convex with respect to g(z) then/(z) = 2z_1 J" f(£)d£ is close-to-convex 
z 0

with respect to g(z) = 2z_1 J" g(£)dt;. The radius of close-to-convexity
0

for functions belonging to $ was determined [4] to be r0 where 0.80 < r0
11 V

< 0.81. Hence if /(z) = z+ £ ak£ is univalent in ,z| < 1 then /(z) =
z k=2

2z-1 / flf;)dt; is univalent in |z| < r0. It is still an open question whether 
v 0

/(z) is univalent in |z| < 1.

2. Lemmas

Lemma 1. (Dieudonné Criterion). The polynomial pn(z) = z + 
n

-|- ^akzk^n if and only if the associated polynomial
k=2

1 -\-a2
sin 20 
sinO

sinnO
sinO

■ z +... +a„ -

does not vanish in |z| < 1 for 0 < 0 < n/2.
Lemma 1 is proved in ([3], p. 310).
Lemma 2. If all the zeros of the polynomial

fnW =

g — Annales
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lie in the circle |«| < rf and if all the zeros of 

sM ■£(*)**’*

lie in the circle |z| < rg, then all the zeros of

KM AkBk^
k=0 ' '

lie in the circle |«| ^r,-rg.
For a proof of Lemma 2 see [7], pp. 65-66.
The following result is due to D. A. Brannan [2].
Lemma 3. Suppose p(z) = z + a22? + tz3 where t is real and positive,

and a2 = a + i(i. Then
a) For 0 < Z < 1/5, p (z) e iff:

b) If 1/5 < f < 1/3, p (z)e i//:

a + i/3 c Q Ed

where
a2 '' P*

1 + td \2 + /1 — td \2

A +d/ \/l+l/
Suppose t is a fixed nonnegative number < |. Let H(t) be the region 

of possible values of a2 in order that p(z) = z + a2z2 + tz3e &3. From 
Lemma 3 it follows that H(t) is a closed and bounded convex set containing 
the origin and symmetric with respect to the coordinate axes. For 
< 2n let K(q>) = max Be(Ce“*’!) be the supporting function of H(t). We

shall need the following estimates for K(<p).
Lemma 4. If 0 < t < 1/5 then

(2.1) K(p) = j(l+9«2+6Zco82<p)1/2.

If 1 /5 < t < 1 /3 and (p0 is the unique root of the equation

(2.2) cos2p = (2*)“1(1-15ZJ),

contained in (0,ti/2), then

(2.3) < {2<(l + t2—2<cos2p)1/2+2Zcos2p—2/2}1/2



Univalent polynomiale of email degree 83

71 7t 3tI
jr | < (f>0, whereas for ï'-y

7t

K(<p) < J(1 +9i2 +6<cos2<p)1/2.(2.4)

If t — 1/3, then

(2.5)
2/2

K(ep) = — - |cosgc>|.

Proof.
(i) The case 0 < t < j.
Since II(0) = {2: |«| < I)}, the formula (2.1) obviously holds for t = 0.

ylIf then II(t) is the ellipse x + iy: .^1m m
It is easy to verify that the supporting function of the ellipse

f . x2 y2 )
E = <x + ry:—~ + — ^ 1> has the form( a1 b2 J

(2.6) K(<p) = (a2cos299 + 52sin2^)1/2.
Thus we see that the supporting function of H(t) is given by (2.1).

(ii) The case 1 <«< j.
Because of obvious symmetry we may restrict ourselves to gp in 

[0, - J • Let K (d, <p) be the supporting function of the ellipse Ed mentioned 

above. According to (2.6)

(2.7) K2(d,<p) = (l+d)_1(l + t2d2+2Zdcos27>).

Lemma 3 says that for j < t < j the set H (t) is the intersection of the 
family of ellipses Ed where d varies over the interval It = [i_1 —2, 3].

Hence

(2.8) K(<f>) ^iniK(d, <p).
d'ItQ

For t > 0, the equation —— K2(d,a>) =0 has a unique, positive root dt 
od

where

(2.9) dt = -l + r1(l + Z2-2Zcos2<p)1/2.
d ()

Moreover, — K2(d, <p) < 0 for 0 < d < d,,-—• K2(d, gp) > 0 for d > dt. od od
If djt It, then for a fixed y>, K(d, <p) attains its absolute minimum at 
d = dlf whereas, if dt 4 It then the absolute minimum is attained at one
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of the end points of It. In view of (2.9), dx < t x—2 is not possible. For 
a fixed /, d, > 3 if and only if

(2.10) cos2g>< (2<)~*(1 —15/2).

If 1/5 <t <1/3, then —1 < (2t)_1(l—15tl) < 1 and equation (2.2) 
has a unique solution <p0 in (0, tt/2). If <p0 q> n/2 then 
cos2<p < (2<)_1(1—15J2) and hence d > 3. This implies that K(d,y) is a 
strictly decreasing function of d in It and

inf K(d,<p) = K(3,g>) = |(1+9<2+6«cos2?,)1/2. 
d.q

On the other hand, if 0 < g> < then

(2.11) cos2<p > (2/)~1(l-15«2),

and this implies that d^I^ Hence

K(<p) iniK(d, ip) = K(d1,<p) — {2/(l + /2— 2(cos29!>)1/2+2<cos2<p — 2/2}1/2.
<J«/j

(iii) The case Z = j.

It follows from Lemma 3 that ff [—j = T — an(l f°r"
mula (2.5) can be easily verified. \ 3' L 3 3 -*

Lemma 5. Let Hx and H2 be two convex sets containing the origin. 
If Kx and K2 are respectively their supporting functions then IIX <= H2 
if and only if Kx (99) < K2 (99) for 0 99 < 2tt.

Proof. If Hx c. H2 then clearly

Kx(<p) — maxRe(Ce-”’) maxRe(£e~lf) = K2(<f>).
(•Bl C‘H2

On the other hand,

= Q {x + iy: £CCOS99+ysin99 < K^p)}, j=l,2.
0<?<2n

Hence Hx a H2 if Kx{(p) K2(g>) for 0 < 99 < 2?r.

3. Proofs of the theorems

71
Proof of Theorem 1. Set 2 sin — = u. It is clearly enough to prove that 

n

Q„(z) = /7_1P„(^) = z+^-paazi + ~p2a3z3 + ... + ^-pn-1anzn

is univalent in |«| < 1. According to Dieudonné Criterion the polynomial 
Qn(z) is univalent in |«| < 1 if and only if the polynomial
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sin 20 sin 30
Hn_1(z) = 1 + —№-77-7-2:+—/z2a3-—-2i! + ... + — Ju an —

sinO sin0
sin nO
sin0n

does not vanish in |z| < 1 for 0 < 0 < n/2. Thus we need to show that 
the zeros of

V^2) = «" )
1 sin20

= z + — № —:—7- 2"2 sin0
1 sin30
3 sin0

1 „ . sinn0 
'+...+ —/z”-1« -

n sm0

_ sin2e,.n-2 , , M* 1 sinfc0 ,
\ 1 / 2 ^n — lj 2 sinO \&— 1/ k ^n — lj k sinO

ln—l\ 1 „ . sir + -+(»-l)n'‘ “"-7sinwO
sin0

lie in \z\ < 1 for 0 < 0 n/2.
Since pn(z) is univalent in |«| < 1, the polynomial

sin20 sin30 sinnO ,
1 + <t2 n 2+«3- ■ „ 32+... + №„ . _ ZUsin0 sin0 sin0

does not vanish in |«| < 1 for 0 < 0 < n/2. Hence the zeros of the polyno
mial

, , . n--1 ln~1 sin20 „
/„-i(2)=«Bl+ 1 h-----H “2-^-7-«\ 1 I In—1\ sin0 !+

In —1\ 1 sinfcO „ t ln—l\ sirsinu.0

lie in |«| < 1. Now let us set

9n
- ^+(’1 1)4-“s-!+(“21)l'',8””+

=M'’*“'*’"+4’,71) 4^-+-+» O ■

... +J - zn\ = — [(2 +M)n - zn]
J J n/J,

which vanishes at the points zk — /u, l(ei2knln —1) where k =1,2,..., n— 1.
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Hence the zeros of 0„_x(2) lie in |«| < 1. From Lemma 2 it follows that 
the zeros of h^^z) lie in [2] < 1 for 0 0 < n/2. This completes the proof
of Theorem 1.

1 2lz2 2l/2
If p(z) = z+a2z3 + — z3 then for---- —— < a2 <-----  the polyno-

3 3 3

mial p (2) is univalent in |«| < 1. It is easy to verify that the derivative

of J C_1p(f)d£ vanishes on |«| = 1^3. This shows that Theorem 1 is sharp 
0

for polynomials of degree 3.
We wish to show now that for polynomials of degree 2, 3 the con

clusion remains unchanged if instead of univalence we assume p'(z) 0
in |2| < 1. For n — 2 it is trivial. So let p(z) = z + a2z3+a3z3 be a poly
nomial of degree 3 such that p'(z) = 3a3z2 + 2a2z+l does not vanish in 
|«| < 1, i.e. the polynomial

/2(2) = 22 + ^a22+3a3

has both its zeros in |2| < 1. We wish to show that the polynomial

P(z) = fç = z + la2z3 + ja3z3
0

is univalent in |2| < /3 or equivalently the polynomial

H2{Z) =
sin 20 
sin0

sin 30 
sin0

22« + ł«3

does not vanish in \z\ < /3 for 0 < 0 < w/2. The latter holds if the re
ciprocal polynomial
, , , 1 sin20 1 sin30

= 22-|------- a2 —------- ------------«3—:  = 22 +
2V ' 2 2 sin0 3 sinO

l2\ 1 sin20 1 sin30
11 — a*—.------ 2 J--------a,-------\1/2« 2 sinO 3 sinO

has both its zeros in |2| < 1/13 for 0 < 0 n/2. Now let

= «‘+L
1 sin20 1 sin30

-----------2 H------------
22 sin0 32 sin0

( — 3cos0 +V — 3+7sin20 ( — 3cos0— V — 3 + 7sin20^
v e I V 6 /

It is easy to verify that for 0 < 0 < tt/2

|(-3cos0±l/-3+7sin20)/6| <l//3.

Hence for 0 0 < n/2 the zeros of g2(z) lie in |«| < 1/1^3, and so do the
zeros of h2(z) by Lemma 2.
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In the same way we can prove that if p (z) = z + £ ak^ ’s a polynomial
fc=2

of degree -n such that p'(z) 0 in |z| < 1 then the polynomial J £ Jp(£)d£
0

is univalent in |z| < where q„ is the minimum modulus of the zeros 
of the polynomial

, In —1\ 1 sin20 In—i\ 1 sinft0(»)-!+( j )«—^ + -"+ ‘ +

It is clear that

1 sinn0 
n2 sin0

,n-l

, ln—l\ 1 sin20 ln—l\ 1 sii

1 sin«0
n sin0

and hence its zeros are
i0 1 —exp(2?rift/w)

z"-1 =

sin ft 0 
sin0

(lW)”-(l + «H8)n 
2wiz

«fc_1 +

exp (2i0) — exp\2mk /n)
,k =1,2,..., n—1.= — e

...+

Since min |zfc| = sin(jr/») it follows that the zeros of the polynomial

/:_!(«) = «n-x_1(«-1) = «n-i+(w71)4^«n_,+
\ -1 /2 sm0

In—1\ 1 sinft0 „ t 1 sir•••+ L n 2"-fc + ... +----- 7
V1— 1/ ft Sin0 n SI

sinw0
sin0

lie in |z| < cosec O/w). On the other hand,

^-i(^)=»n-i+

and hence its zeros lie in |z| < j cosec (ji/w).
By Lemma 2 the zeros of the polynomial

»:_!(«)=«n_i+
, /w~x\ 1 sin29-n-2 , , t^-l\ 1 sinftfl_»-fc , 1 siQłŁ0,

\ 1 / 22 sin0 " 1/ ft2 sin0 n2 sin0
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lie in |z| < j cosec2 (ji/w) and those of the reciprocal polynomial H*-^)
n

lie in |z|> 2sin2(%/n). It follows that if p(z) = z + J/ akzk is a polynomial
k=2 z

of degree n such thatp'(z) 0 in |z| < 1 then the polynomial JC_1 p(f)df 
0

is univalent in |«| < 2sin2(Tt/n). This result is by no means sharp but
4

it shows in particular that if p(z) = z + £ ak^ is a polynomial of degree
z k=2

4 such thatp'(z) =/= 0 in |z| < 1 then / f_1p(f)d£e ^4.
0

Proof of Theorem 2. Without loss of generality we may suppose that 
p(z) = z+a2z2 + tz3 where 0<Z<l/3. Set 1/^7 = y. The polynomial 
zp'(z) = z+2a2z2 + 3tz3 is univalent in |«| < y if and only if the polynomial 
zp'(yz) = z+2a2yz2+3ty2z3 is univalent in \z\ < 1. We note that 3Zy2 
< 1/5. Hence by Lemma 3 the region of possible values of 2a2y in order 
that zp'(yz)e^a is

Since p(z) — z-\-a2z2 + tz3e by hypothesis, <t2 lies in a convex domain 
H(t) whose supporting function K{<p) has been estimated in Lemma 4. 
It follows that 2a2y lies in a convex domain H2 whose supporting function 
is K2(cp) — 2yK(y). In order to prove that zp'^yzje &3 it is clearly enough 
to show that H2 c. Hk. If Kk(<p) is the supporting function of then 
according to Lemma 5 this holds if and only if K2(<p) < Kk(,p) for 0 < p 
< 2ji. Hence zp'(yz)e^3 if for 0 < p < 2tz

(3.1) 2yK(g>) < Kk(<p) = j(l+81Z2y4 4-18Zy2cos2<p)1/2.

In order to verify (3.1) we have to distinguish many cases.
Case (i). 0 < t < 1/5.
In this case K(<p) is given by (2.1) and we have to show that for 

0 p < 2n
y(l+9Z2+6Zcos2g:>)1/2 < |(1 +81Z2y4+18Zy2cos2<p)1/2, 

or
6Zy2cos2<p < 1-4y2+81Z2/-36Z2y2.

Hence it is enough to prove that

(3.2) y>(t) = l-4y2-6Zy2+81Z2/-36Z2y2^ 0. 
d

Since —p(t) < 0 for Z > 0 and p(ll5) > 0, (3.2) holds for 0 < Z < 1/5, 
dl

Case (ii). 1/5 < Z < 1/3, cos2<p <
2Z
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In this case < |(l+9Z2+6Zcos2g>)1/2 and hence 2yK(tp) < Kjfjp) if:

4/(1+9Z2+6Z cos 2<p) < 1+81Z2/+18Z/cos29>, 
or

6Z/cos2gj < 1+81Z2/—4/—36Z2/.

This latter inequality surely holds if

1-15Z2 , ,
6ty%---------- < l+81Z2/-4/-36Z2/

or
Vl(t) = l+81Z2/+9Z2/-7/> 0.

This is certainly true since y>i(l/5) > 0 and — ViG) > 0 for positive Z.
at

1 — 15Z2Case (iii). 1/5 < Z < 1/3, cos2<p >---------- .
2Z

In this case K(q>) < [2Z(1 + Z2—2Zcos29?)1/2+2Zcos2<p—2Z2]1/2 and hence 
2yK(tp) ^K^ep) if

16/ [2Z(1 + Z2 -2Zcos2</I/2 +2Zcos2<p -2Z2] < 1+81Z2/ +18Z/cos2<p 
or

A(cos299) — 196Z2/cos229? +[2048Z3/—28Z/(l+32Z2/+81Z2/)]cos2<p 
+ (1+32Z2/+81Z2/)2—1024Z2/(l + Z2) + 0.

For a given Z in the range the minimum of A (cos 2<p) occurs for

cos2<p = — (288Z2/—7 —567Z2/)/(98Zy2)

and is 0. Hence 2yK(g>) + Kt((p) for 0 < (p < 2?r.
Case (iv). Z =1/3.
In this case we have to verify that for 0 < y < 2n

8/2y|cosqj| < 3(1+9/+6/cos2</1/2 
or

—9+64/+10/cos29?—81/ 
which certainly holds if

-9+74/-81/< 0.
But indeed — 9+74/— 81/ < 0 and the proof of the theorem is complete. 

The proof of Theorem 3 is analogous to that of Theorem 1 and we
. . 2^2 1 

therefore omit it. The example p(z) = «4------- «2 + —- z3 shows that
3 3

the result is best possible as far as polynomials of degree 3 are concerned.
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STRESZCZENIE

W pracy tej autorzy wykazują, że jeśli wielomian p(z) = z +... +anzn
Z

jest jednolistny w kole jednostkowym K, to wielomiany J £_1p(f)d£, 
2 z o
—są również jednolistne w kole K o ile stopień p nie prze- 
2 o
kracza 6 (w pierwszym przypadku), względnie 5 (w drugim przypadku).

РЕЗЮМЕ

В работе доказано, что, если многочлен р(г) = г + ...+а„гп есть

однолистным в единичном круге К, то многочлены / £_1р (£)</£,
2 5 0
— / р(£)й£ также однолистны в К, если степень р не больше 6 (в пер- 
2 о
вом случае) или 5 (во втором случае).


