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1. Introduction and statement of results

Let S denote the class of functions f(z) = z-+a,22+ ... regular and
univalent in the unit disk K = {z: |2| < 1}. The subclass of S consisting
of polynomials of degree n will be denoted by #,. It was believed (see for
example [1]) that the transformation

fle) > F(@) = [ (DL

preserves the class S. But in 1963 it was observed by Krzyz and Lewan-
dowski [6] that the function

2) = zexp (i —1)Log(1—ie)} = 3o,
k=1

where Log denotes the principal branch of the logarithm, belongs to S
but the corresponding F(z) does not. In fact, F(2) assumes the same
value at the points

zy =4(e"—1)("+1)7, 2z, = —z,,
i.e. the function

[ exp{(i —1)Log(1 —it)}dz = LZ;{- 1q, 2"
a =1

is at least 2-valent in |z| < €*"(e*" 1)L
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A theorem of Montel ([8], p. 8) states that if the sequence of functions
J1(2), f2(2)y eeey fu(2)y -

each regular and p-valent in a domain D converges uniformly to a non-
constant function f(2), then f(2) is at most p-valent in D. It follows that

n
the n-th partial sums S,(z) = 3 & Ya,7* of the function
k=1

2 o]
F(z) = [ Q) = )k ad
0 k=1
are at least 2-valent in |2| < " (¢¥"+1)7! if » is sufficiently large, say
n = N,. According to another theorem of Montel ([8], p. 9) if a sequence
of functions

Jf1(2)sf2(2) g0 s0gfn(2) g10ee

each regular in a domain D converges uniformly to a function f(z) at
most p-valent in D then on any given compact subset D’ of D the functions
fa(2) are at most p-valent if » is sufficiently large. Thus the n-th partial

n
sums 8,(z) = 3 a,2* of the function
K1

f(z) = zexp{(i —1)Log(1 —iZ)} _Z 2
k=1

are univalent in
|2] < 271(2¢*" +1)(6¥* +1)"! = 4 say,

if n>N,. We see that if n> max(N,, N,) then p,(2) = A7's,(24) is

£z
univalent in |2| <1 but P,(2) = [ (' p,(¢)d¢ is not. Hence the trans-
formation C

Pa(2) > Py(2) = [ p,(0)dC

does not preserve the class #, if n is large enough.
We prove

Theorem 1. If the polynomml Pa() =2+ Zakz 8 univalent in |2| <1
k=2

then the polynomial P,(2) = f & p,,(C)dC 18 univalent in |z| < 28in &/n.

Hence the transformation p, z) —= f {7t p,(L)de preserves the class 2, if
n < 6.
We show that for polynomials of degree 2, 3 the hypothesis can be
slightly weakened. In fact, it is enough to assume that p’(2) #* 0 in |z| < 1.
With reference to Theorem 1 we may ask the converse question:
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If p,(2) e 2, what i3 the radius o, of the largest disk centred at the origin
in which zp,(z) is mecessarily univalent? While trying to answer this
question we restrict ourselves to polynomials of degree 3.

2V2 i
3 z’ﬂ——%—z3 which 1s univalent in
|2 <1 and for which [zpy(2)]’ vanishes at z = } (4V2 —V5) shows that
03 < ) (4V/2 —V5) = 0.380087 approximately.
Theorem 2. If p(2) = z+a,2* +a,2° i8 univalent in [2| < 1 then the
polynomial zp'(z) i8 univalent in |z| < 1/I/7 Hence 03> 1/V7.

Since 1/V/7 is approximately equal to 0.377964 we have determined
ps with an error of at most 0.56 per cent.
In analogy with Theoremm 1 we prove

Theorem 3. If the polynomial p,(z) =2+ Zakzk 18 univalent in
k=2

|z| < 1 then the polynomial p,(z) = 227 f p. (L)AL a8 unwalent in

The polynomial p,(z) =2—

|2| < 2sinz/(n+1). Hence the tranvfmmatwn Pa(2) = pa(z) = 227 ‘fp (&)d:
preserves the class 2, if n <
It has been shown by leem [6] that if f(z) = z+ay,22+... is close-

-to-convex with respect to g(z) then f (2) = 227! f f(£)d¢ is close-to-convex

with respect to g(z) = 2z“fg(£)d§ The ladlus of close-to-convexity
[

for functions belonging to S was determined [4] to be r, where 0.80 < 7,

< 081 Hence if f(z) = z+ ) a,7* is univalent in |2/ < 1 then f(z)

k=2
2z“ff(g )d( is univalent in |z| < 7,. It is still an open question whether

f(z) lS univalent in |z| < 1.

2. Lemmas
Lemma 1. (Dieudonné Criterion). The polynomial p,(2) = z+

+ Y a2 e 2, if and only if the associated polynomial
k=2

sin20 n sinnf
z+... —Z
no T ing
does not vanish in |z| < 1 for 0 < 6 < =/2.

Lemma 1 is proved in ([3], p. 310).

Lemma 2. If all the zeros of the polynomial

n

1) = Y(3) 4,

k=0

6 — Annales
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lie in the circle |z| < r, and if all the zeros of
(2) = i’ "\ B,
In = k k
k=0
lie in the circle |2| < r,, then all the zeros of

h,(2) = t}"(:) A, B2

=0\ /
lie in the circle |z| < r,r,.
For a proof of Lemma 2 see [7], pp. 65—66.
The following result is due to D. A. Brannan [2].

Lemma 3. Suppose p(z) = 2+ a,2* +12° where t is real and positive,
and a, = a-+1if. Then

a) For 0 <t <1/5,p(2)e P, iff:

+ <l1.
143t 1-3t

b) If 1/5 <t <1/3, p(2)e ?, iff:
a+tife N E,

(12— l<d<s

where
Lig et p? ll
ifr————— + —— < 1.
. (1+wz\l2 |/1—wZ\I2 ' |
Vi+d] \V1+d)

Suppose t is a fixed nonnegative number < }. Let H (t) be the region
of possible values of @, in order that p(z) = z+ a,2%2+12°¢ #;. From
Lemma 3 it follows that H () is a closed and bounded convex set containing
the origin and symmetric with respect to the coordinate axes. For 0 < ¢

< 2n let K(p) = max Re(le **) be the supporting function of H(t). We
CeH(L)
shall need the following estimates for K (¢).

Lemma 4. If 0 <t <1/5 then
(2.1) K(¢) = }(1 498 +6tcos2p)'/2.

Edz

If 1/5 <t < 1/3 and ¢, is the unique root of the equation
(2.2) cos2¢ = (2t)1 (1 —158),
contained in (0, n/2), then

(2.3) K (g) < {2t(1 + t* —2tcos 2¢)"* +2t cos 29 — 212} /2
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i m I 3ni =

for |¢| < @o, lg—=a| < @y, whereas for | p— —2—l<i Y. 1 Catral el
(2.4) K(p) < }(1+98 +6tcos2¢)'>.
If t = 1/3, then
2v2
(2.5) K(p) = —g Icosgl.

Proof.
(i) The case 0 <t < .
Since H (0) = {2: |2| < })}, the formula (2.1) obviously holds for ¢ = 0.

']72 2
THtY: —— +— il e 1

)

It is easy to verify that the supporting function of the ellipse
MR sl ageml, . & Y3 o)
E = <(:1:+1y:-—a—z + ¥ < 1J> has the form

If 0<t<?}, then H(f) is the ellipse

(2.6) K(p) = (a%cos2q + bisin2g)'?.

Thus we see that the supporting function of H(t) is given by (2.1).
(ii) The case ; <t < }.
Because of obvious symmetry we may restrict ourselves to ¢ in
"

o5

above. According to (2.6)

. Let K (d, ¢) be the supporting function of the ellipse E, mentioned

(2.7) K2(d,¢) = (1+d)"'(1+*d® +2tdcos2¢).

Lemma 3 says that for ; < ¢ < ! the set H(t) is the intersection of the
family of ellipses E; where d varies over the interval I, = [t' —2, 3].
Hence

(2.8) K(p) < infK(d,¢).
dedy

. d
For t > 0, the equation 74 K*(d, ®) = 0 has a unique, positive root d,
where

(2.9) d]_ = _1+t—1(1+t2—210082(p)1/2.

P )
Moreover, — K*(d, ) < 0 for 0 < d < d!,é Kd,9)>0 for d> d,.

If d,el,, then for a fixed ¢, K(d, ¢) attains its absolute minimum at
d = d,, whereas, if d,¢ I, then the absolute minimum is attained at one
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of the end points of I,. In view of (2.9), d, < t~'—2 is not possible. For
a fixed t, d, > 3 if and only if

(2.10) cos2p < (2t)~1(1 —1582).

If 1/5<t<1/3, then —1 < (2t)"'(1—15#*) < 1 and equation (2.2)
has a unique solution ¢, in (0,%/2). If ¢@,<¢<=n/2 then
cos2¢ < (2¢)"'(1 —15¢%) and hence d > 3. This implies that K(d, ¢) is a
strictly decreasing function of d in I, and

inf K(d, ) = K(3, ) = }(1+ 92 +6tcos2p).
del,

On the other hand, if 0 < ¢ < ¢,, then

(2.11) cos2¢ = (2t)' (1 —158%),

and this implies that d,e I,. Hence

K(g) < ;n,fK(d,q;) = K(d,, p) = {2t(1+t* —2tcos2¢)"? +2tcos2¢ —217}'2.
G

(iii) The case t = 3

2v2 2v2
It follows from Lemma 3 that H( ) oS TS and for-
3

mula (2.5) can be easily verified. L 3

Lemma 5. Let H, and H, be two convex sets containing the origin.
If K, and K, are respectively their supporting functions then H, < H,
if and only if K,(p) < K,(¢) for 0 < ¢ < 2a.

Proof. If H, = H, then clearly

K,(p) = maxRe(Ze **) < max Re(le %) = K,(¢).
tell) LeH,y

On the other hand,
H; = (N {z+iy: zcosp+ysing < K;(p)}, Jj=1,2.

o<ep<2n
Hence H, c H, if K,(¢p) < K,(¢) for 0 < ¢ < 27.
3. Proofs of the theorems

Proof of Theorem 1. Set 2sin — — u. It is clearly enough to prove that
n

1 1 1
Q,(2) = p'P,(u2) = 2+ - pua,2® + r uas2d+ ...+ 7,u"“a,,z"

is univalent in |2| < 1. According to Dieudonné Criterion the polynomial
@, (2) is univalent in |z| < 1 if and only if the polynomial
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I q 1 8in26 i L sm3()z s 4 1 a1, sinnf .,
- Ty = = a oot — z
n-1(2) T #% e 34 % 5ineg n " %" sing

does not vanish in |2| < 1 for 0 < 0 < n/2. Thus we need to show that
the zeros of

hn—l(z) = zn—l}"}-n‘l(z ; l)

P 1 h sin26zr_3 - 1L o sin3()zn_:,+ 4 1 -1, sinn6
2 2 " 5ing "3 M sing n# " sin6
i ﬂ—-l) 1 p sin26,, @ n—1\1 e sink6 .
N +(\ 1 J2(n—1\ *sin0 " \k—-1k (n -1 sm()z A
1 \k—1
i C (n—l)l w_; SiDNO
— u""'a
n—1/5 ¥ " sin 6
lie in [2| <1 for 0 < 6 < =n/2.
Since p,(z) is univalent in |z| < 1, the polynomial
8in26 sin36 sinnf . |
1+a,——2+a,——2*+...+a, ——2"
sin 0 8in 6 sin 6

does not vanish in |2| < 1 for 0 < 6 < n/2. Hence the zeros of the polyno-
mial

foa(e) = 2 1+/n 3, 1 sm20

1 /n 1\ smB
1

-

(n—l\ 1 sm k6 .

""1’ (n— ) sin0

(n —1) sinnd

m , WSl FE
n—1/"" ginf
k—1

lie in [2| < 1. Now let us set

n—1\1 —1\1
gn-l(z>=z""+( 1 );ﬂz"-2+("2 )ng"-hr

-.+.u"] —z"} =n—1# [(e +p)" —2"]

which vanishes at the points 2, = u/(e*"® —1) where k =1,2,...,n—1.
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Hence the zeros of g, ,(z) lie in [2| < 1. From Lemma 2 it follows that
the zeros of h,_,(z) lie in |z| < 1 for 0 < 6 < n/2. This completes the proof
of Theorem 1.

22 22
If p(2) = z+a2z2+— 2% then for — ™ <a, < % the polyno-

mial p(2) is univalent in |2| < 1. It is easy to verify that the derivative
of f t~'p(%)d¢ vanishes on |2| = V3. This shows that Theorem 1 is sharp
0

for polynomials of degree 3.

We wish to show now that for polynomials of degree 2,3 the con-
clusion remains unchanged if instead of univalence we assume p’(z) +# 0
in |2 < 1. For n = 2 it is trivial. So let p(2) = 2+ a,2%+a,2® be a poly-
nomial of degree 3 such that p’(z) = 3a,22-+ 2a,2-+1 does not vanish in
|2] < 1, i.e. the polynomial

2
fa(2) = 22+ (1) a,z+3ay
has both its zeros in |z] < 1. We wish to show that the polynomial
P(z) = ['p()a = 2+ ja,2+ hagz®
0

is univalent in |z < V3 or equivalently the polynomial

sin26 sin3 6
z+ia,——
sin 6 sin 0

does not vanish in [2] < V3 for 0 < 6 < #/2. The latter holds if the re-
ciprocal polynomial

hole) — 22t 1 ’ sin260 1 sin36 e (2\ 1 sin26 1 sin36
2) = —- ——2+—a
Lo g “ 1) 2t " in6 ° 3 “sing
has both its zeros in [2| <1/¥ '3 for 0< 6 < /2. Now let
1 sm26 1 sin36
22 smB 32 ginf

_(,_ —8cosf+V —3+7sin? \(2 —3c080 —V —3+7sin?6

- 6 6 /
It is easy to verify that for 0 < 6 < =n/2

|(—3cosB-+V —3+7sin?6)/6] < 1/V3.

Hence for 0 < 6 < n/2 the zeros of g,(z) lie in 2| <1 /l/3, and so do the
zeros of h,(z) by Lemma 2.

sin 6 L 3 *ginf

g2(2) = 2+ ( )
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In the same way we can prove that if p(2) =2+ 2 a7 isa polynomlal
of degree n such that p’(z) # 0 in |z| < 1 then the polynomxal f Tp(g)de

is univalent in |2| < g, where p, i the minimum modulus of the zeros
of the polynomial

H* (2) =1+ (n—l) 1 sin26 (n -1\ 1 smko
w118} = 1 /] 22 gin6 R k—1] % sing -
1 smno
n® 8inf
It is clear that
n—1\ 1 sin26 n—1\ 1 smk()
F_.(z) =1 ( N T (
SLHA. il ] 2 Ssino ottty L 1}k sing -
o1 smn() (1+ze"°)”——(1+ze“°)"
o smB 2inz
and hence its zeros are
. il =5 )
g 3 et exp(2mik/n) Wgregae 5

' exp(2i6) — exp (2nik/n) ’

Since min |z,| = sin(z/n) it follows that the zeros of the polynomial

1<ksn—1
fos@) = U FL ) = (”"1) L 820 psny
1 2 sinf
n— 1\ 1 sink6 + 1 sinn6
AR+ —
\"_1/ ¥ sin6 n sinf

lie in [2| < cosec(m/n). On the other hand,

g;—l(z) =2"T'4

n—1\ 1 n—2 n—1\) 1 n—k 1 1 n__n
+( 4 )gz -+—...+(k_1)fz +...+;=—£[(z+1) —2"]

and hence its zeros lie in |2 < }cosec(n/n).
By Lemma 2 the zeros of the polynomial

h; 1(2) = mly
[n— 1) 1 sin26 [n —1\ 1 ska ey _,_isinfn()_
T\ 1 ] 2% ging ~ et \k—1/ %2 sin6 ~ T n gind
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lie in |2| < }cosec?(x/n) and those of the reciprocal polynomial H) ,(2)
lie in |2| > 2sin?(n/n). It follows that if p(z) =2+ Z a2 is a polynomxa,l
of degree » such that p’(z) # 0 in |2] < 1 then the polynonnal fC‘ p()de
is univalent in |2| < 2sin?(x/n). This reslet; is by no means sharp but

it shows in particular that if p(z) = 2+ Y a,2" is a polynomial of degree
2

4 such that p’(z) # 0 in [2| < 1 then [ (™ 'p({)de 2,.
(1}

Proof of Theorem 2. Without loss of generality we may suppose that
p(2) = 2+ay,2?+t2® where 0<t<1/3. Set 1/V7 = y. The polynomial
2p’'(2) = z+2a,2%+ 3t2° is univalent in |2| < y if and only if the polynomial
2p’(yz) = z+2a,y2%+3ty%2® is univalent in |z < 1. We note that 3iy?
< 1/5. Hence by Lemma 3 the region of possible values of 2a,y in order
that 2p’(y2)e 2, is

H, ={ax+11y: i + ____2_1/ 2<1
§ s 14-9ty? 1—9ty? v

Since p(z) = z+a,22+t2®¢ #; by hypothesis, a, lies in a convex domain
H (t) whose supporting function K (¢) has been estimated in Lemma 4.
It follows that 2a,y lies in a convex domain H, whose supporting function
is K,(p) = 2yK (¢). In order to prove that zp'(yz)e ?; it is clearly enough
to show that H, = H,. If K,(¢) is the supporting function of H, then
according to Lemma 5 this holds if and only if K,(p) < K,(p) for 0 < ¢
< 2n. Hence 2p'(y2)e P, if for 0 <o < 2=z

(3.1) 2yK (¢) < K,(p) = }(14+81t2y* +18ty2cos2¢)' 2.

In order to verify (3.1) we have to distinguish many cases.

Case (i). 0 <t <1/5.

In this case K(g) is given by (2.1) and we have to show that for
0<p<2nm

1+98 +6tcos 2¢) 2 < (1 +81t2y* +18ty2cos2¢p)'?,
¥ @ ¥
or

6ty2cos2¢p < 1 —4y? 48117 y* —361* )%,

Hence it is enough to prove that
(3.2) p(t) = 1 —492 —6ty? 4 81*y* —361*y2 > 0.
d
Since Ew(t) < 0 for t>0 and (1/5) > 0, (3.2) holds for 0 <t<1/5,

1-—-158

Case (ii). 1/5 <t < 1/3, cos2¢ < B
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In this case K (¢) < }(1+9t*+6tcos2¢p)'? and hence 2y K (¢) < K, (o) if:

4y2(14+91* +6tcos 2¢) < 148117 y* +18ty2cos2¢p,
or
6ty2co82¢p < 1+811%y* —492 —-361%y2

This latter inequality surely holds if

< 1+811%y* —492 361292

or
(1) = 1+81129* 4+ 91292 —T792 > 0.

: . . d .
This is certainly true since y,(1/5) > 0 and 2 p,(t) > 0 for positive 2.
d

1-—15#
2t -
In this case K (¢) < [2t(1 + 12 —2tcos 2¢)"* +-2tcos 2¢p —212]'/* and hence
2yK () < K, (¢) if

162 [2t(1 + t* —2tc082¢)"2 +2tcos 2 —212] < 1 + 8112y +18ty2c0s 29

Case (iii). 1/56 <t < 1/3, cos2¢ >

or
A (cos2¢) = 1961°y*cos®2¢ + [204812y* —28ty* (1 +32t%y* +-8112*)Jcos 2¢
+ (1 +328%9 +81129%)2 —102429* (1 +-12) > 0
For a given t in the range the minimum of A (cos2¢) occurs for
co82¢p = —(288t2y2 —7 —56Tt%y*)/(98ty*)

and is 0. Hence 2yK (¢) < K,(p) for 0 < ¢ < 2.
Case (iv). t = 1/3.
In this case we have to verify that for 0 < ¢ < 2x

8¥2y |cosg| < 3(1 +9y* -+ 6y2cos2¢)"?
or
—9+64y2+10y%cos2¢p —81y* < 0,
which certainly holds if
—94 7492 —81y* < 0

But indeed —9 +74y2—81y* < 0 and the proof of the theorem is complete.
The proof of Theorem 3 is analogous to that of Theorem 1 and we

2V2
3

therefore omit it. The example p(z) =z +

1
22+ = 23 shows that

the result is best possible as far as polynomials of degree 3 are concerned.
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STRESZCZENIE

W pracy tej autorzy wykazuja, ze jesli wielomian p(z) = z+ .+a,2"
Jest jednolistny w kole jednostkowym K, to wielomiany f {p(d)de,
— fp(‘,)d" 83 rowniez jednolistne w kole K o ile stopiei p nie prze-
kracza 6 (w pierwszym przypadku), wzglednie 5 (w drugim przypadku).

PE3IOME

B paloTte noka3aHo, YTO, €CIM MHOTO4YIeH P(z) = 2+ ...+a,2" ecTh
s

ONHONMCTHHIM B eNXMHWYHOM Kpyre K, To MHorowrensl [ 'p(l)dc,
4 (]

—z—fp(C)dC TaKKe OJHOJMCTHH B K, eciiM cTeneHb p He Gojabwe 6 (B mep-
0

BOM ciydae) uau 5 (Bo BTOpOM cilyuae).



