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Some Remarks Concerning Meromorphic Univalent Functions

Pewne uwagi dotyczące funkcji meromorficznych i jednolistnych 

Некоторые заметки о мероморфных и однолистных функциях

1. Introduction

Let Up, 0 < p < 1, denote the family of functions/(z) = z + a2z2 +..., 
|z| < p, meromorphic and univalent in the unit disc K1 = {z: |z| < 1} 
which have a simple pole at the point z = p.

Let R be the residue of a function /e Up at the point z = p.
As pointed out by Y. Komatu [3] we have following estimates 

p2(l-p2) < |R| <p(l-p2)-1

In view of this result the family Up is compact and can be investigated 
by variational methods.

We shall need the following
Theorem A. [4] Suppose that f e Up, zk (h = 1,2, ..., m), zk p 

are fixed points of K,, z0 satisfies -|z0| =1, Ak (k = 1,2, ...,m) are arbi­
trary complex numbers and a = — p~1R~1 Then there exists a positive number 
20 such that for each 2 e <0, 20) there exist functions of the form

m
f*(z) =f(z)-Ą^Ak 

1 k=l

IZkf'(zk)\ 2/»(г)
/(«*)-/(«)

m w
+ V AkP(z,zk)+ J?akP(z, Ż*1)} + O(22), 

fc=l Ac—1

(1)

(2) fW) = /(z) + 2P(z,z0) + O(22)
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where
U+Z p+u

P(z, u) =f(z)-zf («)------  +af\z)~-----
u—z p—u

which belong to the- class TJp.
If the complementary set of the domain f(Kf) has wk(h = 1,2, m) 

as interior points, then there exist functions of the form

(3)
m

*=i

f2W
Wk-f[z) + O(A2)

which belong to the family Up.

Let A be the region of variability of the expression log
/(*)

z being fixed and / ranging over the whole class Fp.
It is obvious that the set A is compact. Let dA be its boundary.

A point 3?Qe dA is said to be a regular boundary point if there exist a point 
a e & A and a disc K (a, e) such that

K(a, e) c WA and K(a, e)ndd = {^0}

It is well-known [5] that the set of regular boundary points is dense in 
dA, moreover, the functions fe Up corresponding to regular boundary 
points are extremal functions of the following extremal problem: 
min|J?(/)—a|.

The main result obtained in this paper is Theorem 2 which determines 
the region A. Our basic tool here is Theorem A.

It is my pleasant duty to express my thanks to Professor J. G. Krzyz 
for his helpful remarks.

2. A differential equation for extremal functions

Let A denote the set {w: w = log *T(*)
/(«)

,/e Vp} and let K(p),

IT(u,p) be elliptic integrals in Legendre’s form, that is

0
1

77(M,p) = f (1—tt®s)-1[(l——®sp*)]-1/,da5 
0

We are going to prove the following
Theorem 1. Functions f(z, y) = fv(z)e Up, <pe <0,2tz), corresponding

to regular boundary points of the set A map the disc Kk to the whole plane
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slit along one analytic arc and satisfy the differential equation (|f| <1):

' /4) / (/4)-/(*))2 4-42(i-4)«4-p)(i-p0
where k, I, \k\ — |Z| = 1, are determined by equations 

k + l = Bkl+B

(2.2)

(2-3)

(2.4)

(2-5)

kl — (k + l)z+z2 z(p-z)(l-pz)
— e

z2kl — z(k + l)+l \z(p —z)(l—pz)\
II(pz, p) + |«|2 nipz, p)—K(p)

B =

A =

z(Il(pz, p) -\-IHfpz, p) -K(p)} 

41 Z|2)2(p-Z)(l -pZ± c_i<f

/(«) =

(Z-fc)2(2-Z)2 
pzfl —kz)2(l —lz)2 

(l-|«l2)a(î>-«)(!-!>«)
Proof. Suppose that Xo is a regular boundary point of the set A, 

f‘Vp is an extremal function of the problem
min 1^(7)-a|
/•«j,

where a is a point mentioned above. Of cause, the function f exists. Using 
the formula (3) we conclude after simple considerations, that the extremal 
functions map the unit disc onto domain /(A,) whose complementary 
set has no interior points.

Let us now apply the formula (1) with m = 1. Taking y — Arg x 
X( A (/)—«) we obtain after some calculus

\F(f*)-a\2 = \F(J)-a\2+2k\F(f)-a\x

V /(*№) 9 p+ <■+
IT \ fM

d _ , 1 en;.'

Because the argument of Ax can be chosen in an arbitrary manner the 
term in braces must be equal to zero for all zte Kt. Taking 2X = £ we 
conclude that the extremal functions satisfy the following equation

(2.6) e-* £/'4)\ 
7(0 / (/(0-/4))2 ~ £-*

1+4 _. 4

==ci±l+G^+I)^ +

1-4 (1 —4)a
el’ +

4-0’
e"*’ =<?4)+ D

1-4

4
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where

2C WwY
f'W fW

);2D = —ajifWe'=

It is easy to see, that for all £ « Kt we have

(2.7)

We shall prove now that

(2.8) <?(£)< 0 for |£|=1.

In order to prove it we use the formula (2) and we obtain the following 
condition

TO")-«I2 = |^(/)-«|2-

2^ +z | j z°+p | z°z 
z z0 -p (z0-z)2

e-w( |^(y)_a|+0(A2)
t z0-

However, f is an extremal function, thus

(c^± 
\ «0-

+z I D z°+p + z°z 
Z Z<>—p Zo— z)2

r*j < 0
and our statement is proved.

The function Q(£) has zeros for |£| < 1 only at the point £ = 0. The 
condition (2.7) implies that Q(£) has no zeros for £ 0 and |£| =£ 1.
Moreover, the condition (2.8) shows that the zeros of $(£) on the unit 
circle have multiplicity of even order. Now, Q(£) is a rational function 
whose numerator is a polynomial of degree < 6. The considerations made 
above imply that its degree is actually 5.

Let k, I be zeros of Q(£) on |£| = 1 (which correspond to the roots 
of the equation /'(£) = 0). The equation (2.6) takes now the form

(£/'(£)\2 /(g)/(£) = , £(£—fe)a(£ —02
f(O / (fW-fW)2

where A is a constant.

Determining of constants A, f(z), k, I

It follows from previous considerations that the extremal functions 
map the unit disc onto the whole plane slit along one analytic arc. There 
are two arcs Zx, l2 on |£| = 1 with common end points k, I which are 
carried by f into both edges of the slit. If £1« £2« Z2 are points corre-

(2.9)
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sponding to the same point w on the slit /(GJ then (cf. [5], p. 112-117)

f QtCJdCx = f Qtft)dCa 
»1 ‘2

Hence, taking £ — eie, k = ela, I = ell>, we have
a+2n

f \Q(eio)\ll2dO = f IQ^^dO

However,

sin
0-a . o-psin---- - 2|„ „iOi—1\Q (e<(,)|1/2 = 4

and due to the periodicity of the function Q(el°), we obtain ultimately

f q(ei0) sin sin- dO = 0
. 0-a . 0-/3

where g(eie) = \z — et0\ 2|p — el0| 1 and also

(2.10) k + l=Bkl+B
where

(2.11) B = f e~aq(,ei9)d0 I f q(ei0)dO.
0 0

As shown above, we have Q(ei0)<O for real 0, hence }/$(£) is purely 
imaginary on the unit circle. Put A = |A|eiv. The condition â?/Q(£) = 0 
for |C| =1 yields

#{e<v/2[£+MC_1-(fc + Z)]} =0
and thus
(2.12) kl = -e“1”

Comparing Laurent’s coefficient of both sides in (2.8) we obtain

(2.13) A „
v (z-k)2(z-l)2

(2.14) f(z) = zp[l-zk)2(l-zl)2(l-z2)2(p -z)-\l-pz)-'

Now (2.12) and (2.13) yield the condition

&{e-iv(z-p)(L-pz)(z-k)-2(z-l)-2kl} = 0 

and from this we have

g-fc = eir z(p-z)(l~pz)
1—kz 1—lz \z(p—z)(l—pz)\(2.15)
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In order to complete the proof of Th. 1 we shall bring the elliptic 
integrals in the formula (2.11) to the normal form.

Putting t = e‘° we have (Ci = {f: |f| = 1})

B = fv(t)(t — z)-1(l — tz)—*dtl j tv(t)(t— z)(l— tz)~ldt 
Cl c-i

— |J (1— tz)~1v(t)dt + \z\2 J (1— tz)-1 v(t)dt—
ci 4

— f v(t)dt j z-1 [J- (1—te)-1 v(f)dt + J (l—tz^vfffdt — J v(t)d/j_1
Ci Cj Ci C,

where v(t) — [t(p—t)(l—pt)]-112.
Let us slit the t — plane along the segments [0,p] and [p_1, oo]. 

All functions under the signs of integrals are regular in the slit domain 
and the paths of integration can be continuously deformed to the segments 
[0,p]. Hence, we obtain

p p
B =f J (1 — tz)~lv(t)dt+ |z|2 J" (1——

0 0
p p p p

— v(t)dt| -z_1 [J(1 — tz)~1v(t)dt — jTv(t)dt+ J (1 — <z)-1??(<)d/J_1. 
0 0 0 0

Using the substitution t = p£2 we bring B to the form given in (2.4) and 
Th. 1 is completely proved.

3. The region j

We shall use the previous results to prove following
Theorem 2. If z, z p, is a fixed point of the disc KY and f range

over the whole class TJV then the region A is a disc given by the equation

^1+^2
2

where I\ = F(J(z, 0)), F2 = F(f(z, jz)).
Proof. It follows from the equation (2.1) that for each function which

satisfies (2.1) and for an arbitrary branch of root we have the condition 

|e-w/2 J (w_1/(z))1/2(w—/(z))_1dwj = const

on the |f| =1, (w = /(f)), which is equivalent to

//(g-v'/cgl
= c.(3.2)
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The functions /1 =/(«, 0),/2 =/(z, tf) satisfy (3.2) for 99 = 0, 99 = 
respectively, hence

(3.3)

(3.4)

We have now

ât

-ilog
/Atg-^Ag)

= c\

(3.5)

VfAQ+VfM J

.. ,O1Î sin <p 2 log , ------ ---- . n ,--- :---- ----- >
<i/A(C)-»/A(«))(Ûf(C)+v/A«)) J

= const.

The functions A A, A are holomorphic in the domain K^{p} and 
map the unit disc onto an analytic arc, hence they are continuous on the 
unit circle. The function 6(C) under the sign of real part in (3.5) is holo­
morphic at the point £ = z and has two branch points (£ = 0, £ = p) 
in which it has finite values, moreover, it has a constant real part on the 
unit circle and it is continuous there. If we consider this function on 
a double-sheeted Eiemann surface consisting of two unit discs with branch 
points 0, p, then the function will be single-valued. This Eiemann surface 
is conformally equivalent to an annulus. However, any single-valued 
function continuous in a closed annulus which has a constant real part 
on its boundary, is a constant. Hence G(£) = const. In view of limG^f) = 0, 
we conclude, that #(£) = 0. c=0

On the other hand, taking £ — z we have

hence

Zf'(.Z) <P , . Pe lv/2log ■ - — cos — log —----- +1 sin — log --------A*) 2 f,(Z) 2 ë f2(z)

(3.6) log^-2-(l„g<^-,„g^),
A*) \ A(«) A(A /

\ A<l(«) A(«)
+ log^wl e<”

and Th. 2 is proved.
Obviously, the result (3.6) can be also obtained by integration of the
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equation (2.1). In this case we obtain the centre and the radius of the 
disc (3.6) in terms of functions of some elliptic integrals however, the 
corresponding formulas are involved. The main idea of the proof resembles 
a method used by Golusin (cf. [1] p. 127-139) and seems to be more simple 
than the immediate integration of the equation (2.1).

4. Some particular cases

1° Let us first consider the case p ->1. It follows immediately from 
(2.5) that

(4.1) lim(B(2, p) — 1) = 0
p-i

and the equations (2.2) give us

k =1,1 = »|«|-1(|»| + e<”)(l + |«|e<”)-1

and (2.1) yields

log
g/'(g)

< iog(i + ki)(i-1«|)-

(?)which is the well-known region of variability of log Jz x in the family
£ (cf. [2]). /(g)

2° Let us take z = z. Then B = B and equations (2.2) yield 

It -(-1 = .B(l-)-fcZ)

fc-g ?~g = iv g(y-g)(l~pg)

1—kz 1—lz \z{p — z)(l—pz)\

If 0 < z < p and <p = 7i, or —1 < z < 0, cp = 0 then

k + l = B(l+kl)

2z(k + l) = (1+|«|2)(1 + M)

and because B < 1 we have k = — 1 = +1 and (2.1) can be integrated 
in an elementary way. Its solution is

/(g) = pz(p-z)-1(l-pz)~1e Up.

Hence we have the sharp estimate

< p (1 —z2) (p — z)-1 (1 —pz)-1zf'W
/(g)

for Ze (0, P).
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STRESZCZENIE

W pracy tej określono zbiór wszystkich możliwych wartości funkcjo­
nału log(zf (z)lf(z)) w klasie U(p).

РЕЗЮМЕ

В работе определено множество всех возможных значений фун­
кционала log(z/'O)//(3)) в классе Щр).




