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1. Introduction

Let U,, 0 < p < 1, denote the family of functions f(z) = 24a,22 +...,
|z2| < p, meromorphic and univalent in the unit disc K, = {z: |2| < 1}
which have a simple pole at the point z = p.

Let R be the residue of a function fe U, at the point z = p.

As pointed out by Y. Komatu [3] we have following estimates

p2(1—p3) < R < p(1—p?)~!

In view of this result the family U, is compact and can be investigated
by variational methods.

We shall need the following

Theorem A. [4] Suppose that fe U, z (k=1,2,...,m), 2 #p
are fived points of K,, z, satisfies |zo| =1, A, (k =1,2,...,m) are arbi-
trary complex numbers and a = —p~'R~' Then there exists a positive number
Ao such that for each Ae (0, A,) there exist functions of the form
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where

o BT
Pz, u) = f(&)—2f'(e) -
which belong to the class U,.

If the complementary set of the domain f(K,) has w, (k = 1,2, ..., m)
as interior points, then there exist functions of the form

2 +u
+af?(2) Pt
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N, )
3) **(2) = f(2)—4 A, 101
( d g : wy — f(2)
which belong to the family U,.
Let A be the region of variability of the expression log :}f((:):) .
2

2 being fixed and f ranging over the whole class U,,.

It is obvious that the set A is compact. Let 04 be its boundary.
A point e 04 is said to be a regular boundary point if there exist a point
ae £4 and a disc K(a, ¢) such that

K(a,e)c ¢4 and Kl(a,e)ndd = {Py}

It is well-known [5] that the set of regular boundary points is dense in
04, moreover, the functions fe U, corresponding to regular boundary
points are extremal functions of the following extremal problem:
min |F(f)—al.

feuy,
B The main result obtained in this paper is Theorem 2 which determines

the region 4. Our basic tool here is Theorem A.
It is my pleasant duty to express my thanks to Professor J. G. Krzyz
for his helpful remarks.

2. A differential equation for extremal functions

Let A4 denote the set {w: w =logi(z—) ,fe U,} and let K(p),

f(2)
II(u, p) be elliptic integrals in Legendre’s form, that is

K(p) = [ [(1—a*)(1—p*a?)] " da,

Mu, p) = [ (L—ua®) ' [(L—a*) (L —a*p*)] " do

We are going to prove the following
Theorem 1. Functions f(z, ¢) = f,(2)e U,, g0, 2n), corresponding
to regular boundary points of the set A map the disc K,  to the whole plane
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slit along one analytic arc and satisfy the differential equation (|| < 1):

(2.1) e-""| [ &ff (9))* f(z)f(ﬁ)m =" E(82— (k1) L+ Kl)®
V) ] (F0)—fl2)? (£ —2)(1—-z0)*({—p)(1 —pC)
where k, 1, |[k| = |l| = 1, are determined by equations
k+1 = Bkl+B

2.2) kl— (k+1)z+22 _ 2p —2)(1 —pz)

Pk —2(k +1)+1 l2(p —2) (1 —p2)|
(2.3) 11(pz, p) + |2|* I (pz, p) —K(p)

211(pz, p)-+11(pz, p) —K (p))
(2.4) P el 0l B
(z—k)*(z—1)

.5) i) = pz(1 —kz)2(1 —Iz)?

(1—12*)*(» —2)(1L —p2)

Proof. Suppose that ¢, is a regular boundary point of the set A4,
fe U, is an extremal function of the problem
min |F(f)—a|
Jeuy,
where a is a point mentioned above. Of cause, the function f exists. Using
the formula (3) we conclude after simple considerations, that the extremal
functions map the unit disc onto domain f(K,) whose complementary
set has no interior points.
Let us now apply the formula (1) with m = 1. Taking ¢ = Arg x
X(F(f)—a) we obtain after some calculus

IP(f*)—al* = |F(f)—a|*+24|F(f)—a| X
[rocw( o) \* @) @ 2
\fe) | Teo—fep ~ os' 2™
2, }% Pz, z;!)]} +0(22)

Because the argument of 4, can be chosen in an arbitrary manner the
term in braces must be equal to zero for all z,¢ K,. Taking 2z, = { we
conclude that the extremal functions satisfy the following equation
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where
(@) ')
f'(2) f(2)

It is easy to see, that for all ¢ K, we have

2.7) Q1) =QE™
We shall prove now that

(2.8) Q)<o0 for [{] =1.

20 = e"""( ); 2D = —af(z)e ™

In order to prove it we use the formula (2) and we obtain the following
condition

|F(f*)—a|* = |F(f)—a|*~

mjo Zy+2 D 20 +p + 0% . e—iwl |F(f)—al+0(4?)
l 20—2 2—DP (20 —2) J

However, f is an extremal function, thus

@ (C 2o +2 D 2o+ n 202 c‘“’) <0
2o—2 2o—D 2y—2)?

and our statement is proved.

The function @(¢) has zeros for || < 1 only at the point { = 0. The
condition (2.7) implies that @Q(¢) has no zeros for { + 0 and |{| # 1.
Moreover, the condition (2.8) shows that the zeros of Q({) on the unit
circle have multiplicity of even order. Now, ¢ ({) is a rational function
whose numerator is a polynomial of degree < 6. The considerations made
above imply that its degree is actually 5.

Let k,! be zeros of @(f) on |{| =1 (which correspond to the roots
of the equation f’(f) = 0). The equation (2.6) takes now the form

(2.9) r“-(“f"“)” 10 _ LR —1)?

& 1 (f&)—f)? (f—2)*(1—20)*(C—p) (1 —pl)

where A is a constant.

Determining of constants A, f(2), k,

It follows from previous considerations that the extremal functions
map the unit disc onto the whole plane slit along one analytic arc. There
are two arcs l,,[l, on |{| =1 with common end points k,! which are
carried by f into both edges of the slit. If (,el,, {,¢l; are points corre-
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sponding to thej same point w on the slit f(C,) then (cf. [6], p. 112-117)
feendt, = [Q.)de,
U} I

Hence, taking ¢ = €', k = ¢, 1 = ¢/, we have

] a+2n
[1@)2do = [ |Q(e") 8
a f
However,
A, g ; )
Q(e)"* = 4 sin sin ﬂ‘:z-e'”|i'”!p—6‘°i“
|

12
-

and due to the periodicity of the function Q(e”), we obtain ultimately

2a
; 0— 0—
f q(e*) sin : % sin —zg a0 =0
0
where g(¢'®) = |z—¢|7?|p —¢€*°|"! and also
(2.10) k-+1— Bk +B
where
2n 2n
(2.11) B = [eq(e")d0 | [ q(e")db.
0 0

As shown above, we have Q(e*’) < 0 for real 6, hence )/(WC) is purely

imaginary on the unit circle. Put A = |4|¢'*. The condition AVQ(2) =0
for |{| =1 yields

R RLT —(k+1)]} =0
and thus
(2.12) Kl = —e'®

Comparing Laurent’s coefficient of both sides in (2.8) we obtain

4 HL— -1 —pr)
(z—k)2(z—1)?

(2.14) f(2) = 2p(1 —2k)2(1 —21)2(1 —22)2(p —2) " ' (1 —p2) !
Now (2.12) and (2.13) yield the condition
R{e™" (2 —p)(1—p2) (e —k) * (e — ) *Hl} = 0

and from this we have

(2.13)

2=k 2=l . z(p—2)(1—p2)
(2.15) 1—kz 1-0z  ° Ja(p—2)(1—p2)|
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In order to complete the proof of Th. 1 we shall b;ing the elliptic
integrals in the formula (2.11) to the normal form.
Putting ¢ = ¢° we have (C, = {{: [¢] =1})

fv(t (t—2)"" (1 —t3) "' de/ fw (t—z) (1 —tz)'dt
U(l—tz v(t)dt+|z[’f(1-—tz v(t)dl —

- fv(t)dt] -IU (1—te)*o()dt+ [ (1—t2) o(t)dt— fv(t)dz]“
C C,
where o(t) = [t(p —t)(1 —pt)] '
Let us slit the ¢ — plane along the segments [0, p] and [p~!, co].
All functions under the signs of integrals are regular in the slit domain
and the paths of integration can be continuously deformed to the segments
[0, p). Hence, we obtain

B [f 1—t2)" o(t dt+|z|“f(1—{) Lo(t)dt —

—j!v(t)dtl -z-l[f(l—tz)-lv(t)dz— [o@ar+ fu—tz)-‘v(t)dt]—l

0

Using the substitution ¢ = p{? we bring B to the form given in (2.4) and
Th. 1 is completely proved.

3. The region /4

We shall use the previous results to prove following
Theorem 2. If z,2 # p, is a fized point of the disc K, and f range
over the whole class U, then the region A i8 a disc given by the equation

1,1

(3.1) F(f)—

gIFnLFz

where F, = F(f(z,0)), F, = F(f(2, n)).
Proof. It follows from the equation (2.1) that for each function which
satisfies (2.1) and for an arbitrary branch of root we have the condition

R {e“""f(w“f(z))”’(w —f(z))“dw} = const
on the [{| =1, (w = f({)), which is equivalent to

Sninn VIO V@)
82 e~ wPog = =TT —
el {e VIO V@)
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The functions f, = f(z,0),f, = f(z, n) satisfy (3.2) for ¢ =0,9p ==
respectively, hence

. VI(2)—Vf(2)
3.3 #1{ log —
o) { VRO V@ )
(3.4) 9?{ —tlog !;f_‘fl_(i)*—'{-fég } =C
"fs(:)‘:' sz(:)

We have now
Vi) —ViEWnO+VhaE)
V1,.(2) VI @)V +Vf(2)

(3.5) R {eosqp/ log

V() =V (&) +V a(2) )
VA —VH WD Vi@

—tsing/2log const.

The functions f, f,, f. are holomorphic in the domain K,- {p} and
map the unit disc onto an analytic arc, hence they are continuous on the
unit circle. The function G({) under the sign of real part in (3.5) is holo-
morphic at the point { =z and has two branch points ({ = 0,{ = p)
in which it has finite values, moreover, it has a constant real part on the
unit circle and.it is continuous there. If we consider this function on
a double-sheeted Riemann surface consisting of two unit discs with branch
points 0, p, then the function will be single-valued. This Riemann surface
is conformally equivalent to an annulus. However, any single-valued
function continuous in a closed annulus which has a constant real part
on its boundary, is a constant. Hence G(,) = const. In view of lim@({) = 0,

we conclude, that G({) = 0. ¢=0
On the other hand, taking { = 2 we have
19/2 Z_jZ(Z) o g)_ Zf( } v ”f (2)
e log 1) coszlog £.02) +¢sin fz(z)
hence
') - ( #1(2) zfz(z))
3.6 lo —27lo —lo
N ) e e
fl(} "J‘(. ‘
—2 1{1
e T

and Th. 2 is proved.
Obviously, the result (3.6) can be also obtained by integration of the
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equation (2.1). In this case we obtain the centre and the radius of the
disc (3.6) in terms of functions of some elliptic integrals however, the
corresponding formulas are involved. The main idea of the proof resembles
a method used by Golusin (cf. [1] p. 127-139) and seems to be more simple
than the immediate integration of the equation (2.1).

4. Some particular cases

1° Let us first consider the case p — 1. It follows immediately from
(2.5) that

(4.1) lim(B(z,p)—1) =0

p=1

and the equations (2.2) give us
k=1,1 = zle| (o] + ) (1 +|2] €9)
and (2.1) yields

\log zf,(:} |< log (1L + |2} (L — |#I) !

2 (2
which is the well-known region of variability of log )
8 (cf. [2]). =z

2° Let us take z = z. Then B = B and equations (2.2) yield

k+1 = B(1+kl)

in the family

k—z l—=z e 2(@—2)(1—p2)
1—ke 1-lz _ ° |2(p—2)(1—p2)|

If 0<z2<p and ¢ =z or -1 <2< 0,90 =0 then
k+1 = B(1+kl)
22(k+1) = (1 +[2[1) (1 + k)

and because B <1 we have tk = —1 = +1 and (2.1) can be integrated
in an elementary way. Its solution is

f(2) = pa(p—2)" (1 —p2) e U,
Hence we have the sharp estimate

' (2)
f(2)

<pA—2)(p—2)"'(1—p2)~"

for ze¢ (0, p).
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STRESZCZENIE

W pracy tej okre$lono zbiér wszystkich mozliwych wartoéei funkejo-
natu log(zf'(2)/f(2)) w klasie U(p).

PE3IOME

B pa6ore ompeneieno MHOMECTBO BCeX BO3MOMKHBIX 3HAYEHHMit QyH-
wuonana log (2f' (2) /f(z)) B wmacce U(p).






