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Introduction

In his recent paper J. Ławrynowicz [4] discusses in detail the class EQ 
of Q-quasiconformal mappings / of the unit disc onto itself of the form 
f(z) = eiarg2/(|z|), satisfying conditions/^) = 0,/(l) = 1. He also discusses 
an analogous class Eq of Q-quasiconformal mappings of the complex 
plane onto itself. At the end of this paper some suggestions concerning 
further research in this direction are given. E.g. one may consider various 
classes of quasiconformal mappings which are solutions of Beltrami 
differential equations with separated variables. In connection with this 
Ławrynowicz proposes to consider the class HQ of mappings f of the upper 
half-plane which are locally Q-quasiconformal and have the form f(z) 
— |z|/(etargï), as well as the corresponding class Hq of mappings locally 
Q-quasiconformal of the complex plane slit along the positive real axis.

The present paper deals with the classes mentioned above. The defi
nitions, as well as some theorems and proofs, are similar to those in [4], 
and therefore we omit some of them.

At the beginning we give the definition of the class HQ and five 
other equivalent conditions for/to be of the class HQ and then we formulate 
two theorems on estimates of |/(2)| l\z\ and argf(z) for fe HQ. In Section 3 
two theorems on parametric representation are proved. In the next 
section a general extremal problem in HQ is considered. Here two theorems 
are given on sufficient conditions for existence of an extremum of a real 
functional, as well as the analogous conditions for existence of an extremum 
of the real part of a complex-valued functional with the fixed imaginary
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part. Further, we present two theorems which are applications of previous 
results. In the last section the class Eq is discussed.

In this place the present author wishes to express his thanks to 
Professor J. Krzyż from Lublin and Professor J. Ławrynowicz from 
Łódź for helpful remarks and suggestions given during preparation of 
this paper.

1. The class HQ

Let denote the complex plane, <?+ — the closed upper half-plane, 
and A — the closed unit disc. Throughout the paper cl I? denotes the 
closure of E in £, E being a set.

Definition 1. A function f is said to be of the class HQ if it is defined 
on /+, and

(i) maps £+ onto the Riemann surface of s — w1'1", we £+ (/' being 
positive, and s =/(—1) corresponding to some w = — |w|),

(ii) s = /(0), s = /(l), and s = /(oo) correspond to w = 0, w = 1, 
and w = oo, respectively.

(iii) f(z) = |«|/(eiarg2) for ze «?+\{0, oo}, where if /(e,arg2) is a point 
corresponding to some woe S+, then |2|/(eiarg2) denotes the point corre
sponding to |«|w0.

Since the correspondence between the Riemann surface of s = w1'1”, 
we S+ and the half-plane <f+ is one-one, we shall write

/(») = |w|<7nexp — argw 
n I

instead of
s =f(z) corresponds to w.

In particular, we shall write

/(«) = |w|r/n for wed{w: argw — 0}.

Of course we may confine ourselves to the case where the Riemann 
surface of s =wl'ln,we £+, reduces to <?+, but this corresponds to the 
case where arg/( —1) = n only. Obviously this condition restricts the 
class considered, and it is inconvenient for estimations.

Definition 1 implies

— =|/(e<arg2)|^R(arg^), z
(1) arg/(z) = arg/(eiarg2) = 0(argz) [z 0, oo).

Now we give five other equivalent conditions for / to be of the class 
Eq. The proofs of equivalence, except for the proof of Theorem 1, are
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analogous to the corresponding proofs in [4], p. 311-315, so we shall 
give the above mentioned proof only.

Theorem 1. f e HQ if it is defined on &+, and f(z) = f*(z) identically 
for ze <S,+\cl{z: arg 2 = n}, where f* satisfies conditions:

(i') it is defined on <?\cl{2!: arg 2 = n}, maps it into the Riemann 
surface of s = w1'1”, we «?’(/'> 0 and f*(e>‘n) = lwJeUn for some tn->n — 
and t'n -+ n— as n + oo),

(ii') /*(«») ->0,/*(l) = 1,/*&,)-> oo for some z„->0 and zn-+ oo 
as n —> + oo,

(iii') amf*(z) = f*(amz), where {am} is a sequence of real numbers 
such that am -> 1 as m -> + oo.

Theorem 2. fe HQ if it is defined on ^+, and f(z) = f*(z) identically 
for ze <?+\cl{z: arg 2 == n} where f* satisfies conditions (i') and (ii') in 
Theorem 1, as well as p*(z) = p*(amz) a.e. in where p* is the complex 
dilatation of f*, and am (m = 1, 2, ...) are the same as in Theorem 1.

Theorem 3. fe HQ if it is defined on <a+, and satisfies conditions 
(i) and (ii) in Definition 1, as well as p* (z) = p*(eiaTgz) a.e. in <S’+.

Theorem 4. feHQ if it is defined on and satisfies conditions 
(i) and (ii) in Definition 1, as well as zfz(z)+zf-(z) — f(z) a.e. in d?+.

Theorem 5. f e HQ if it is given by the formulae

f(z) = |«|exp J" 
ei arg z p(e) + e2

de
e

for Ze $+, z 0, oo,

f(z) = z for z =0, oo,

f being continuous and having its values on the Riemann surface of s = w1'1", 
we &+, where

., / de
V — 7T I a

J p(e) + e2 e

where p is measurable with sup |//(el’’)| <1 and esssup|JM(e’’’)| <,

e ranging over the unit circle from eiargz to 1.

Remark 1. The correctness of the definition of f as a function having 
its values on a Riemann surface follows from the well known theorem on 
existence and uniqueness (see e.g. [3], p. 204).

Remark 2. In general p is assumed to be complex-valued.



14 Przemysław Skibiński

Proof of Theorem 1. It follows from Definition 1 that f* defined 
by/*(«) = /(«) for ze<?+\cl{z: argz = n} and by /*(z) = /(z) for z<t&+, 
z oo, maps«?\cl{z: argz = n} into the Eiemann surface of s = wtln, 
wifi, f > 0, Q-quasiconf or mally with /*(0) = 0,/*(l) = l,/*(oo) = oo. 
Moreover /* satisfies

/’(az) = />) = a|z|r(7^^ = a/>) 

for imz>0,z ^0, oo, and any positive a. Besides,

/’(az) = a|z|/*(e-<arB<) = a/*(z) = a/\7)

for imz< 0,z yto, oo, and any positive a. Hence feHQ according to 
Theorem 1.

Conversely, suppose that /c HQ according to Theorem 1. We see 
that putting f = amz in the equation a„,/*(£) =/’(am£) we get a^/*(z) 
= /*(<&«)• It is easy to verify that a^/*(z) = /*(a^z),(» =2,3,...). 
There exist subsequences of positive integers {mk\ and {nk} such that 
1 /a?"* -> <5 as k -> + where 6 can be an arbitrary positive number. 
In fact, we can choose as {a„lfc} an arbitrary non-decreasing subsequence 
of {am}, and nk (k = 1,2, ...) is chosen so that (1/a^)”* < <5 < (l/aA.)nfc+1. 
Therefore we can assume that 1/a”* -> |z| as k-^+oo. Consequently, 
we have /*(z) = |z|/*(etarss!). Hence, by our hypotheses, it follows that 
fe HQ according to Definition 1.

2. Bounds for It and 0

By the use of Theorem 5 it is easy to find sharp estimates of R and 6 
when/ranges over HQ. We first state

Lemma 1. With the notation of formula (1) we have 

arg/_1(w) = 0“‘(argw)

1
E(0_1(argw)) ’

This is an immediate consequence of Definition 1.

Theorem 6. For any feHQ and any ze<t?+, z 0, oo, we have 

(llQ)argz < arg/(z) < Qargz,

where argz, arg/(z) change in a continuous manner from the initial value 
arg/(l) = 0 = argl. Both estimates are sharp for any ze£+, z 0, oo, 
and Qe(l, +oo). The only extremal functions are f(s) — |s|eI<?args and 
f(s) = args for the upper and lower hound, respectively.
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both estimates are sharp for any ze£+,z ^0, oo, and Qe(l, +oo). The 
only extremal functions are f(s) — |s| eip arfit8 and f(s) = |s|e*^args for the 
upper and the lower bound, respectively. Here fl = |(1 —i)Q + |(l + i)(l/Q).

The proofs of Theorems 6 and 7 are analogous to the proofs of The
orems 1 and 2 in [4], p. 315-316, respectively.

3. Parametric representation

We now give two theorems on parametric representation for fe HQ. 
We introduce one-parameter family of functions g(z, t)e HQ, 0 < 1, 
with the same t', cf. e.g. Definition 1, such that g(z, 0) = sf'ln, g(z, 1) 
= f(z), and find a relation between dg/dt and the complex dilatation v* 
of the inverse mapping g-1 (Theorem 8). An analogous theorem involving 
the complex dilatation of f can be also proved (Theorem 9).

Now define two classes of mappings, cf. [5] p. 150. The class RQ 
consists of all functions f which map A Q-quasiconformally onto itself 
with /(1) = l,/(i) = i,/(—1) = —1. TQ is the subclass of RQ containing 
all functions f with continuous partial derivatives of the second order, 
and such that the partial derivatives of the first order of (1 + |/z| )/(l — |/z|), 
iargM, satisfy Holder conditions, /z denoting the complex dilatation of f.

Theorem 8. Suppose that w — f(z) belongs to HQ and has u = p(z) as 
its complex dilatation. Moreover, suppose that the functions w = g(z,t), 
0 < t < 1, with the corresponding t' being fixed (cf. e.g. Definition 1), belong 
to Hq and have complex dilatations

(3) v(z, t) = tp(z).

Then w = g(z,t), considered as a function of z and t, satisfies on {<?+\{oo}} x 
X {t: 0 < < < 1} the equation

subject to the initial condition g(z, 0) = af1", where v* is the complex dila
tation of g-1.

Proof. Put
f = h^ofoh-1, 

g == ht,,n o g oh~l,
(5)
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where h denotes the homography 7t(s) =---------- , and t'/n — lim arg/(et7).
i s+1

Clearly, the functions co = /(£) and co = </(£, t), 0 < t < 1 belong to the 
class IiQ, and </(£, 0) =/(£), |£|<1. Suppose that these functions be
long to TQ, and denote by it = ^(C) and v = v(£,t) their complex 
dilatations, respectively. It is easily obtained from (5) and (3) that 
r(C, /) = //«(.C)- According to Theorem 1 in [5], p. 150, we have

(6)
dco
dt

1 ffj (co-i)(co2-l)
l(«-f)(l-£’)(f-*) ) +

ICICI
(l + ico)(co2 — 1) 

(i-^)(i-p)(T+i)

C)(1_HC-*)

t)}d£dt]
d = Z + iri),

where

(7)
Pt(s HtodM _

l-l^(3-1(", t), t)I2
exp(—2iarg</(01 (co, <))

exp(-2farg^m1(co,/))

(l/f)v*(co, t) 
1— |r*(co, t)|2 ’

and v* denotes the complex dilatation of g~\ Hence formula (6) takes 
the form

dco co2—1 rr 1
= 1-P(G<)I2 X

J (co-i)r*(C, t) (l + ^co)r*d, t) 1
1 (c-i)(i-:2)(co-:) + d+i)(i-:2)(i-do)j" v

(co — i) (co2 —1) 
jit ff

ICICI

1
i-|r*(C, Ol2 x

x y*U,t)
c-i)(i-:2)(co-f)

_____ He? o_____
(?+i)d-:2)d -?«>)H

(co —i)(co2—1) ff *(£,*) d£dr)
m i-ir(:,t)i2 d-i)d*-i)(c-o) ’

where y(co, t) = r*(co, /) for coe /1 and v(co, t) = e4tartr<“v*(l/co, /) for a>4 A. 
Next, we notice that, by (5), we have

(8) v*(z,t) = exp(—2iarg(/i ’/o (z))v*(h ’(«),/).
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From Theorem 3 we see that

» ft/l + iexp-i# \ . /1— iexpi# \2
(9) v(£,t) = j>|----- :----- — ,t exp2гarg----- :------—-I ,\l — iexpi9 J s\l-irexpi9) ’

, 1 £~1 where---------- ---  re .
i C+l

Hence, by (6), we obtain

dw (co — i) (co2 —1)
----  = - ------ ----------- X
dt nt

X
n +OO

ff
0 —oo

’1 1 + iexpi# J 
1 — iexpi# ’ t exp2iarg ' 1 — iexpi9 \2 

k 1 — irexpi# /

V
' l + iexpi$
, 1 —iexpi#

,.)! j (l — i + (1 + i) (irexpi9)
X

(1 — ir exp i9y dr d9
i (1 —co + ir (1 + co) exp 11 — ir exp i# |4 exp i #

ft/l + iexpi#

X

(co — i) (co2 —1)
nt lls 1 — iexpi&

, f)expiarg(l — iexpi#)4

<) I
\ \ 1 —iexpi# / J

X
+ oo

f

(expi#

(l — i + (l + i)irexpi^)(l — co + (l+co)irexpi$) ]

ft/l + iexpi# \ .
r-------------—, t expzarg(l — expt#)
\1 —fcexpi# /

dr

X

d9

(co —i)(co—1) 
nt(l + i) f

4-00 exp i&

X J
— oo exp i&

--------- -— ---------- -  d9.
/ 1 co —1 \(c-i) k---—
\ I CO+1 / j

By the theorem of residues we have

— 2tt(co+1)
_______ df '

— oo expid  2.)

4-oo exp id

7 co—1—i(co+l)
for 0 < 9 < arg

1 co —1
i co+1

/ 1 "-1\ Y-7-^+r) 1 co —1
0 for arg —-------— < 9 < n

i co+1

2 — Annales
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Consequently,

dcm 2i(co —i)(co2—1)
~dT ~ ~ f(l+ <)(«>-1-i(<u+l))

i <»-i */l + texpt$ \
i '<o+i v I ----- -------—, t exp i arg (1 — i exp i&y
r \1 —texptu /

whence, by (5), we have

(10)
dw
~dT

2iw Urg

f

I s/1 + iexpid \l2\I1“ ’(l-iexpW > !)| H2" 

«/l + iexpż# \
'(i-iezp« ’ - *“P»>‘

dd,

/ k/l-t-iexpi# \ 2\
iexpi$

Next, using (8) it is easy to show, that
~ /1 + iexpi# \

r*(expi$, t) = — exp2iarg(l — lexp«?)2»,* I---- ;--------- , i).
\1 —»exp»# /

„ . & ll + ivxpi& \ >*/l + iexpii? \ „ „ „
Hence, since r----- ------ rr,M=’' R---- :----- rr , H for 0 < & < n\1 —texptu / \1 —iexpiu /

and (10) holds, the assertion of Theorem 8 follows.

Theorem 9. TJnder the hypotheses of Theorem 8 the function w = g(z,t), 
considered as a function of z and t, satisfies on {<?+\{oo}} x {t: 0 t 1} 
the equation

dw r
(11) — = 2|z|exp J

ty (e) — e2 de /*(«) de
//x(e) + e2 £ex arg z ex arg z

subject to the initial condition g(z, 0) = zf1".
The proof follows immediately from Theorem 5

(t/Ll(e) — £2)2 £

x /

(

4. A general extremal problem in

In Theorems 6 and 7 we have given sharp estimates for \f(z)/z\ and 
arg/(2) when/ranges over HQ. Now we proceed to more general extremal 
problems. First we determine the extremal functions for any sufficiently 
regular real-valued functional U — F(zt, zn-, wt, wn) with fixed 
zY, zn(^+,w1 = f(Zj), ...,wn =f(zn), and / ranging over HQ. Next 
we determine the extremal functions in an analogous problem with the 
additional condition that another real-valued functional G, satisfying 
the same regularity conditions, admits a given fixed value. This enables
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us to find in several cases the region of variability of the complex-valued 
functional F + iG.

Theorem 10. Let U = P(Cx, ..., Wi,wn) be a real-valued 
function defined for £ke Dk, wke DQ k, where Dk <= <S’+, DQ k => [J g(Dk)

°tHQ
(fc = 1, ..., n). Suppose that F has continuous partial derivatives with 
respect to w1, ..., con. Then there exists a function feHQ for which the 
functional U = F(zt,..., zn-, g(zf), ■■■, g(«»)) attains its maximum when 
g ranges over Hq-, zk being fixed points of Dk such that argzfc> argzk_1, 
(k = 1,..., n), z„ =1. The maximum is also attained for any function fl de
fined byft(s) = f(s) if argzn > args > 0 and by fk(s) = f(zn)f*(slzn) if argzn 
< args < 7r, where f*e Hq. Moreover, if f is not the identity function and if

n

(12) £ f(?k)Fak(zi, ■■■,znif(zi), ■ 
k = m+l

then we have
(13) f(s) = wm\s/zm\eifi^i-

••’if(^n)) 0

(m = 0, ..., n — 1), 

ttre№m)

for argzm < args < argzm+1, (to =0,1,..., n-1), where 

(11) Pm (^1» • •• 1 znl em) = ~2 + ~Q j ^S”1 X

n
xexpj-iarg JT1 wkFmk(zlf ...,z„; wlf ..., w„)j, 

S=m+1
=1 “I, Wo = 1, «h = /(«x), ...,wn = f(zn)t

and args, arg/(s) change in a continuous manner for argzm< args < argzm+1 
so that f(s) -+wm as s -> zm. The theorem remains valid if “maximum" is 
replaced by “minimum".

The proof is analogous to the proof of Theorem 5 in [4], p. 319-321.
Theorem 11. (i) Let w = F(£1} ..., <ox, ..., con) be a complex-valued 

function defined for £ke Dk, wke T>Qk, where Dk <= <?+, DQ k o (J g(Dk),
Q'Hq

(k = 1, ..., n). Suppose that F has continuous partial derivatives with 
respect to co1, ..., wn. Then there exists a function f e HQ for which the func
tional U = reF(zlf ..., zn; g(zi), ..., g(zn)) attains its maximum when 
im_F(zx, ..., z„; g(zf), ..., g(zn)) — x, and g ranges over HQ-, zk being fixed 
points of Dk such that argzfc > argzfc_x, (& = 1, ..., w), z0 = 1, and x 
being a real number such that

minim J1(«x, ..., zn-, g(zk), ..., g(zn)) <x<
«'HQ

< maximJ’fzx, ..., zn; g(zf), ..., g(zn)).
O'Hq
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The maximum is also attained for any function fx defined by fjfs) = f(s) 
if arg> args > 0, and by f^s) = f (zn)f* (s/zn) if argz < args < n, 
where f*e Hq.

(ii) Suppose that all assumptions given in (i) are fulfilled. Let e denote 
a sequence {e0,en-i}i where em - 1 or —1 (m — 0, ...,n—l), and 
let A, denote the set of real numbers 2 satisfying

n

2 f(^M}k(«1, • • •, /(M)(«J, • • •, ^0 (to = 0, ..., 1).

Here F^ = re J1 + Aim J1, the functions f^ are defined by the formulae 
f^’e\s) = s for args = 0, and by

f^‘\s) = w£e)\8lzm\e%™^ *„:*,«) are №m)

for argzm < args < argzm+1 (to — 0,1, n— 1), where

• • • J ^n> > £) “t" 2”^Cm ~Q^ X

n
xexp(-iarg £ w^F^zt,zn-, w^)},

k=m+l

W^ =l,w[^ =f^^),...,W^ =f^’\zn),

and args, argf^,e\s) change in a continuous manner for arg zm < args 
< argzm+1, so that f^’^(s) ->w£’e) as s -> zm in the case of every Ae Ae and 
each e. Next let Fe, 2J c Ae, denote the set of numbers 2(t, e) such that

™F(zk, ...,zn-,f^-‘\z1), ...,f^‘\zn)) = r.

Finally let A$, A* c xlj, denote the set of numbers 2*(r) for which

reF(z1, zn-, f^{T,c)’^ (zf), •••,f^T'e)’e\zn)] attains its maximum when
2(t , e) ranges over [J A]. Suppose additionally that the extremal function 

6
is not the identity function and that 

n
£ ...,zn-,f(zf), ...,f(zn)) ^0 (to = 0, w-1)

k=m+l

for some 2*(-r)e./U. Then there are: a sequence s° = {e®, e®^}, where
eQm = 1 or —1 (to = 0,n— 1), and a number 20(t) = 2(r, e°), 20(r)e/15,, 
such that

f(s) =/(;#<T),'0)(s) for argz„ > args > 0.

Moreover, each other function f^T},,’>, where 2»(t)c Al, 2*(t) = 2(t, e*), 
e* = {e*, = 1 or —1 (to = 0, n — 1), is also an extremal
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function for the problem under consideration in HQ provided it is continued 
into the sector {s: argz„< args < n} by any way described in (i).

(iii) The theorem remains valid if “maximum” is replaced by “mini
mum”.

Proof. We apply the well known method of multipliers of Lagrange 
together with Theorem 10. Hence Theorem 11 follows immediately.

5. Some applications

We apply now Theorems 10 and 11 in order to find
(a) the region of variability of the functional J’(w) = logic, logl = 0,

w = f(z), z being fixed, and f ranging over HQ (Theorem 12 below),
(b) the sharp estimate of |/(0)|, where f is defined by f = h 1ofoh, 

1 s-1
f ranging over HQ and h denoting the homography h(s) = — ■ 
(Theorem 13 below). i s+1

Theorem 13 is an analogue of a result of O. Teichmiiller [6], which 
has been generalized by J. Krzyż [2].

Theorem 12. (i) For any f e IIQ and ze£+,z 0, oo, we have 

(llQ)argz < arg/(z) < Qargz,

where argz, argf(z) change in a continuous manner from the initial value 
Mgf(l) = 0 = argl.

(ii) Moreover, the condition

(15) arg/(») = [I- f ~ sin9’] arg* (- 7r)

implies

(16) (argz)cosy < log |/(«)|- log |«| <IK) (argz)cos<p.

All the given estimates are sharp for any ze £+,z v^O, oo, and 
Qe<l, ~boo). Given (p, — ^n^cp^^n, the only extremal functions for 
every z in (16) are f(s) = |s|eifil arg8 and f(s) = |«|e^»args for the upper
and lower bound, respectively, where + ——— )et’’,

1/ l \ i I i \ \ QI 2 \ VI
/?2 = — +—and in each case axgz, &rgf(z) change

in a continuous manner from the initial value arg/(l) = 0 = argl.
(iii) Furthermore, (15) and (16) give all points of the variability region 

of the functional F(w) — logic, where logl = 0, ic = /(z), f ranges over 
SQ, and z(ze£+,z o, oo) is fixed.
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The proof is analogous to the corresponding proof in [4], p. 326.
Theorem 13. If f = h^1ofch,feH(j, and h denotes the homography

1 s-1 ,
h(s} =---------- , then

i «+1
l/(0)l < |w|,

where w denotes any solution of the equation
II 1 / 1 \ 1 / 1 \ . 2w \

iw = tg-^^l--  ̂+ —j + jexpzarg-^-^-l, e =1, or -1,

with the greatest modulus. The estimate is sharp for any Q e <1, + °°) • The 
only extremal functions are of the form f = hr1 of oh, where f(s)
= |s|exp((f(^ + '|")~'lie |)expiarg^r)iargs) for °<arg«

s) f°r < ar£s 71 ’ w^ere arss> arg/(s)

change in a continuous manner from the initial value arg/(l) = 0 = argl, 
and f* is an arbitrary function of the class HQ.

Proof. We use the notation of Theorem 10. Applying this theorem 
to F(£, co) = |l + ico|/|l — itw| and = i we obtain that the only extremal 
functions are of the form

^-n,f(s)2 J i w+1 ' -

for 0 < args < — 71, f (s)2i
for — n < args < yr, 

2

where args, arg/(s) change in a continuous manner from the initial value 
arg/(l) = 0 = argl,/* is an arbitrary function of the class Ho, and wx 
is any solution of the equation

w
1 111 1\ 1 / l\l w+llw\i\

- y "• (y (« + «)- 2 e)(-ysy))’ *• - 1 or —1,

such that |-F(i,w)| attains its maximal value. Hence, putting w = 
(1 + iwj) /(1 — iwj), we obtain the assertion of our theorem.

6. The class Hq

The class Hq is an analogue of HQ for functions defined on 
\cl{z: argz = 0}. We give here six equivalent conditions for / to be of 

the class Hq. The proofs of equivalence are omitted since they are analo
gous to that given in [4], pp. 311-315.
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Definition 1*. A function f is said to be of the class Hq if it is defined 
on <?\cl{2: argz = 0}, and

(i) maps <?\с1{г: arg« = 0} into the Eiemann surface of s = wtl2n,
wtS, (f >0 and f(eitn) = |w„|e,<n for some — and ^->2я —
as n -> + oo),

(ii) /(«„) -+ 0, /(«“”) = |m\,| eil'n, f(zn) oo for some zn -> 0, tn -+ 0 +, 
<n -> 0+ and 5n-> oo as n -> + oo,

(iii) /(г) = |«|/(е1агкг) for «e^\cl{«: arg« = 0}.

Theorem 1*. f e Hq if it is defined on <?\cl{«: arg« = 0}, satisfies 
conditions (i) and (ii) in Definition 1* and if amf(z) — f(amz), where {am} 
is a sequence of real numbers such that am -> 1 as m -> + oo.

Theorem 2*. fell® if it is defined on <?\cl{«: arg« = 0}, satisfies 
conditions (i) and (ii) in Definition 1* and if //(«) = y(amz) a.e. in where 
ц is the complex dilatation of f, and am (m =1,2,...) are the same as in 
Theorem 1*.

Theorem 3*. f e Hq if it is defined on <?\cl{«: arg« = 0}, satisfies 
conditions (i) and (ii) in Definition 1*, and if yfz) — /г(егагвг) a.e. in S.

Theorem 4*. f e Hq if it is defined on <?\cl{«: arg« = 0}, satisfies 
conditions (i) and (ii) in Definition 1* as well as zfe(z) + zf-(z) = f(z) a.e. 
in &.

Theorem 5*. f e Hq if it is given by the formulae
X
Jf(z) = |«|exp

вг arg z

yfe) — e2 de 
M(e)' £2 £ for zeâ’\cl{z: arg« = 0},

where y is measurable with sup |^(e<#)| <1 and ess sup j//(elj| <
0<ф<2я

e ranging over the unit circle from егагвг to 1.
0<Ф<2л

9-1 
Q +1

Definition 1* immediately implies the relations

(17)

arg/(«) = arg/(e‘arge) = 0(arg«)
and the following

Lemma 1*. With the notation of formula (17) we have 
argf-\w) = 0-1(argw),

w R(d *(argw))
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We also notice the following trivial result which gives the correspon
dence between HQ and Hq.

defined by fjfz) = f(z),f2(z) = f(z) for ze&+\cl{z: argz =0} and f^z) 
= f2(z) — z for zecl{z: argz = 0} both belong to HQ.

Now we give an analogue of Theorems 8 and 9 for the class Hq. 
Proofs are omitted since they can be performed in the same way as the 
corresponding proofs in [4], p. 337-338.

Theorem 6*. Suppose that w = f(z) belongs to Hq and has u = y(z) as 
its complex dilatation. Moreover, suppose that the functions w = g(z, t), 
0 < Z < 1, with the corresponding t' being fixed (cf. e.g. Definition 1*), 
belong to Hq and have complex dilatations (3). Then w = g(z, t), considered 
as a function of z and t, satisfies on {<?\cl{z: argz = 0} x{Z: 0 < t < 1} 
the equation (4) subject to the initial condition g(z,Q) = zt',2n, where v* is 
the complex dilatation of g~\

Theorem 7*. Under the hypotheses of Theorem 6* the function 
w = g(z,t), considered as a function of z and t, satisfies on {<?\cl{z: argz 
= 0}}x{Z: 0 < t < 1} the equation (11) subject to the initial condition

We see that in the same way as in [4], p. 338-340, we can formulate 
some analogues of Theorems 10 and 11 for the class Hq.
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STRESZCZENIE

W pracy niniejszej omówiono klasę odwzorowań lokalnie ąuasi- 
-konforemnych górnej półpłaszczyzny spełniających równanie f(z) — 
= \z\f(eiaTgz) oraz analogiczną klasę odwzorowań quasi-konforemnych
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płaszczyzny. Klasy te zostały wprowadzone przez J. Ławrynowicza jako 
odpowiedniki badanych przez niego klas odwzorowań ąuasi-konforemnych 
koła jednostkowego na siebie oraz płaszczyzny na siebie, spełniających 
równanie f(z) = etarg2/(kl)-

РЕЗЮМЕ

В работе исследован класс локально квазиконформных ото
бражений верхней полуплоскости, удовлетворяющих уравнению /(г) = 
= И/(е<агвг), и аналогичный класс квазиконформных отображений 
плоскости. Эти классы были введены Ю. Лаврыновичем как аналогоны 
исследованных им классов квазиконформных отображений единичного 
круга на себя и плоскости на себя, удовлетворяющих уравнению




