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Introduction

In his recent paper J. Lawrynowicz [4] discusses in detail the class E,
of @-quasiconformal mappings f of the unit disc onto itself of the form
J(2) = e**"82f(|2|), satisfying conditions f(0) = 0, f(1) = 1. He also discusses
an analogous class Ej of Q-quasiconformal mappings of the complex
plane onto itself. At the end of this paper some suggestions concerning
further research in this direction are given. E.g. one may consider various
classes of quasiconformal mappings which are solutions of Beltrami
differential equations with separated variables. In connection with this
Lawrynowicz proposes to consider the class H, of mappings f of the upper
half-plane which are locally Q-quasiconformal and have the form f(z)
= |2|f(¢**"®*), as well as the corresponding class Hg of mappings locally
@-quasiconformal of the complex plane slit along the positive real axis.

The present paper deals with the classes mentioned above. The defi-
nitions, as well as some theorems and proofs, are similar to those in [4],
and therefore we omit some of them.

At the beginning we give the definition of the class H, and five
other equivalent conditions for f to be of the class H, and then we formulate
two theorems on estimates of | f(2)|/l2| and argf(z) for fe Hy. In Section 3
two theorems on parametric representation are proved. In the next
section a general extremal problem in H, is considered. Here two theorems
are given on sufficient conditions for existence of an extremum of a real
functional, as well as the analogous conditions for existence of an extremum
of the real part of a complex-valued functional with the fixed imaginary
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part. Further, we present two theorems which are applications of previous
results. In the last section the class Hy is discussed.

In this place the present author wishes to express his thanks to
Professor J. Krzyz from Lublin and Professor J. Eawrynowicz from
1.6dz for helpful remarks and suggestions given during preparation of
this paper.

1. The class H,

Let & denote the complex plane, &+ — the closed upper half-plane,
and 4 — the closed unit dise. Throughout the paper clE denotes the
closure of F in &, E being a set.

Definition 1. A function f is said to be of the class H if it is defined

on &%, and
(i) maps &€+ onto the Riemann surface of s = w'/?, we &* (¢’ being
positive, and 8 = f(—1) corresponding to some w = —|w|),

(ii) 8 = f(0),8 = f(1), and s = f(oo) correspond to w = 0,w = 1,
and w = oo, respectively.

(iii) f(2) = |2|f(e'*™*) for ze £+\{0, oo}, where if f(e'*"8?) is a point
corresponding to some wye &%, then |z|f(e'®™*) denotes the point corre-
sponding to |2|w,.

Since the correspondence between the Riemann surface of s = w'/,
we & and the half-plane &% is one-one, we shall write

; t'
f(2) = [w[”"exp(i — argw)
T
instead of
8 = f(z) corresponds to w.

In particular, we shall write
f(z) = |w|'"™ for wecl{w: argw = 0}.

Of course we may confine ourselves to the case where the Riemann
surface of s = w'’®, we &%, reduces to &*, but this corresponds to the
case where argf(—1) = = only. Obviously this condition restricts the
class considered, and it is inconvenient for estimations.

Definition 1 implies
fiz) = |f(¢'°™®%)| = R(argz),

s argf(z) = argf(e'*™*°) = f(argz) (2 # 0, oo).

Now we give five other equivalent conditions for f to be of the class
H,. The proofs of equivalence, except for the proof of Theorem 1, are
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analogous to the corresponding proofs in [4], p. 311-315, so we shall
give the above mentioned proof only.

Theorem 1. fe H, if it is defined on &%, and f(z) = f*(2) identically
for ze 6+\cl{z: argz = n}, where f* satisfies conditions:

(i) ot is defined on &\cl{z: argz = =}, maps it into the Riemann
surface of 8 = w'™ we &' > 0 and f*(e"n) = |w,| €™ for some t, > n—
and i, —>m— as n — + o),

(") f*(2) = 0,f*@) =1,f*@,) > o for some z, >0 and Z, > co
as n — + oo,

(iii') a,f*(2) = f*(anz), where {a,} is a sequence of real numbers
such that a, -1 as m — + oo.

Theorem 2. fe H, if it is defined on &%, and f(2) = f *(2) identically
Jor ze &7 \cl{z: argz — n} where f* satisfies conditions (i') and (ii') in
Theorem 1, as well as u*(2) = u*(a,2) a.e. in &, where u* is the complex
dilatation of f*, and «, (m =1,2,...) are the same as in Theorem 1.

Theorem 3. fe H, if it is defined on &%, and satisfies conditions
(?) and (i) in Definition 1, as well as p*(2) = u*(€'*™?) a.e. in &*.

Theorem 4. fe H, if it is defined on &%, and satisfies conditions
(i) and (i) in Definition 1, as well as zf,(2) +7f=(2) = f(2) a.e. in &*.

Theorem 5. fe H,, if it is given by the formulae

1 gy d
o) —eforze E*y2 #0, oo,

i L e

et Brge

fR) =2z for 2 =0, oo,

[ being continuous and having its values on the Riemann surface of 8 = w''™,
we &1, where
1

]‘ wule)—e* (e)—&* de
=
-1

ple)tet ¢’

. 3 2 ¥ _1
where p is measurable with sup |u(e”®) < 1 and esssup|u(e®)| < .
: D=p<n - 0<pn Q +1
& ranging over the unit circle from €' °™° to 1.

’

) Remark 1. The correctness of the definition of f as a function having
1ts_ values on a Riemann surface follows from the well known theorem on
existence and uniqueness (see e.g. [3], p. 204).

Remark 2. In general p is assumed to be complex-valued.
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Proof of Theorem 1. It follows from Definition 1 that f* defined
by f*(2) = f(2) for ze&*\cl{z: argz = n} and by f*(2) = f(2) for z¢&*,
z # oo, maps&\cl{z: argz = n} into the Riemann surface of s = w'’",
weé,t > 0, Q-quasiconformally with f*(0) = 0,f*(1) =1, f*(o0) = oo.
Moreover f* satisfies

f*(a?) = f*(az) = al2|f*(6*%%) = of *(2)
for imz> 0,2z # 0, oo, and any positive a. Besides,
f*(a2) = alzlf*(e7*"%%) = of*(2) = of*(2)

for imz < 0,z # 0, oo, and any positive a. Hence fe H, according to
Theorem 1.

Conversely, suppose that fe I, according to Theorem 1. We see
that putting { = ¢,,Z in the equation a,, f*(¢) = f*(a,¢) we get % f*(2)
= f*(al,2). It is easy to verify that o«X’f*(z) = f*(a2'2), (n = 2,3, ...).
There exist subsequences of positive integers {m;} and {n,} such that
1 /af.j‘,f — 0 a8 k - + oo, where 6 can be an arbitrary positive number.
In fact, we can choose as {a,,} an arbitrary non-decreasing subsequence
of {a,}, and n, (k =1,2,...) is chosen so that (1/a,)"™ < é < (1/a;)™*".
Therefore we can assume that l/a:;{fk — |2| as k¥ - + oo. Consequently,
we have f*(2) = |z|f*(¢'*™?%). Hence, by our hypotheses, it follows that
fe Hy according to Definition 1.

2. Bounds for R and 0

By the use of Theorem 5 it is easy to find sharp estimates of R and 6
when f ranges over H,. We first state

Lemma 1. With the notation of formula (1) we have
argf () = 0~ (argw)

fw) | 1
w ~ R(67'(argw)) ’

(2)

This is an immediate consequence of Definition 1.
Theorem 6. For any fe H, and any ze&*, 2z # 0, oo, we have
(1/Q)argz < argf(2) < Qargz,

where argz, argf(z) change in a continuous manner from the initial value
argf(l) = 0 = argl. Both estimates are sharp for any ze&', z # 0, oo,
and Qe (1, +o0). The only extremal functions are f(8) = |8|€'9°™* and
f(8) = |8| W8S for the upper and lower bound, respectively.



On a class of hyperbolic quasiconformal mappings 15

Theorem 7. For any fe Hy, and ze &, 2z + 0, oo, we have

ool 3o 2] <o o5 o]

both estimates are sharp for any zw'*, 2 #0, 00, and Qe (1, + o). The
only extremal functions are f(s) = |s|e”*®° and f(s) = |s|€” *®° for the
upper and the lower bound, respectively. Here 8 = (1 —1)Q + $(1+17)(1/Q).

The proofs of Theorems 6 and 7 are analogous to the proofs of The-
orems 1 and 2 in [4], p. 315-316, respectively.

3. Parametric representation

We now give two theorems on parametric representation for fe H,,.
We introduce one-parameter family of functions g(z,?)e Hy, 0 << 1,
with the same ¢, cf. e.g. Definition 1, such that g¢(z,0) = ', g(z, 1)
= f(2), and find a relation between dg/0t and the complex dilatation »*
of the inverse mapping g-! (Theorem 8). An analogous theorem involving
the complex dilatation of f can be also proved (Theorem 9).

Now define two classes of mappings, ¢f. [5] p. 150. The class R,
consists of all functions f which map 4 Q-quasiconformally onto itself
with f(1) =1, f(i) = i, f(—1) = —1. T, is the subclass of R, containing
all functions f with continuous partial derivatives of the second order,
and such that the partial derivatives of the first order of (1 -+ |u|)/(1 — |u|),
targu, satisfy Holder conditions, x# denoting the complex dilatation of f.

Theorem 8. Suppose that w = f(z) belongs to H, and has u = u(2) a
its complex dilatation. Moreover, suppose that the functions w = g(z, t),

0 <t <1, with the corresponding t' being fized (cf. e.g. Definition 1), belong
to H, and have complex dilatations

(3) v(z,1) = tu(z).

Then w = g(z, t), considered as a function of z and t, satisfies on {é’* N { 00}} X
X {t: 0 <t <1} the equation

. argw %, i
(4) 6_w 1A 2zwf : v (e*,t?9
ot e (1— " (e, 1))

subject to the initial condition g(z,0) = 2", where v* is the complex dila-
tation of g-1.

Proof. Put
_pllm 31
5) f=r"ofoh™,
g="Hh"ogoh™,
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1 8—-1 g
where 2 denotes the homography k(s) = — :+1 , and t'[n = lim argf(e*).
? {—n—

Clearly, the functions o = f({) and o = g(&,t),0 <t <1 belong to the
class Ry, and q(¢,0) =f(0), ¢l < 1. Suppose that these functions be-
long to T,, and denote by % = u(() and v = »({,t) their complex
dilatations, respectively. It is easily obtained from (5) and (3) that
v(¢, t) = tu(L). According to Theorem 1 in [6], p. 150, we have

0w 1 ()] (0—i)(w2-1)

) W T & IEI;<{ l(w——é‘)(]__gz)(c_i) v, 0)+
1+iw)(w2-1) _____} .
+ I3 i > y 1 d d =—; 3
A —To) =T + o) Yorljdedn, (5
where

(i (@, 1), ¢ L
Vs 1—”|'/£(s7-‘a()w,t),)t) it B Pk

(g (o, ), B g il

= 1[N, 0, g o2\ ReRE ) D)
(1), )

1=, )2’

and »* denotes the complex dilatation of §g~*. Hence formula (6) takes
the form

a_w i wi=1 rr 1
a = m J) I
xl (0—i)v*(L, 1) 4 A +io)v* (L, ) .
| C—d)@ =) (w—0) (Z+i)(1—22)(1—3w)i -
o (w—1)(w2—-1) 1 Y
it Gl 1= (L, )
v*(L,1) . v* (L, 1)
) x __Vaga
X{(C—i)(l—C’)(w—C) z(CJri)(l—C’)(l—Cw)} o
_ (e=i)(-1) (¢, 1) d&dn
it i 1= (3,02 =) -1)(C—0)’

where 3 (w,t) = v*(w, t) for we 4 and F(w,t) = 6" **3*(1/w, t) for w¢ 4.
Next, we notice that, by (5), we have

(8) v* (2, 1) = exp(—24arg(h~") o (2))»* (A7 (2), ¥).
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From Theorem 3 we see that

2 {1+ iexpid \ 1—iexpid
B i o 2 it . -l
(8) HEY) = kl—zexpzﬁ ,exp mrg\l—zrexpzﬁ)
1 (-1 .
where —,—C— = re'®,
t {+1

Hence, by (6), we obtain
—)(w2-1
0o  (0—1)(w )><

Jt nt

.1'1 e ,‘9 \ ] | = 5 19 2
n o0 'ﬂ_ t’exp2zarg'__ﬂ
Xff ..l—zexpw 1 —irexpid/

g ( s/ 1+ iexpid ) ~

1—|» )(1—z+(1+z)(wexpu9)

1 —iexpid

(1 —irexpid)idrdd
% t(1—w+ir(1+o)expifl) |1 —irexpid|*expid

:(1+iexpi0 t\l a )1
x|l v|————, t|expiarg(l —iex
(w—i)(wz—l)f —zexpu? piarg i y
a (14 wtpu‘? * -
1— ‘—— t) expid
2 \1—iexpid

+00

dr
= = = bl
x_i (1—i+(1+i)irexpi1’)‘)(1—w+(1+w)irexpiz9)] i

S af1414 )
: B ;(—ﬂ—, t\ expiarg(l —expid)t
(w—1%)(w—=1) | \1l—<iexpd |
at(l+14) ( :(1+~iexpi19 2) ,
1-— _— 1 X 2
o rmm— R b kg
+ 00 exp 19

dr -dz?
X f 1 w—1\ J

—o0 exp id (C—]_)(C——T o}

By the theorem of residues we have

—2z(0+1) for 0 < ¥ < ar e
+o0 oxpif dr Iw—l—'i(w+1) o5 SR
A s 1 ol
—co6xpid (£ 1)l — < 1 0 for arg— 2 <?t<nm

1 w+l ? w+1

2 — Annales
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Consequently,
06& B 2i(w—1)(w?—1) )
o~ Tl (o—1—i(w+1)

1 o1 1-+iexpid
T et v(‘l—zexgz; t/lexpzarg(l—zexpu?)

f - as,
1+zexpu9 | .
0 1— (——--———— t) exp2id
1 —iexpid ' |
whence, by (5), we have
of 1+iexprd
argw V| —————, 1 r(1— ¢
o) o T % fg v(l—iexpw )exp:‘u;.,{l iexpid) "
ot t 1+iexpid  \[}\ n e
0 _| ( r, exp 2
1 —iexpid’

Next, using (8) it is easy to show, that
-~ {141 .
v*(expid, l) = —exp2ia,rg(1—iexpi¢9)2v*(Lxln,,t .
{1—texpid

s [1+iexpid ;.(1+iexpw \ for 0<d<n
—_— = =

Hence, since » |—F————, i) = : ol
\1—iexpiy } 1—dexpid }
and (10) holds, the assertion of Theorem 8 follows.

Theorem 9. Under the hypotheses of Theorem 8 the function w = g(z, 1),
considered as a function of z and t, satisfies on {&"\{oo}} x{t: 0<t< 1}
the equation

ow 1 tu(e)—e? de : u(e) de
(11) W—mzlexP f tu(e) + 2 & “Jg‘ (ty(.*:)—ts“)2 &

etargz

subject to the initial condition g(z, 0) = 2'".
The proof follows immediately from Theorem 5.

4. A general extremal problem in

In Theorems 6 and 7 we have given sharp estimates for [f(z)/z| and
argf(z) when f ranges over H,. Now we proceed to more general extremal
problems. First we determine the extremal functions for any sufficiently
regular real-valued functional U = F(2y,...,2,;W;, ..., w,) with fixed
Zyy ey 2nefT, w = f(2)), ..., w, = f(2,), and f ranging over H,. Next
we determine the extremal functions in an analogous problem with the
additional condition that another real-valued functional @, satisfying
the same regularity conditions, admits a given fixed value. This enables
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us to find in several cases the region of variability of the complex-valued
funectional F + i@G.

Theorem 10. Let U = F({y, ..., L, 01y ..., ;) be a real-valued

function defined for ( e Dy, wye Dy,, where D, = &%, Dy, > LHJ g(Dy)
ge
(k =1,...,n). Suppose that F has continuous partial derivatives with

respect 10 w,, ..., w,. Then there exists a function fe Hy for which the
functional U = F(zl, ROR 100 1 (77) IS g(z”)) altains its maximum when
g ranges over H,; z, being fived points of D, such that argz, > argz,_,,
(k =1,...,m),2, = 1. The maxzimum is also attained for any function f, de-
fined by f1(s) = f(s) if argz, > args > 0 and by f,(8) = f(2,)f*(8/2,) if argz,
< args < m, where f*e Hy. Moreover, if f is not the identity function and if

(12) D [(@) Fuy (21 - o0s 205 F(@1)y ooy flon)) #:0

fom (m=0,...,n—1),
then we have

(13) f(8) = wmlslzmleiﬁm(zl,..,.:":-m} arg (8/2,,)

for argz < args < argzp,,, (m =0,1,...,n—1), where

(14) ﬂm(zU""zn; 6,,,)=-;—(Q+—;—)—%i€m(q—%)x

n
xexp(—zarg Z Wi F,, (21) ..oy 2,5 Wy, ...,w,,)),
k=m+1

En =1 0r =1, wy =1,w, = f(21), ..., w, = f(2,),

and args, argf(s) change in a continuous manner for argz, <args < argzp,,,
8o that f(8) — w,, as 8 —z,,. The theorem remains valid if *“ maxrimum” 18
replaced by “minimum.

The proof is analogous to the proof of Theorem 5 in [4], p. 319-321.

Theorem 11. (i) Let w = F({;, ..., Lpi @1y ...y ©,) be a complex-valued

function defined for (e D), wye Dy ,, where D, < &, Dy, > U g(Dy),
g(HQ
(k =1,...,n). Suppose that F has continuous partial derivatives with

respect to w,, ..., w,. Then there exists a function fe Hy, for which the func-
tional U =reF(2y,...,2,;9(21),...,9(2,)) attains its mawimum when
imF (2, ...y 2,5 9(21), ..., 9(2,)) = 7, and g ranges over Hy; 2, being fized
points of D, such that argz, > argz,_,,(k =1,...,n),2, =1, and 7T
being a real mumber such that

minimF(zy, ..., 2n; (21), - §(2,)) < T <

q«HQ

< max imF(z;, ..., 2,; §(21)y - -1y 9(2n))-
acHO
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The maximum 8 also altained for any function f, defined by f,(8) = f(s)
if argz, > args>0, and by f,(s) = f(2,)f*(s/z,) if argz < args <am,
where f*e H,.

(ii) Suppose that all assumptions given in (i) are fulfilled. Let ¢ denote
a sequence {eqy ..., En_ }, Where ¢, =1 or —1 (m =0,...,n—1), and
let A, denote the set of real numbers A satisfying

D FN@IFG) (21, oy 203 fH @)y o [P (@) £ 0 (m =0, .., n—1).
Jemmi-p1

Here F® = re F+ Aim F, the functions f** are defined by the formulae
f*e(s) = 8 for args = 0, and by

f(l,e) (8) - wr(':l,a)ls/zm‘eigm(zl ..... 2,1 4,8) arg (s/2,,)
for argz, < args < argz,,, (m =0,1,...,n—1), where

1 1 1 '
Bm(Zry ooy 205 4y 8) = E(Q—i- (—2-)— —2-i£m((2— _é—) X

n
! 1, 1 Ryt A
xexp(—zarg Z ,wgc s)FEUI)C(zU Sz u&z 1, ”.,wi‘ ,))),
k=m+1

" 2, 2, ,e €
w) =1, w? = fGI(z), ..., wh) = fh(z),
and args,argf™9(s) change in a continuous manner for argz, < args

< argz,,,, so that f*(s) > wl as 8 — z,, in the case of every e A, and
each e. Next let A7, A, = A,, denote the set of numbers A(z, €) such that

U00F (2 s e it Zahantse el e kil =g e
Finally let AL, Ay = | A], denote the set of numbers A.(t) for which

reF (2y, couy 2,5 fE(2), ooy fOT(2,))  attains its maximum when
A(t, €) ranges over |\ J A;. Suppose additionally that the extremal function

i8 mot the identity function and that

Z F@)Fo ™ 21y ooy 205 f(21)y oy f20)) 0 (m =0,...,n—1)
k=m41
for some A,(t)e Ai. Then there are: a sequence & = {ey, ..., en_,}, where
& =1or —1(m =0,...,n—1), and a number 1(t) = A(r, &%), Ao(1) e ],
such that

f(8) = fG™ 8 for argz, > args >

Moreover, each other function f®™°), where . (t)e A%, Ae(t) = A(7, €*),
e ={e,.irbm )}y em=1or —1 (m =0,...,n—1), is also an extremal
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function for the problem under consideration in Hy provided it is continued
into the sector {8: argz, < args < z} by any way described in (i).

(iii) The theorem remains valid if “maximum’ is replaced by “mini-
mum’’.

Proof. We apply the well known method of multipliers of Lagrange
together with Theorem 10. Hence Theorem 11 follows immediately.

5. Some applications

We apply now Theorems 10 and 11 in order to find
(a) the region of variability of the functional F(w) = logw, logl = 0,
w = f(z), z being fixed, and f ranging over H, (Theorem 12 below),

(b) the sharp estimate of |f(0)], where }' is defined by f = h7lofoh,

1 8—1
ranging over H, and h denoting the homography #&A(s) = —,8——
Q g ;

(Theorem 13 below). g
Theorem 13 is an analogue of a result of O. Teichmiiller [6], which
has been generalized by J. Krzyz [2].

Theorem 12. (i) For any fe Hy and ze&*,2z # 0, oo, we have
(1/Q)argz < argf(z) < Qargz,

where argz, argf(z) change in a continuous manner from the initial value
argf(l) = 0 = argl.
(i) Moreover, the condition

(15) argf(z) = [% (Q f- %) - %(Q - ; )simp] argz (—% ASQPS %n)

tmplies

7§ 1 1 1
ol (Q « 5) (argz)cosp < log|f(2)] — log 2| < 5 (Q—b-) (argz) cosp.

All the given estimates are sharp for any ze &%,z # 0, co, and
Qe (1, + ). Given ¢, —in < @< in, the only ertremal functions for
every z in (16) are f(s) = |s|€P1°®° and f(s) = [8|€"2°™* for the upper

1 3 1y .
and lower bound respectively, where [, = {Q—+— Q)— ; (Q—_QT) &,

1\
= (Q%— J - (Q—UJ % and in each case argz, argf(z) change

in a continuous manner from the initial value argf(l) = 0 = argl.

(iii) Furthermore, (15) and (16) give all poinis of the variability region
of the functional F(w) = logw, where logl = 0, w = f(2), f ranges over
H,, and z(ze€*, 2z # 0, o) i8 fized.
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The proof is analogous to the corresponding proof in [4], p. 326.
Theorem 13. If f = h'ofoh, fe Hgy, and h denotes the homography

1 s—1
h(8) = ———, then
t 8+1

1£(0)] < 1],

where W denotes any solution of the equation

1 1 1 i F : 2w
=tg-4—7z 1—§(Q+6—)+§ul(;l—a)expzarg &)_1), e=1, or —1,

with the greatest modulus. The estimate i3 sharp for any Qe {1, + o). The
only extremal functions are of the form f = h 'ofoh, where f(s)

s|e l(Q—{-l) 1'( l)x'a ks 0<

= xpll—= — )~ =1 |Q — — rg—— 0 <

|s|exp 3 0 5 ) expt gw-—l iargs| for args
1 1 w—-1 1 1

<§n,f(s) - f‘( ) for 7" < args < m, where args,argf(s)

change in a continuous manner from the initial value argf(1) = 0 = argl,
and f* is an arbitrary function of the class H,.

Proof. We use the notation of Theorem 10. Applying this theorem
to F({, w) = |1+ iw|/|]1 —iw| and z; = ¢ we obtain that the only extremal
functions are of the form

0 wess(3{o 5] il ) o)

1 1
for 0<args<7n,f(s) = wlf'(—,s) for En<args<n
: i

where args, argf(s) change in a continuous manner from the initial value
argf(1) = 0 = argl, f* is an arbitrary function of the class Hgy, and w,
is any solution of the equation

1 1 1 h 1 w+1/w\t
= @ —_— | — 2R R E —_—— S 8 = 1 —1
v exp2’"(2 (Q+Q) R\ Q)( w+1/w))' " Yot o oL
such that |F(:,w)| attains its maximal value. Hence, putting w =
(1 + %w,)/(1 —iw,), we obtain the assertion of our theorem.

6. The class Hz,

The class H, is an analogue of H, for functions defined on
&\cl{z: argz = 0}. We give here six equivalent conditions for f to be of
the class H,,. The proofs of equivalence are omitted since they are analo-
gous to that given in [4], pp. 311-315.
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Definition 1°*. A function f is said to be of the class Hy, if it is defined
on &\cl{z: argz = 0}, and
(i) maps &\cl{z: argz = 0} into the Riemann surface of s = w'/*",

wed, (' >0 and f(e') = |w,|e™ for some f, —»2x— and 7, —>2n—
as n — + oo0),

(i) f(za) = 0, f(e™) = I, 6", f(Z,) —» oo for some 2, >0, &, >0+,
t,—>0+4 and Z,—> oo a8 n —> + oo,
(ili) f(2) = |2|f(e'*®*) for ze&\cl{z: argz = 0}.

Theorem 1°. fe H;, if it is defined on &\cl{z: argz = 0}, satisfies
conditions (i) and (ii) in Definition 1* and if a,, f(2) = f(a,2), where {a,}
18 a sequence of real numbers such that a,, -1 as m — + oo.

Theorem 2*. fe H;, if it is defined on &\cl{z: argz = 0}, satisfies
conditions (i) and (ii) in Definition 1* and if u(2) = u(a,z) a.e. in &, where
u 18 the complex dilatation of f, and a, (m =1,2,...) are the same as in
Theorem 1*.

Theorem 3°. fe H), if it is defined on &\cl{z: argz = 0}, satisfies
conditions (i) and (ii) in Definition 1%, and if u(z) = p(€'*®°) a.e. in &.
Theorem 4*. fe H,, if it is defmed on &\cl{z: argz = 0}, satisfies

conditions (i) and (ii) m Definition 1°* as well as zf,(2) +%f;(2) = f(2) a.e.
in 6.

Theorem 5°. fe H, if it is given by the formulae

y(s)-—s“’ de
#(6) I — for ze&\ecl{z: argz = 0},

f(2) = [2|exp

elQrg e

) —1
where p is measurable with sup |u(e®)] < 1 and esssup|u(e”)| < 9
0<p<2n 0<p<2a Q+1
& ranging over the unit circle from €' *"¢* to 1.

’

Definition 1* immediately implies the relations

a7) TO _ | peomey = Rearga),

argf (2) = argf(e'*®") = 6(argz)
and the following

Lemma 1*. With the notation of formula (17) we have
argf~'(w) = 67" (argw),

J'w) | 1
l B R(67'(argw))
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We also notice the following trivial result which gives the correspon-
dence between H, and Hj.

Lemma 2*. If a function f belongs to Hy,, then the functions f, and f,
defined by f,(z) = f(2), fo(2) = f(Z) for ze&T™\cl{z: argz = 0} and f,(2)
= f,(2) = 2z for zecl{z: argz = 0} both belong to H,.

Now we give an analogue of Theorems 8 and 9 for the class Hj.
Proofs are omitted since they can be performed in the same way as the
corresponding proofs in [4], p. 337-338.

Theorem 6°. Suppose that w = f(z) belongs to H}, and has u = pu(z) as
its complex dilatation. Moreover, suppose that the functions w = g(z,t),
0 <t<1, with the corresponding 1’ being fized (cf. e.g. Definition 1%),
belong to H;, and have complex dilatations (3). Then w = g(z, t), considered
as a function of z and t, satisfies on {&\cl{z: argz = 0} X {t: 0 <t <1}
the equation (4) subject to the initial condition g(z,0) = 2'*", where »* is
the complex dilatation of g .

Theorem 7°. Under the hypotheses of Theorem 6% the function
w = g(2,t), considered as a function of z and t, satisfies on { &\cl{z: argz
=0}}x{t: 0<t<1} the equation (11) subject to the initial condition
g(z, 0) = 2™,

We see that in the same way as in [4], p. 338-340, we can formulate
some analogues of Theorems 10 and 11 for the class HZ,.
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STRESZCZENIE

W pracy niniejszej omoéwiono klase odwzorowan lokalnie quasi-
-konforemnych goérnej poélplaszezyzny spelniajacych réwnanie f(z) =
= |2|f(€'°"®°) oraz analogiczng klase odwzorowan quasi-konforemnych
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plaszczyzny. Klasy te zostaly wprowadzone przez J. Lawrynowicza jako
odpowiedniki badanych przez niego klas odwzorowan quasi-konforemnych
kola jednostkowego na siebie oraz plaszezyzny na siebie, spelniajacych
réwnanie f(2) = €' *™f(|z|).

PE3IOME

B paGore mucciejoBan KiIacc JIOKAJIbHO KBA3UKOHQOPMHBIX OTO-
GparkeHMii BepXieil II0JIYIJIOCKOCTH, YIOBIETBOPAIONIMX YPaBHEHUIO f(2) =
= |2|f(€'®"®%), M aHANOIMYHBIA KiIacc KBA3NKOHPOPMHLIX OTOOpAMKEHHil
NJI0CKOCTH. AT Kiacchl ObuTH BBenensl 0. JIaBppIHOBIIYEM KaK aHAJIOTOHBI
HCCITeIOBAHHBIX UM KJIACCOB KBa3MKOHQOPMHBIX 0TOOpaxeHnii e ITMHHYHOTO
Kpyra Ha ceGd M IUIOCKOCTH Ha ce6GdA, YNOBJIETBOPAKLIMX YPaBHEHUIO

f(Z) — e:‘ arg :fUzi) .






