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Stala Koebego dla klasy obszaréw ograniczonych

Ifoncranra HeGe paa orpammuennnx obmacreit

In this note we determine the Koebe constant for bounded domains
with boundary rotation at most kn(2 < k < 4). This result extends an
earlier result of J. Krzyz for bounded convex domains.

1. Introduction
Let I denote a compact family of functions
(1.1) f(2) =z+az22+...

that are analytic and univalent in the unit disk U. We denote by k(F)
the Koebe constant for the family F. That is, ¥ = k(F) is the largest
constant such that f(U) o {|o| < k} for every fe F. The constant k(F)
is known for many families of functions. In this note we will be concerned
with determining the Koebe constant for some classes of bounded uni-
valent functions.

Let & (B) denote the class of univalent functions with the normaliza-
tion (1.1) that satisfy |f(z)| < B (ze U). The Koebe constant for this
class of functions is known [5, p. 224] and the extremal function maps U
into the disk |w| < B minus the segment from —B to —k[¥(B)]. The
extremal domain is unique up to rotation.

In [2] J. Krzyz determined the Koebe constant for the class € (B)
of functions in & (B) that map U onto a convex domain. An extremal
function in this case maps U onto a domain containing the origin, bounded
by an arc of |w| = B and a vertical line through —%[¥(B)]. Again the
extremal domain is unique up to rotation.
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We will denote by V, the class of functions with normalization (1.1)
that map U onto a domain with boundary rotation at most kx (see [4]
for definitions and basic properties of the class V,), and by V,(B) the
subclass of ¥V, consisting of functions bounded by B. The class V,(B)
coincides with C(B) and the extremal function for the Koebe constant
for & (B) belongs to V,(B). In this paper we will characterize the extremal
domain for the Koebe constant of the class V,(B) (2 < k < 4).

2, Let 2 <k<4 and let D,(a) denote the non-convex domain
containing the origin, contained in |w| < B, and bounded by an arc of
|o] = B and two half lines emanating from —a (0 < a < B) that are
symmetric with respect to the real axis and form an angle of }(k—2)n
at —a. The boundary rotation of D,(a) is k= and it is clear that there
exists a unique value of a, } < a < 1, such that the conformal mapping
radius of D,(a) at ® = O (in the sequel denoted r(D,(a))) is equal to 1;
i.e., such that D,(a) = f(U) for some fe V,(B). This value of a we denote
a, and the corresponding domain we denote simply D,.

Theorem. The Koebe constant for V,(B) is a,.

Note. The function that maps U onto D, can be computed (see for
example [1, p. 230]) and the value of a;, = k[V,(B)] can be determined
implicitly. We will not do so to avoid the reproduction of the lengthy
formulas involved.

3. Proof of the theorem.

Let f(2)e Vi(B) (2<k<4) and suppose that f(z) is analytic in
U = {|#| < 1}. If we can show that D, = f(U) > {|w| < a,} then by a stand-
ard argument the proof will be complete. Let & denote a boundary point
of D, nearest the origin. There exists a wedge with vertex ¢ and opening
3(k—2)= lying in the complement of D,. For if not, the curve w = f(e')
(0 < 6 < 2x) crosses both sides of such a wedge and the boundary rotation
of D, would exceed kx which is impossible. Thus if D, denotes the domain
in |w| < B containing the origin, bounded by the sides of the wedge and
an arc of |w| = B, then D, 2 D,. Consequently

(3-1) r(Dg) = r(Dy) = 1.

Further, since & is a boundary point of I); nearest the origin, £ is the
boundary point of D, nearest the origin. By rotating D, if necessary,
we may assume that the ¢‘sides” of D, intersect |w| = B at points
B,(ImB, > 0) and B, in the left half-plane that are symmetric with res-
pect to the real axis. We may also assume for definiteness that Im & < 0.
We now form the domain D contained in |w| = B, containing the origin,
bounded by an arc of |[w| = B and the line segments from B; to — |&|
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and B, to —|&|. It is clear that the boundary rotation of D is smaller
than kx, but it is not clear that r(D)> 1. Once we have shown that
r(D) > 1, the proof is easily completed. Indeed since the boundary rota-
tion of D < k=, if we replace D by D,(|£|) then by the monotonicity of
the mapping radius, r(Dk(|£|))> 1 which again implies by the mono-
tonicity of the mapping radius that a, < |£|. Thus f(U) = D, = {|lo| < a;}
which completes the proof.

It remains to show that »(D)> 1. Let Dy be the domain obtained
from D, by circular symmetrization with respect to the real axis. By
a result due to P6lya and Szego [6, p. 44],

(3.2) 7(Dg) = r(Dy).

D, is bounded by an arc of |w| = B and two curves, symmetric with respect
to the real axis, joining B, to — |£| and B, to — |£| respectively. We will
show that D, = D. By the monotonicity of the mapping radius, (3.2)
and (3.1), it will then follow that r(D) > 1.

Let H and H,, respectively, denote the complement of D and D,
in || < B. Let m(s) and m,(8), respectively, denote the linear measure
of the intersection of H and H, with |w| = 8 (]¢] < 8 < B). To show that
D, = D it suffices to show that

(3.3) m(s) < my(s) (l§| <8< B).

We note that m(|£]) = 0 = m,(|£|) and m(B) = m,(B). It is easy to see
that the area of H, is greater than the area of H. Thus there exists an
8, |£] < s < B, such that m(s) < m,(s). Hence, if we can show that for
|§| < 8 < B, m(8) = my(s) at most once then (3.3) will follow.

This fact can be seen in the following way. We reflect the segment
from B, to ¢ about the real axis and denote the reflected segment by #,.
We denote by %, the segment from B, to —|£| and by %, the segment
from B, to £ We assume that argf < arg B,. If arg B, < argf, the argu-
ment is not essentially changed. Let ¥, denote the segment from 0 to B,.
Let a denote the angle formed by %, and %,, 8 the angle formed by %, and
“Z, and y the angle formed by %, and %,. It is not difficult to show that

a< f+y, y<PB+a
and

atf+y<am.

Suppose that m,(s) = m(s), [£| <s < B. Let |w| =s intersect .#, at
Cy, Z, at €, and #; at Cy. Then |C,—C,| = |C,—C,4|. Denote the angles
< B,(C,0,,< 00,0, and < B,C;C, by u,t and v respectively. By our
assumption that m(s) = m,(s): < 0C,C, =t. We have the following
relations between these angles.
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sinw  sin(a+p)
|B1—C,| 1C,—C
sing  siny
|B,—C, |C:—Cy
and therefore
sinv siny
3.4 = = .
(34) sinu sin(a +8) s
Similarly,
8in(u +1) __ Sina
B s
sin(o+1¢)  sin(f+y)
B it 8

and therefore
sin(v+1t) sin(8 +y)
sin(u-+1) sina

Also, it follows that

(3.5) =n>1.

2t —utv+atpfty

or if we set ¢ = a+p+y,
20 =u+t+v+q.

From (3.4) and (3.5) we derive

v— -1
o e Y tan(t—14q)
2 1

and

v—u -

tan = tan (2t — }q)
=TI 1 o

respectively.
Hence for any value of s, |£] < 8 < B, for which m,(8) = m(s)

n+1 p—1

(3.6) tan(2t—}q) = g

tan(t—1q).
n+1 u—-1
n—1 wu+l

solution for ¢ and hence m,(s) = m(s) has at most one solution
for |£] < 8 < B. This completes the proof of the theorem.

Since

< 0, it is not hard to show that (3.6) has at most one
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Notes.
1. It seems likely that if F(z)e V,(B) and F(U) = D, then
F(—lz]) < |f(2)] < F(l2])
for all f(z)e V,(B). For the case k = 2 this result was proved by
Krzyz [3].
. The author wishes to express his appreciation to Dov Aharanov
for several helpful conversations during the preparation of this

paper.
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PE3IOME

IMyers  V,(k >2) xnacc ¢ynkumit f(z) = z2+a,2°..., KoTophle
maT orto0pakenne egumHuMyHoro kpyra U Ha o06i1acTb ¢ OrpaHUYEHHBIM
Bpauiennem He npeswiaromum kz. Ilyers V. (B) — mopkmiace kmacca Vi,
cocroamuit u3 GyHkuMil, KoTopbie B kKpyre U yIOBIEeTBOPAIOT HEPAaBEHCTBA
If(#)] < B. 1. Koxmx Buumcann koncranty HKebe nas nmacca V,(B).
IlpuMenas wmerox KpyroBoli CHMMETpM3alUMM, ABTOP PpACIIMPMI 3TOT
pe3ynbrar Ha Kiaacch V. (B), k= 2.

STRESZCZENIE

Niech V, (k> 2) oznacza klas¢ funkcji f(2) = z2+a,22+... odwzo-
rowujaeych konforemnie kolo jednostkowe U na obszar o obrocie brze-
gowym nie przekraczajacym kn. Niech V,(B) oznacza podklase klasy V,
zlozong z funkeji organicznych f(z), takich ze |f(z)| < B w kole U. J. Krzyz
Wyznaczyl stalg Koebego dla klasy V,(B). Stosujac metode symetryzacji
kolowej autor rozszerza ten wynik na klasy V,(B), k> 2.






