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1. Notation

Throughout this paper we are always concerned with points and sets 
on the closed plane 8. The difference of two sets U and E' is denoted 
by E\E', the closure of E by clU, the interior of E by int E, and the 
boundary of E by irE. We assume that «/0 = oo for ze <^\{0}, and 
z/oo = 0 for zc<f\{oo}. Next let

At = {«: t < |«| < 1}, A* = {z: f < |z| < 1/f} for 0 < t < 1.
Under Jordan curve we mean a homeomorphic image of a circle, under 
Jordan arc — a homeomorphic image of an interval, i.e. of a connected 
subset of the open straight line, which does not reduce to a point.

If f is a function defined on E, and E' c E, then f[E'] denotes the 
image of E' under /. If, in particular, / is an elementary function: exp, 
arg etc., and zeE, we write fz instead of f(z) in case where it does not 
lead to misunderstanding. We say that f, defined on E, satisfies a pro
perty, if this property is satisfied for all zeE. If f and g are functions 
defined on E and E', respectively, where E' => f[E], then the composite 
function defined on E is denoted by gof, and for zeE we write gof(z) 
instead of (gof)(z). Further, /: E -> E' means that / is a mapping of E 
onto E', and f denotes the inverse of /, if it exists, while J-1 — 1/f. The 
notation / for the inverse of f is used e.g. in [4] and is much more con
venient for our purpose than /_1. Finally, if f is a function of a complex 
variable z = x+iy, we denote its partial derivatives, if they exist, by
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f'x and/y, while= k(f'x—ify) and/j = l(fx + if„) are the formal complex 
derivatives of f. In particular, we denote f'e by f when f has the total 
differential and /^ = 0 (cf. e.g. [14], p. 59). Symbols fT, fk etc. denote 
functions depending on some parameters t, It etc.

The expression if and only if is abbreviated by iff, while the expression 
almost everywhere by a.e.

2. Introduction

Let h be an arbitrary fixed homography (synonyms: homographic 
transformation, bilinear transformation, (fractional) linear transfor
mation, Mobius transformation) which is not loxodromic, and let a be 
an arbitrary fixed antigraphy (a synonym: anti-homography). For defi
nitions and properties of these transformations we refer to [4] and [15]. 
Throughout the paper we assume that h is not the identity mapping, 
and a is not a Mobius involution. It is well known that aoa is a homo
graphy which is not loxodromic, and that given h there is an antigraphy a 
such that aoa = h.

Let n, n 1, be a positive integer. Consider a homography that is 
not loxodromic and generates an n-cyclic group (of homographies) with 
respect to composition. It is well known (cf. e.g. [14], pp. 86-87) that h 
must be elliptic and that, given s0 different from the invariant points 
of h, the points sk = A(sfc_i), s_k = h(s_k+1), k = 1, 2,..., and s„ satisfy 
*k+» = 8k f°r & = 0,1, —1, 2, —2, ..., and lie either on a circle or on 
a straight line. In case where h is elliptic and does not generate a cyclic 
group with respect to composition, the points sk, k = 0,1, —1, 2, —2, ..., 
form a dense subset of either a circle or a straight line. Thus, being inter
ested in the cyclic cases, we shall consider problems formulated below in 
case of an arbitrary elliptic homography or antigraphy and show that 
we have either an n-cyclic case or a limit case.

After these preliminary remarks we are able to formulate the problems 
to be discussed in this paper. Given an elliptic homography h and an 
elliptic antigraphy a we are concerned with studying homeomorphic 
solutions of the functional equation
(1) g°h(s) = hog(s)

and homeomorphic solutions of
(2) goals') = aog(s),
which map some D onto D', where D is a given domain or the closure of 
a domain, both bounded by disjoint Jordan curves. In particular, we 
are concerned with Q-quasiconformal solutions of (1) and (2), subject 
to suitable conditions in order to assure that two Q-quasiconformal map
pings which satisfy the same equation, are identical. Here 1 < Q < oo.
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For a definition and properties of quasiconformal mappings we refer 
to [8]. We notice that under a Q-quasiconformal mapping of the closure 
of a domain bounded by disjoint Jordan curves we understand any homeo- 
morphism which is a Q-quaxiconformal mapping of inti).

It is clear that in case of (1) we have to assume that D = A[H]. 
Hence frH is the union of some sets being connected subsets of straight 
lines or circles, which do not reduce to a point. Consequently (cf. [8], 
p. 44), any Q-quasiconformal solution of (1), determined in intH, can 
be continued to a Q-quasiconformal mapping of clH. Thus we confine 
ourselves to closed domains. A closed domain bounded by disjoint Jordan 
curves is said to be a natural domain with respect to a homography A 
if D = h[D].

Similarly, a closed domain D bounded by disjoint Jordan curves is 
said to be a natural domain with respect to an antigraphy a if D = a о a [П], 
5na[p]cfrP, and D и a[H] is a closed domain. Clearly, we may 
confine ourselves to consider homeomorphic solutions of (2) determined 
on sets of the form D = I) и a [H], where D is natural. It can easily be 
verified that if a homeomorphic solution of (2), defined on D, satisfies 
gr[H] = D', then ff[H] = H' и a[H'].

The problems discussed in this paper were posed in [12], where there 
was also introduced the notion of natural domain (in [12], p. 344, line 
18, it should be assumed that D is invariant under w — hoh(z)).

We begin our considerations with obtaining relations between homeo
morphic solutions of (1) and (2) (Lemma 1), and then reduce the problems 
in question to analogous problems with some normalized A and a (Lemma 2). 
Then, according to suggestions given in [12], we distinguish the cyclic 
case and the limit case, and consider them separately. In each case we 
extend Lemma 2 (Lemmas 3 and 4, respectively), and then strengthen 
Lemma 1 (Theorems 1 and 4, respectively, which include also results 
formulated in the lemmas). Next we confine ourselves to quasiconformal 
mappings, normalize them as suggested in [12] (pp. 344-345), and obtain 
some relations between the normalized classes (Theorems 2 and 5). Finally 
we characterize the classes under consideration in terms of complex 
dilatation (Theorems 3 and 6). This is a generalization of some results 
obtained in [12].

The results of this paper were announced in [5] and [6].

3. Relations between homeomorphic solutions of (1) and (2) in the general 
case

In this section we obtain a generalization of Lemma 3 and Remark 7, 
both given in [12] (p. 336). Consider an elliptic homography:
(3) A(s) = foh*or(8),
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where

(4)

(5) r(s) =

h*(z) = eiaz, — oo < a < + oo, eta 1,

(*— #i)/(«— si) for si>s» =£ °°>
S — «x for Sj OO, S2 — OO.

Assume that the natural domain is of the form

D = {s: t0 < |r(s)| < t}, where 0<t„<t< + oo.

Suppose first that r + oo and denote by D' any domain of the form 

D' — {»: Tq < |r(?>)| < t}, where 0 < t„ < t, 

and J# — 0 iff r0 = 0. Consider the antigraphy

(6) «,(«)= fto«*orT(s),

where

(7) «*(«) = e(1/2)ia/z,

(8) rT(s) = T_1r(s),

and equation (2) with aT substituted for a:

(9) goaT(s) = arog(s).

Lemma 1. (i) If a homeomorphism g: D D' is a solution of (1), and
(9) holds for y|j9nat[D], then g*, defined by

(10) g*\D=g,

(11) 0*|ar[D]\D = aTogodT\aT[D]\D,

is a homeomorphie solution of (1), and

(12) = D'uat[D'j.

(ii) If a homeomorphism g: D u №r[Z)] -* D' u aT[D'] is a solution 
of (9), then

(13) 9i = g\D, g2 = g\aT[-D]

are homeomorphie solutions of (1). If, in addition, |rogr(s)| = t* for 
seD n aT[D], then t* = r, i.e. either

(14)
or

(15)

<7i[2>] =D', g2oaT[D] = ar[D']

0i[-D] = aT[D'], ff,oar[P] = D'.
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Proof. We start with proving (i). Let g: D D' be a homeom,orphic 
solution of (1). If seD\aT[D] then, clearly, ot(«)«oI[D]\JD. Thus, by 
(11), for seD\aT[D~] we have g*oax(s) — axog(s). Applying now (10) 
we get g*oaT(s) = oro^*(s) for s«D\or[D]. Next, if seor[D]\7) then, 
clearly, oT(s)€jD\aT[D], Hence, by (10), for S€ar[H]\H we have g*oaT(s) 
= goals'). But at = aToaToaT. Applying the relations a,oat = h and (1) 
we get 0*oaT(s) = aroaTo</o dT(s). Therefore, by (11), for seaT[H]\2> 
we obtain y*oat(») = aTog*(s) as well. Finally, if we assume that (9) 
holds for seD n ar[H] then, by (10), g* is a solution of (9).

We claim that g* is a homeomorphism. Indeed, by (10), <7*] D is a homeo- 
morphism. Therefore, since g* is a solution of (9), and ax is a homeo
morphism, g*\ax[D] is a homeomorphism as well and, by (10),

(16) j*[aT[H] = aTo<jrodT|aT[P],

Hence we obtain two conclusions. At first, g* is continuous. Since it 
is defined on Du ar[Z>] which is closed, we have only to prove that g* 
is one-one. At second, since, by (10),

(17)
and, by (16),

(18) 0*oar[P] = aT[.D'],

then in order to prove that g* is one-one it is enough to show that 

S*[Pn«r[D]l =

But this follows from the relation

g*[D n aT[Z>]] <= 3*[H] n g*oaT[D] — D' r\ aT[H'],

which is itself a consequence of (17) and (18), and from the fact that 
any homeomorphism maps connected sets onto connected sets. Thus g* 
is a homeomorphism, as desired. Besides, (17) and (18) imply (12).

We proceed to prove (ii). Let g-. D u aT[H] -> D' u aT[D'] be a homeo- 
morphic solution of (9). Next let seD. Clearly, also h(s)d). Hence, by
(13) and h — aroa„ we have <jqol&(s) = goaToar(s). Applying now re
lation (9) twice, we obtain g1oh(s) — aroa,og[s). Using again a,oaT = h 
and (13), we get gf1ofc(s) = hogl(s). Thus gt is a homeomorphic solution 
of (1), as desired. Since g is a homeomorphism, so is gt = g\D. Analo
gously we prove that g2 is a homeomorphic solution of (1) as well.

Suppose now, in addition, that |rogr(»)| = t* for ttDna,[D]. Take 
an arbitrary seD n at[H], i.e. an arbitrary s satisfying |r(s)| = t. By (6), 
(8) and (7) we have

|roat(s)| = |ro^Toa*ort(s)| = |Ta*(T_1r(s))| = |r2/r (s)| = t.

3 — Annales
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Hence, according to the additional assumption,

|»ogoaI(s)| = t*.

On the other hand, by (6), (8), (7) and the additional assumption, we have

|roaTo<jr(s)| = |ro/Toa*orro<jr(s)I = |T«*(T-1ro</(s))| = |-r2/r o <7 (s)| = tz/t*.

Consequently, by (9), we obtain t* = tz/t*, i.e. t* = t. Since g is a homeo- 
morphism, and g2 are defined by (13), this means that we have either
(14) or (15). The proof of Lemma 1 is completed.

If D' is of the form D' — {v: |r(w)| < r^}, where r< + oo,
and Tq = + oo iff t0 = 0, then statements analogous to that of Lemma 1 
hold.

In Lemma 1 we have assumed that t Now, let us replace
this condition with t„ 0. Then, clearly, statements analogous to that 
of Lemma 1 hold.

Finally suppose that t0 = 0 and t = + i.e. D = &. Since we
consider homeomorphic solutions of (1), D' = as well. Let At = {z: 
|»| < t} for 0 < t < + oo. We have:

Remark, (i) If a homeomorphism g: -> & is a solution of (1), 
gof[At] = for some t, 0< t< + oo, and (9) with t = t holds for 
</|/[fr JJ, then we can apply Lemma 1 (i) to gl?[A(]. An analogous 
statement holds for <jr|/[ ^\int JJ, and in case where the condition 
go?[At] = is replaced with gro/f/IJ = /[<?\intAt].

(ii) If a homeomorphism g: & -> & is a solution of (9) with t = Z, 
where 0 < r < + °°> then we can apply Lemma 1 (ii) with D = ?[At] 
to g. An analogous statement holds for D = r[«?\intzl(].

4. The problems with normalized h and a

Lemma 1 shows that the problems of finding homeomorphic solutions 
of (1) and (2) are, in general, not equivalent. In Section 6 it will be shown 
that they are not equivalent even in case of quasiconformal solutions. 
In order to give further details concerning the problem in question, we 
transform (1) and (2) to a normalized form. This is given by the following 
obvious lemma:

Lemma 2. (£) The problem of solving (1) in a natural domain D is equi
valent to the problem of solving

(19) foh*(z) = h*of(z)

in rT[H], where f — rTogofT and z = rT(s) for seD.
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(ii) The problem of solving (9) in D u ar[H], where D is a natural 
domain, is equivalent to the problem of solving

(20) foa*(z) = a*of(z)

in rT[D u aT[H]], where f = rTogofT and z = rT(s) for seD u aT[D],
In Lemma 2 we have considered (9) instead of (2) since every elliptic 

antigraphy can be written in the form (6).
Owing to Lemma 2 and reasons given in Section 2 (also in [12], pp. 

344-345), we shall consider, separately, the cases:
(I) h — h* and a = o*, a/n rational, eia 1,
(II) h = h* and a = a*, a/n irrational,

called the cyclic case and the limit case, respectively. In both cases we 
shall distinguish two particular cases:

(a) L> = At, where 0 < t < 1,
(b) D = S.

The particular cases corresponding to (b) are called continued for the 
reasons explained by the Remark (also by Lemma 3 and Remark in [12], 
p. 336).

I. The cyclic case

5. Homeomorphic solutions

In the case under consideration the problems in question can be 
simplified again.

Let », n 1, be a positive integer. Further let k be an integer such 
that k and n are relatively prime.

Lemma 3. (i) A homeomorphism f: At -> At (or f: A A} is a solution 
of (19) with a = 2k7i/n iff it is a solution of (19) with a = 2n/n.

(ii) A homoeomorphism. f: A* -> A* is a solution of (20) with a = ^kn/n 
iff it is a solution of (20) with a = 4tt/w.

Proof. Clearly, if a homeomorphism /: At -> At. (or /: & A) is 
a solution of (19) with « = 2n/n, then it is a solution of (19) with a = 2kn/n.

Conversely, suppose that a homeomorphism f:At->-Ae(oTf: £ -> A) 
is a solution of (19) with a = 2kn/n. Since k and n are relatively prime, 
there exists a pair of integers k0 and n„ such that kok+non =1, i.e. 
kQk/n = —n0+lln. Hence f is a solution of (19) with a — 2n/n.

Suppose now that a homeomorphism f: A* -> A* is a solution of (20) 
with a — An/n. If k is odd the assertion is obvious, so we may assume 
that k is even. This implies that f\At satisfies (19) with a —2knln and 
a — Akn/n. On the other hand |/(z)| = 1 whenever |«| = 1. Consequently 
/|{2: |«| = 1} satisfies (20) with a = ikn/n and, by Lemma 1 (i), f is 
a solution of (20) with a = 4fcrc/» as well.
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Finally suppose that a homeomorphism /: J* -> J* is a solution 
of (20) with a = 4knln. Since k and n are relatively prime, there exists 
a pair of integers kQ and n0 such that k„k-\-non = 1, i.e. kok/n — — n0+ 1/n. 
If k0 is odd the assertion is obvious, so we may assume that k0 is even. 
This implies that f\ At satisfies (19) with a = 2jr/« and a — 4n/n. On the 
other hand \f(z)\ = 1 whenever |«| = 1. Consequently /|{«: |«| = 1} 
satisfies (20) with a = 4n/n and, by Lemma 1 (i), f is a solution of (20) 
with a — 4nIn as well. This completes the proof.

Now we shall formulate our final result on homeomorphic solutions 
of (1) and (2), where we consider (9) instead of (2) since every elliptic 
antigraphy can be written in the form (6).

Theorem 1. (i) In the elliptic case with a — a0, aQ/n rational eM° 1, 
the problem of finding homeomorphic solutions of (1) with a = a0 in a natural 
domain D is equivalent to the problem of finding homeomorphic solutions 
of (19) with a = 2nln in rr[D], where f = rxogofT, z — rx(s} for seD, 
t, 0 < t < + oo, is chosen so that rr[frD] => {z: |»J = 1} for D S, while 
r — 1 for D = &, and n, n 1, is a positive integer uniquely determined 
by the requirement for an/2Tc to be an integer, and for n, an/2n to be relatively 
prime. Besides, if a homeomorphism f: At -> Av is a solution of (19) with 
a = 2n/n, then /*, defined by

(21) f*\At = f, f*\A*\At = a*ofoa*\A*\At,

where a = 4ji/n, is a homeomorphic solution of (20) with a = 4n/n, and 
f'lAX=At.

(ii) In the elliptic case with a = a0, aQ/n rational, eta® 1, the problem 
of finding homeomorphic solutions of (9) with a = a0 in D u ax [D], where D 
is a natural domain, is equivalent to the problem of finding homeomorphic 
solutions of (20) with a = 4n/n in rt[Duflt[D]], where f — rxogofx, 
z = rT(s) for seD'jafl)], and n, n yt 1, is a positive integer uniquely 
determined by the requirement for an/4n to be an integer, and for n, an fin 
to be relatively prime. Besides, if a homeomorphism f: A* -* A* is a solution 
of (20) with a = 4n/n, then

(22) A A
where a — 4n/n, are homeomorphic solutions of (19) with a — 4n/n. If, 
in particular, n is odd, fT and f2 are also solutions of (19) with a = 2rcln. 
For any n, if, in addition, |/(z)| = t* whenever |s| = 1, then t* = 1, i.e.

(23) |A(«)| = |/2(«)| = 1 whenever |»| =1.

Proof. The equivalence of the problem with a = a„ and the problem 
with a = 2nfn in the case of a homography, and a = 4n/n in the case of 
an antigraphy, is a straightforward consequence of Lemmas 2 and 3.
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Now, if a homeomorphism/: At -> J(. is a solution of (19) with a — 2tt/», 
then it also satisfies (19) with a — in/n. On the other hand |/(z)| = 1 
whenever |z| =1. Consequently f\{z: |«| = 1} satisfies (20) with a = 4nln 
and, by Lemma l(i),/* is a homeomorphic solution of (20) with a = An/n, 
such that /*[d*] = A*.. This completes the proof of (i).

Finally, if a homeomorphism f: A* -> A* is a solution of (20) with 
a = then, either directly or by Lemma 1 (ii), we conclude that /t
and /a satisfy (19) with a = 4jt/w. If, in particular, n is odd, then, by 
Lemma 3 (i), ft and /2 are also solutions of (19) with a — 2nln. For any f, 
if, in addition, |/(z)| =/* whenever |«| = 1, then, either using directly 
the fact that f is a solution of (20), or applying Lemma 1 (ii), we conclude 
that /* = 1, i.e. (23) holds. This completes the proof of (ii).

6. Normalized Q-quasiconformal solutions

Now we confine ourselves to Q-quasiconformal solutions of (19) and 
(20). We remark that now, for t 0, t' is restricted by the condition 
(cf. e.g. [8], p. 40)

(24)

According to [12] (pp. 344-345) we introduce the following normalized 
classes.

Definition 1. feE$n\ where 1 < Q < + oo, 0 < t < 1, and n, n 1, 
is a positive integer, iff it is a Q-quasiconformal solution of (19) in the 
elliptic case with a = 2n/n, and maps At onto some Ae so that /(1) = 1.

Definition 2. feE^, where 1 < Q < + oo, 0 < i< 1, and n, n 1, 
is a positive integer, iff / = /*|dz, where /* is a Q-quasiconformal solution 
of (20) in the elliptic case with a = An/n, and maps A* onto some zl* 
so that |/*«)|< |/*(1/<)|,/*(1) =1.

Definition 3. feE^, where l^Q < + oo, and n, n #= 1, is a positive 
integer, iff it is a Q-quasiconformal solution of (19) in the elliptic case 
with a = 27z/n, defined on and such that /(0) #= oo, /(1) = 1.

Definitions 1—3 imply directly: (a) if then t' = 0
and /(0) = 0, (b) if feEty'^ then /[dz] = At>, (c) if feE^ then /*(oo) 
= oo, (d) if fcE^ then /(0) = 0 and f(°°) = oo.

It seems natural to ask for relations between the classes and
Eft^. The complete answer is given in the following

Theorem 2. For n even,

E$n} c E^ <= Fg>ln),(25)
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where the indices n and inin the extreme terms cannot he improved for any 
Q, 1 < Q < + oo, and t, 0 < t < 1. For n odd,

(26) ^=F?g’n’.

Proof. Relations (25) and (26) follow immediately from Theorem 1. 
In order to show that the indices n and jw in the extreme terms of (25) 
cannot be improved for any Q, 1 < Q < + oo, and t, 0 < t < 1, we consider 
functions

/(*) =
|«l°*expi(arg34-ssin(|narg2!)) for t< |z|<l,
lim/(£) for |«| = f,
c-*
ICIX

|2|®expi(argz-|-q(l — |Z|ln)sin(|narg2)) for /< |»| < 1, 

for |«| = t,
C-+z
|C|>*

for i < |*| < l/#,

where q, q, Q*, Q are supposed to be positive, and will be specified below. 
It is clear that f satisfies (19) with a = 4n/n but it cannot be continued 
to a function satisfying (20) with a = 4tf/w, and f satisfies (20) with 
a = An/n but f\At satisfies (19) with a — 2nlk with no k — |n+l, 
in + 2, ... Also f[At] = Jr, /(1) = 1, and /[J*] = J«, \f(l/t)\,
/(1) = 1, where V — t°*, t' — tQ. It remains to choose q, q, Q*, Q so that f 
and f be Q-quasiconformal.

First of all we see that f and / are sense-preserving homeomorphisms 
whenever q<2/n and q<2/n{l—tin), respectively. Moreover, by (24) 
we have Q_1 < Q* < Q and Q-1 < Q for t 0. Unfortunately these
restrictions are necessary but not sufficient, so we have to apply another 
argument. Obviously/|int Jf\{0} and/|int At\{0} are continously differen
tiable, and

fi(z) = Q*—1 —jngcoe( jnargg)
fe(z) e Ç*+l+jngcos(j»arg«) ’

fj(z) = e2iarg0 Q —1—jngcos(jwargz)+jngz*" 
(2) Q +1 + i^g cos ( in arg z) - jngzłn

Suppose now that 0 < g < 2n 1(Q2— 1)/(Q2+1), and calculate the 
east upper bound of (27) taken over 2eint dz\{0}. It equals either

(Q*— 1 + |wg)/(Q*+l — inS) < 1
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or
— (Q* — 1— %nq)l(Q* + 1+ ±nq) < 1.

Choosing Q* = Q(1—jnę) in the first case, and Q* =Q~1{l+inq) in 
the second, we see that in both cases this bound is exactly (Q —1)/(Q + 1). 
Therefore/lintdfKfO} is Q-quasiconformal (cf. [8], p. 19) and so is/|int At 
(cf. [8], p. 43). Applying now the definition of Q-quasiconformality for 
mappings defined in closed domains bounded by disjoint Jordan curves 
(cf. Section 2) we see that f is Q-quasiconformal, as desired.

Finally suppose that 0 <</< «_1(QZ—1)/[<22+i(l —<*”)], and esti
mate the least upper bound M(Q,q) of (28) taken over 2eintĄ\{0}. 
It does not exceed either

(Q—l + nq)l(Q + l — nq)< 1 
or

— (Q — 1 — Inq + $nqtin)l(Q +1 + %nq— ^nqt*1) < 1.

Choosing any pair of Q,q so that M(Q, </) < [Q — 1)/(Q + 1) we obtain 
that /lintdjXfO} is Q-quasiconformal. Clearly /|int(J*\dt)\{oo} is 
also Q-quasiconformal. Therefore /|intJ*\{0, oo} must be Q-quasi- 
conformal as well (cf. [8], p. 47). Consequently, as in the case of f, we 
conclude that f is Q-quasiconformal, and this completes the proof.

According to [12] (p. 345) we call mappings of Efy71'* and E$',f> — 
n-cyclio elliptic, and mappings of EqW — n-cyclic continued elliptic. As 
remarked in Section 2, we use the adjective “cyclic” since the set of all 
homographies h* with a — 2kn/n, where n is fixed and k ranges over all 
integers, forms an «-cyclic group with respect to composition. Mappings 
of the classes in question may also be called n-symmetric since they are 
a natural extension of the classes of n-symmetric conformal mappings, 
among others investigated by Littlewood and Paley [9], Basilevich [2, 3], 
Aleksandrov [1], Jakubowski [7], and Mikołajczyk [13].

7. Characterization of the normalized Q-quasiconformal solutions in terms 
of complex dilatation

It is essential to characterize the classes in question in terms of complex 
dilatation.

Theorem 3. (i) In the definitions of E^’n^ and E*/^ we may replace (19) 
with

(29) y(z) = 6~2iaTeh*'^ yoh* (z) a.e. in D,

where y denotes the complex dilatation of f, /(0) = 0 when OeD, and /(oo) 
= oo when ooeD. Here D = At in the case of E$n\ and D = & in the 
case of EqM .
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(ii) In the definition of E^ we may replace (20) with

(30) p*(z) — 62tarBa* (i)jM*oa*(2) a.e. in A*,

where p* denotes the complex dilatation of f*, /*(0) = 0 when OeJ*, and 
f*(°o) = oo when ooeAf.

Proof. The proof is similar to that given in the case of an analogous 
result for the class EQ introduced in [12] (see [12], pp. 312-313). We 
confine ourselves to the case of 25g’n) since the same method works also 
for Eq™ and E^.

Definition 1 implies that/^/i exist a.e. in At (see e.g. [8], p. 172), 
and that

Hence (29) follows.
Conversely, suppose that f: At -> Ae satisfies the conditions given 

in Theorem 3 (i). By the well known theorem on existence and uniqueness 
(see e.g. [8], p. 204, in the case where t = 0, and [10], p. 26 in the case 
where 0 < t < 1) if /*: At -> A(- is Q-quasiconformal, /*(1) =1 (also 
/*(0) = 0 in the case where t = 0), and/* has p as its complex dilatation 
a.e. in At, then /* =/. On the other hand the mapping /**: At -> 
defined by the formula/**(z) = e~2mlnf(e2nllnz) for zeAt, is also Q-quasi- 
conformal, satisfies /**(1) = 1 (also /**(0) = 0 in the case where t = 0), 
and its complex dilatation p** is determined by the formula p**(z) 
= e~imlnp(e2nilnz) a.e. in At. Since, by (29), p**(z) = p(z) a.e. in At, 
then/** = /. Hence / is a solution of (19) and, consequently, feE$n\

II. The limit case

8. Homeomorpliic solutions

In the case under consideration the problems in question can be 
simplified again.

Lemma 4. (i) A homeomorphism f: At -> At. (or f: A -> <?) is a solution 
of (19) with a = a0, a0/n being irrational, iff it is a solution of (19) with 
any a, a In being irrational.

(ii) A homeomorphism f: A* -> A* is a solution of (20) with a = a0, 
a0/7i being irrational, iff it is a solution of (20) with any a, a/vt being irra
tional.
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The proof is omitted since it is completely analogous to that given 
in [12] (pp. 311-312) in the case of Q-quasiconformal solutions/: J* -* J, 
of (20) with, a/n irrational, normalized by the conditions /*(0) = 0 and 
/*(1) = 1 (also by/*(oo) = oo, but this is a consequence of (20) and our 
convention z/0 — oo for ze<f\{0}; cf. Section 1).

Now we shall formulate our final result on homeomorphic solutions 
of (1) and (2), where we consider (9) instead of (2) since every elliptic 
homography can be written in the form (6).

Theorem 4. (i) In the elliptic case with a = a„, a0/7i irrational, the 
problem of finding homeomorphic solutions of (1) with a = a0 in a natural 
domain D is equivalent to the problem of finding homeomorphic solutions 
of (19) with any a, a/n irrational, in rT[D], where f = rtogofT, z — rT(s) 
for stD, and x, 0 < x < + is chosen so that rr[frD] => {z: |«| = 1} for 
D S, while x = 1 for D = &. Besides, if a homeomorphism f:At-+ At. 
is a solution of (19) with a — a0, then f*. defined by (21) with a = 0, is 
a homeomorphic solution of (20) with any real a, and /*[d*] = A*.

(ii) In the elliptic case with a = a0, aoln irrational, the problem of finding 
homeomorphic solutions of (9) with a — a0 in JD u at[D], where I) is a na
tural domain, is equivalent to the problem of finding homeomorphic solutions 
of (20) with any a, a/n irrational, in rt|Duat[b]], where f = rxo go fx 
and z = rT(s) for seD \j aT[2)]. Besides, if a homeomorphism f: A* -> A* 
is a solution of (20) with a = a0, then (22), where a — 0, are homeomorphic 
solutions of (19) with any real a, and (23) holds.

Theorem 4 is a straightforward consequence of Lemmas 2, 4 and 1.

Corollary 1. (i) In the elliptic case with a/n irrational a homeomorphism f 
is a solution of (19) in I) iff it satisfies f(z) = eiaigz f(\z\) for zeD\{0, oo}.

(ii) In the elliptic case with a/n irrational a homeomorphism f is a so
lution of (20) in I) u a*[D] iff it satisfies f(z) = and /.(1/|«|)
= l//(l«l) f°r ZeI> U oo}-

Corollary 1 is an easy generalization of two results obtained in [12] 
(pp. 311-312 and 335-336).

9. Normalized (^quasiconformal solutions

Now we confine ourselves to Q-quasiconformal solutions of (19) and 
(20). We remark that now, for t 0, t' is restricted by (24). According 
to [12] (pp. 311, 336 and 344-345) we introduce the following normalized 
classes.

Definition 4. feJE^’eo\ where 1 (2 “f- and 0 t < 1, iff it is
a Q-quasiconformal solution of (19) in the elliptic case with an a, a/jt 
irrational, defined on At, and such that \f(t)\ < 1,/(1) = 1.
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Definition where 1 < Q < +oo and 0 i < 1, iff f = /*|JZ,
where f* is a Q-quasiconformał solution of (20) in the elliptic case with 
an a, a/n irrational, defined on zl*, and such that |/*(/)|< \f*(l/t)\, 
/*(D = I-

Definition 6./e-Eg'00*, where 1 Q < +°°, iff it is a Q-quasiconformal 
solution of (19) in the elliptic case with an a, a/n irrational, defined on <?, 
and such that /(0) oo, /(1) = 1.

Definitions 4—6 imply directly: (a) if feE^,eo^ u then Z' = 0
and/(0) = 0, (b) iifcE^ then/[J,] = (c) if fcEtf’» then/*(oo)
= oo, (d) if /e^(oo) then /(0) = 0 and f(°o) = oo.

The following analogue of Theorem 2 is an immediate consequence 
of Theorem 4:

Theorem 5. E^ = = E$°°} = and E$°°) = C\EqM.
n n n

Some of these relations were established in [12] (p. 345).
Corollary 1 yields (cf. [12], pp. 311-313 and 335-336):
Corollary 2. In the definitions of E$°°\ Eq^ and E^',i} we may replace 

(19) and (20) with f(z) = e<arg*/(|2|) for zeD\{0, oo}, /(0) = 0 when QeD, 
and /(oo) = oo when ooeD. Here D = /itforfeE%,0°) u E^°;t\ and I) = Ć 
for fcE*™.

According to [12] (p. 345) we call mappings of E$°°) = E^°’l)~ 
limit elliptic, and mappings of Eq^ — limit continued elliptic. The adjec
tive “limit” is fully justified by the relations given in Theorem 5. The 
classes EQ = 7?§°:0) and Eq = Eq^ were studied in detail by Ławry
nowicz [12]. On the other hand, EQ is a subclass of a class introduced 
by Ławrynowicz in [11] (pp. 161-163).

10. Characterization of the normalized Q-quasiconformal solutions in terms 
of complex dilatation

It is essential to characterize the classes in question in terms of complex 
dilatation.

Theorem 6. (i) In the definitions of Eft00) and E*/°°} we may replace (19) 
with (29), where y denotes the complex dilatation of f, /(0) =0 when OeD, 
and f(oo) = oo when ooeD. Here D = At in the case of E^,oo\ and D = £ 
in the case of Eq(°°\

(ii) In the definition of E^°',t} we may replace (20) with (30), where y* 
denotes the complex dilatation off*, /*(0) = 0 when OeJ*, andf*(oo) = oo 
when ooeA*.

In the case of Eq = Eq^ and EQ = E^°’^ this result was obtained 
in [12] (pp. 335-336 and 311-313). The proof in the general case may be
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omitted since it is analogous to that given in [12] (pp. 312-313), and to 
the proof of Theorem 3.

Finally, Theorem 6 and Corollary 2 imply (cf. [12], p. 313 and 336):

Corollary 3. In the definitions of E%'°°\ Eq^ and E^°'^ we may replace 
(19) and (20) with = e2iar8r2Ju(|2|) a.e. in D, where y. denotes the complex 
dilatation of f, /(0) = 0 when OeD, and f(oo) = oo when ooeD. Here D 
has the same meaning as in Corollary 2.

In conclusion it should be remarked that, by Theorems 3 and 6, all 
the introduced classes of normalized Q-quasiconformal mappings can be 
defined with the help of (29) and (30), as suggested in [12] (p. 344).
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Streszczenie

Autorzy zajmują się rozwiązaniami homeomorficznymi równań funk
cyjnych postaci go k = kog oraz goa = aog, gdzie k jest dowolną ustaloną 
homografią eliptyczną, zaś a — dowolną ustaloną antygrafią eliptyczną 
(antygrafia jest to złożenie odbicia względem osi rzeczywistej z homo
grafią). Zagadnienie to wiąże się z grupami cyklicznymi homografii i anty- 
grafii. W szczególności autorzy rozpatrują rozwiązania Q-quasikonforemne 
tych równań, wprowadzają pewne znormalizowane klasy rozwiązań 
Q-quasi-konforemnych, uzyskują dla nich pewne warunki konieczne 
i dostateczne oraz badają związki między tymi klasami. Wprowadzone 
klasy dają m.in. naturalne rozszerzenie znanych klas odwzorowań kon
foremnych n-,symetrycznych.

Резюме

Авторы занимаются гомеоморфными решениями функциональных 
уравнений вида док = код и доа — аод, где ^-произвольная фикси
рованная гомография (т.е. дробно-линейное преобразование) эллипти
ческого типа, тогда как а — произвольная фиксированная антиграфия 
(т.е. суперпозиция симметрии относительно действительной оси ко
ординат и гомографии) эллиптического типа. Проблема эта связана 
с циклическими группами гомографии и антиграфии. В частности 
авторы рассматривают ^-квазиконформные решения этих уравнений, 
вводят некоторые нормализированные классы ^-квазиконформных 
решений, получают для них несколько необходимых и достаточных 
условий, а также изучают соотношения между этими классами. Вве
денные классы дают естественное расширение известных классов 
n-симметрических конформных отображений.


