AN NALES

UNIVERSITATIS MARIAE-SKEODOWSKA LUBLIN-POLONIA

Z Katedry Funkcji Analitycznych Wydz. Mat. Fiz. Chem. UMCS
 Kierownik: prof. dr Jan Krzyż

GILBERT LABELLE

On the Theorems of Gauss-Lucas and Grace
 O twierdzeniach Gaussa-Lucasa i Grace
 О теоремах Гаусса-Льукаса н Греса

Introduction

The theorems of Gauss-Lucas and of Grace have proven themselves to be of fundamental importance in the theory of the zeros of polynomials. We study here some extensions of these results together with a variety of their consequences.

For simplicity of reading we have gathered in section O relevant definitions and notations which will be used in the text. Sections 1 and 2 contain results of the Gauss-Lucas type and Grace's type respectively. Section 3 deals with applications. Section 4 consists in the proofs of all the theorems.

0. Definitions and notations

Let P denote the set of all complex polynomials and for $n \geqslant 0, P_{n}$ denote the set of all complex polynomials of degree n. If $p \in P_{n}$ and $p(z)$ $=a_{n}\left(z-z_{1}\right) \ldots\left(z-z_{n}\right)$ we denote by $z(p)$ the set $\left\{z_{1}, \ldots, z_{n}\right\}$ of its zeros. If $a_{n}=1, p$ is said to be monic. For $p, q \in P_{n}$ where

$$
p(z)=\sum_{\nu=0}^{n}\binom{n}{v} a_{\nu} z^{\nu} \quad \text { and } \quad q(z)=\sum_{v=0}^{n}\binom{n}{v} b_{\nu} z^{\nu}
$$

we call the expression

$$
\{p, q\}=\sum_{v=0}^{n}(-1)^{v}\binom{n}{\nu} a_{v} b_{n-v}
$$

the apolarity expression for p and q. In the situation $\{p, q\}=0$ we say that p and q are apolar while if $|\{p, q\}|=\left|a_{n} \| b_{n}\right| \delta^{n}$ we shall say
that p and q are δ-apolar. For $\zeta \in \mathbb{C}$ (the complex plane) and $p \in P_{n}, \mathscr{L}_{\zeta} p$ defined by $\left(\mathscr{L}_{\zeta} p\right)(z)=n p(z)-(z-\zeta) p^{\prime}(z)$ is the polar derivative of p with respect to the pole ζ. A point $\lambda \in \mathbb{C}$ will be called a $\left(w_{0}, w_{1}, \ldots, w_{k}\right)$ -point of a regular function f if $f(\lambda)=w_{0}, f^{\prime}(\lambda)=w_{1}, \ldots, f^{(k)}(\lambda)=w_{k}$. For $g: A \rightarrow \mathbb{C}$ (where $A \subseteq \mathbb{C}$ and $w_{0}, w_{1}, \ldots, w_{k} \in A$ given, we call the quantity $\left[w_{0}, w_{1}, \ldots, w_{k}\right]_{g}$, which is defined recursively by $\left[w_{0}\right]_{g}=g\left(w_{0}\right)$, $\ldots,\left[w_{k}\right]_{g}=g\left(w_{k}\right), \ldots,\left(\left[w_{0}, \ldots, w_{k-1}\right]_{g}-\left[w_{1}, \ldots, w_{k}\right]_{g}\right) /\left(w_{0}-w_{k}\right)=\left[w_{0}\right.$, $\left.\ldots, w_{k}\right]_{g}$ the (usual) difference quotient of order k of g with respect to the points $w_{0}, w_{1}, \ldots, w_{k}$. If g is regular, the difference quotients always have a meaning even when two of the $w_{i}^{\prime} s$ are equal (using limiting processes).

For a set $S \subseteq \mathbb{C}$, the convex hull of S is denoted as usual by $\operatorname{Conv}(\mathbb{S})$ and if θ is an angle, we write \mathbb{S}_{θ} for the set $\mathbb{S}+L_{\theta}$ where L_{θ} is the half-line $\left\{r e^{i \theta} \mid r \geqslant 0\right\}$, that is, S_{θ} is that part of \mathbb{C} swept by S when the latter is carried to ∞ along a direction making an angle θ with respect to the positive real axis. A set $C \subseteq \mathbb{C}$ is called a circular region, if it consists of a disk, the exterior of a disk or a half-plane (open or closed). Two sets $S_{1}, S_{2} \subseteq \mathbb{C}$ are said to be separated by two circular regions C_{1}, C_{2} if $S_{i} \subseteq C_{i}$, $i=1,2$ and $C_{1} \cap C_{2}=\varphi$. The "distance" $d\left(S_{1}, \mathbb{S}_{2}\right)$ between the two sets S_{1} and S_{2} is defined, as usual, by $d\left(S_{1}, S_{2}\right)=\inf _{Z_{i}{ }^{\bullet} S_{i}}\left|z_{1}-z_{2}\right|$. Note that this is not a distance in the mathematical sense of the term.

1. On the theorem of Gauss-Lucas

This well known theorem [5] states that

$$
\begin{equation*}
p \in P \Rightarrow z\left(p^{\prime}\right) \subseteq \operatorname{Conv}[z(p)] . \tag{1.1}
\end{equation*}
$$

The result locates the zeros of p^{\prime} in terms of the convex hull of the set of the zeros of p. Using the $\left(w_{0}, w_{1}, \ldots, w_{k}\right)$ - points of p, instead of the zeros of p^{\prime} (i.e., $\left(w_{0}, 0, w_{2}, \ldots, w_{k}\right)$ - points of p) we state the following generalization of (1.1).

Theorem 1.1 Let $p \in P_{n}, K=\operatorname{Conv}[z(p)]$ and take $w_{0}, w_{1}, \ldots, w_{k} \in \mathbb{C}$, where $0<k \leqslant n$. Then the set Ω of all the $\left(w_{0}, w_{1}, \ldots, w_{k}\right)$-points of p satisfies

$$
\begin{equation*}
\Omega \subseteq \bigcap_{v=0}^{k-1} K_{\theta_{v}}, \theta_{\nu}=\left(\arg w_{v}-\arg w_{\nu+1}\right)(\bmod 2 \pi) \tag{1.2}
\end{equation*}
$$

in the case $w_{0} w_{1} \ldots w_{k} \neq 0$ and $\Omega \subseteq K$ in the case $w_{0} w_{1} \ldots w_{k}=0$.
The theorem of Laguerre [5] states that for any polynomial $p \in P_{n}$, we have

$$
\begin{equation*}
[\zeta \not \subset C, z(p) \subseteq C] \Rightarrow z\left(\mathscr{L}_{\zeta} p\right) \subseteq C \tag{1.3}
\end{equation*}
$$

where C is a circular region. Now, if we note that as $\zeta \rightarrow \infty$, the set $z\left(\mathscr{L}_{\zeta} p\right)$ tends to the set $z\left(p^{\prime}\right)$ (this is easily seen by looking at the zeros of

$$
\left(\frac{1}{\zeta} \mathscr{L}_{\zeta} p\right)(z)=\frac{n}{\zeta} p(z)-\left(\frac{z}{\zeta}-1\right) p^{\prime}(z)
$$

which tends uniformly on every compact to $p^{\prime}(z)$) we have the qualitative result that as ζ becomes large, the zeros of $\mathscr{L}_{\zeta} p$ come near to $\operatorname{Conv}[z(p)]$. In this connection we state the quantitative

Theorem 1.2. Let $p \in P_{n}$ with $z(p)=\left\{z_{1}, \ldots, z_{n}\right\}$ and $M=\max \left|z_{v}\right|$ then for every $\lambda \in z\left(\mathscr{L}_{\zeta} p\right)$ we have

$$
\begin{equation*}
|\zeta|>M \cdot\left(1+\frac{2 M}{\delta}\right) \Rightarrow d(\lambda, \operatorname{Conv}[z(p)])<\delta \tag{1.4}
\end{equation*}
$$

Note that when $\delta \downarrow 0$ we come back to (1.1). We locate now the set of zeros of linear combinations of the derivatives of p.

Theorem 1.3. Let $p \in P_{n}$ and $p^{*}(z)=\sum_{v=0}^{n} \alpha_{v} p^{(\nu)}(z)$ then

$$
\begin{equation*}
z\left(p^{*}\right) \subseteq \bigcap\{(z(p)+C) \mid C \supseteq z(\pi)\} \tag{1.5}
\end{equation*}
$$

where $\pi(z)=\sum_{v=0}^{n} n^{(n-\eta)} \alpha_{n-p} z^{\prime \prime}$ and C ranges over the circular regions containing $z(\pi)$. The symbol $n^{(k)}$ denotes, as usual, the product $n(n-1) \ldots(n-k+1)$.

In the case $a_{0}=0, \alpha_{1}=1, a_{2}=\ldots=a_{n}=0$ we come back to 1.1 as easily seen since $z(\pi)=\{0, \infty\}$ in this case because $\pi(z)=n!z^{n-1}+0 z^{n}$.

We close this section by giving an extension of (1.1) for Weierstrass' canonical products.

Theorem 1.4. Let

$$
\begin{equation*}
P(z)=\prod_{v=1}^{\infty}\left(1-\frac{z}{z_{v}}\right) \exp \left(\frac{z}{z_{v}}+\frac{1}{2}\left(\frac{z}{z_{v}}\right)^{2}+\ldots+\frac{1}{p}\left(\frac{z}{z_{v}}\right)^{p}\right) \tag{1.6}
\end{equation*}
$$

be a canonical product of genus p. Then the zeros ζ of P^{\prime} satisfy

$$
\text { i) } \zeta \neq 0
$$

or
ii) $\zeta \cdot \sum_{v=1}^{\infty} \alpha_{\nu} z_{v}^{p}=\sum_{v=1}^{\infty} \alpha_{\nu} z_{v}^{p+1}$ for a non-trivial sequence of non-negative numbers α_{ν}.

2. On the theorem of Grace

This result [5] reads as follows: given $p, q \in P_{n}$ then

$$
\begin{equation*}
\{p, q\}=0 \Rightarrow\left[z(p) \subseteq C_{1}, z(q) \subseteq C_{2} \Rightarrow C_{1} \cap C_{2} \neq \varphi\right] \tag{2.1}
\end{equation*}
$$

where C_{1} and C_{2} are circular regions. That is to say, the sets $z(p)$ and $z(q)$ cannot be separated by two circular regions when p and q are apolar.

We give first a representation theorem for the apolarity condition which will be useful for this section.

Theorem 2.1. The following representations for $\{p, q\}$ are valid
a) If $p(z)=\sum_{v=1}^{M} \alpha_{v}\left(z-\sigma_{v}\right)^{n}$ and $q(z)=\sum_{\mu=1}^{N} \beta_{\mu}\left(z-\eta_{\mu}\right)^{n}$ then

$$
\begin{equation*}
\{p: q\}=\sum_{v, \mu} \alpha_{\nu} \beta_{\mu}\left(\eta_{\mu}-\sigma_{v}\right)^{n} \tag{2.2}
\end{equation*}
$$

b) Let $p(z)=\sum_{v=0}^{n}\binom{n}{v} a_{v} z^{\prime \prime}$ and $q(z)=\sum_{v=0}^{n}\binom{n}{v} b_{v} z^{v}$ then

$$
\begin{equation*}
\{p, q\}=b_{n} L_{1} \ldots L_{t_{n}}[p(z)] \tag{2.3}
\end{equation*}
$$

where $L_{\zeta_{\nu}}=\frac{1}{v} \mathscr{L}_{\zeta_{\nu}}$ and the ζ_{v} are the zeros of q.
c) Let $z_{1} \ldots, z_{n}$ and $\zeta_{1}, \ldots, \zeta_{n}$ be the zeros of p and q respectively and C_{1}, C_{2} be two disjoint circular regions such that $\left\{\zeta_{1}, \ldots, \zeta_{n}\right\} \subseteq C_{1},\left\{z_{1}, \ldots, z_{n}\right\}$ $\subseteq C_{2}$. Moreover suppose that C_{1} is a disc with center ω. Then 约 $\lambda_{1}, \ldots, \lambda_{n} \in C_{2}$ such that

$$
\begin{equation*}
\{p, q\}=a_{n} b_{n}\left(\frac{\omega-z_{1}}{\omega-\lambda_{1}}\right) \ldots\left(\frac{\omega-z_{n}}{\omega-\lambda_{n}}\right)\left(\zeta_{1}-\lambda_{1}\right) \ldots\left(\zeta_{n}-\lambda_{n}\right) \tag{2.4}
\end{equation*}
$$

d) If $p(z)=a_{n}\left(z-z_{1}\right) \ldots\left(z-z_{n}\right), q(z)=b_{n}\left(z-\zeta_{1}\right) \ldots\left(z-\zeta_{n}\right)$ then

$$
\begin{equation*}
\{p, q\}=\frac{a_{n} b_{n}}{n!} \sum_{\varphi \in S_{n}} \prod_{v=1}^{n}\left(\zeta_{v}-z_{\phi(v)}\right) \tag{2.5}
\end{equation*}
$$

where S_{n} is the symmetric group of order n.
Observe that representation (2.3) immediately imply (2.1) if one takes (1.3) into account.

We will use parts c) and d) of theorem 2.1 to prove
Theorem 2.2 If p and q are δ-apolar then
i) The sets of their zeros are not too far from each other. More precisely, $z(p)$ and $z(q)$ cannot be separated by two circular regions C_{1} and C_{2} such that

$$
\begin{equation*}
d\left(C_{1}, C_{2}\right)>\delta \tag{2.6}
\end{equation*}
$$

The result is best possible.
ii) Their respective zeros are not uniformly too near. More precisely, G $z_{\nu} \epsilon z(p)$, ${ }^{-1} \zeta_{\mu} \epsilon z(q)$ such that $d\left(z_{\nu}, \zeta_{\mu}\right) \geqslant \delta$.
The result is best possible.
This result thus extends (2.1) in two directions in the context of δ-apolar polynomials.

Grace, Heawood and Szegö $\sqrt{6]}$ have proved the following generalization of Rolle's theorem.

Theorem Let $p \in P_{n}$ be such that $p(-1)=p(1)$ then p^{\prime} possesses a zero in every circle passing through $\pm i \cot \pi / n$ and in the two half-planes $\operatorname{Re} z \geqslant 0$ and $\operatorname{Re} z \leqslant 0$.

Using the notation of difference-quotients, the hypothesis $p(-1)$ $=p(1)$ can be written $[-1,1]_{p}=0$ and this theorem gives a conclusion on $z\left(p^{\prime}\right)$. Using general difference-quotients of order k we draw now conclusions on $z\left(p^{(k)}\right)$ without even assuming that the difference-quotients vanish.

Theorem 2.3. Let $w_{0}, w_{1}, \ldots, w_{k} \in \mathbb{C}$ and $p \in P_{n}$ be monic. Then

$$
\begin{equation*}
d\left(z\left(p^{(k)}\right), C\right) \leqslant\left|\frac{\left[\omega_{0}, \ldots, \omega_{k}\right]_{p}}{\binom{n}{k}}\right|^{\frac{1}{n-k}} \tag{2.8}
\end{equation*}
$$

for every circular region C containing all the zeros of the polynomial (of degree $n-k$)

$$
\begin{equation*}
\sum_{v=0}^{k} \frac{\left(\omega_{v}-z\right)^{n}}{\left(\omega_{p}-\omega_{0}\right)\left(\omega_{v}-\omega_{1}\right) \ldots\left(\omega_{v}-\omega_{p-1}\right)\left(\omega_{p}-\omega_{v+1}\right) \ldots\left(\omega_{p}-\omega_{k}\right)} \tag{2.9}
\end{equation*}
$$

This concludes section 2.

3. Applications

1- We start with a few simple consequences of theorems 1.1 and 1.4.
Theorem 3.1 If $p \in P_{n}$ where $p(z)=\sum_{v=0}^{n} a_{y} z^{D}$ is such that two of its successive coefficients $a_{v_{0}}, a_{r_{0}+1}$ satisfy

$$
\begin{equation*}
\left|\arg a_{v_{0}}-\arg a_{\nu_{0}+1}\right| \leqslant \pi / 2 \tag{3.1}
\end{equation*}
$$

then the open right half-plane cannot contain the whole set $z(p)$.
Condition (3.1) can be thought as a condition stating that the arguments of the coefficients of p do not oscillate too much.

Theorem 3.2 If, in theorem 1.1, we have $\theta_{\nu_{0}}+\pi=\theta_{v_{1}}$ for two indices v_{0} and v_{1} then $\Omega \subseteq \operatorname{Conv}[z(p)]$.

This theorem says that for a much wider class of points than $z\left(p^{\prime}\right)$, a conclusion of type (1.1) still holds.

Theorem 3.3 If, in theorem 1.4, we have $p=0$ then conclusion ii) can be written as
ii)* $\quad \zeta \in \overline{\operatorname{Conv}} \overline{\left\{z_{1}, z_{2}, \ldots\right\}}$.

This is the known extension of (1.1) given in [5].
Theorem 3.4 If, in theorem 1.4, all the z_{p}^{\prime} s are situated on p half-rays issuing from the origin and separated by equal angles then ii) can be written as ii)* as above.

Combined utilizations of theorems $1.1,1.2,1.3$ and 1.4 give rise to a wide class of related results of the type just mentioned.

2- When the polynomials p and q are written in the form

$$
p(z)=\sum_{v=0}^{n} a_{v} \varphi_{v}(z) \quad \text { and } \quad q(z)=\sum_{v=0}^{n} \beta_{\nu} \varphi_{v}(z)
$$

where the $\varphi_{v}^{\prime} s$ form a basis for the vector space P_{n}, the apolarity expression takes (by bilinearity) the form

$$
\begin{equation*}
\{p, q\}=\sum_{v=0}^{n} \sum_{\mu=0}^{n} \omega_{v \mu} a_{v} \beta_{\mu} \tag{3.2}
\end{equation*}
$$

where the $\omega_{\nu \mu}^{\prime} s$ depend only on $\left\{\varphi_{v}\right\}_{v=0}^{n}$. Thus theorem 2.2 permits us to draw conclusions about $z(p)$ in terms of the $\alpha_{p}^{\prime} s$ when q and $z(q)$ are known.

We give now a theorem which generalizes well-known theorems of S. Bernstein [1], P.D. Lax [4] and G. Szegö [7] about estimations for $\left|p^{\prime}(z)\right|$. Let U and $U^{*} \subseteq \mathbb{C}$ be open sets then

Theorem 3.5 If $p \in P_{n}$ maps U into $U^{*} \forall z \in U$,

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \leqslant n R / \varrho(z) \tag{3.3}
\end{equation*}
$$

where R is the supremum of the radii of all circles contained in U^{*} and $\varrho(z)$ is the supremum of the radii of all the circles contained in U and containing z. The result is best possible when U is the open unit disk D.

The cases $U=D, U^{*}=D, U=D, U^{*}=D \backslash\{0\}$ and $U=D, U^{*}$ $=\{z| | \operatorname{Re} z \mid<1\}$ give Bernstein's, Lax's and Szegö's results respectively as it is immediately seen.

Other applications of this result are, for example,

Theorem 3.6 If U contains arbitrarily large disks while U^{*} does not and $p \epsilon P$ maps U into U^{*} thon p must be a constant.

For example, this simple theorem says that p cannot map an infinite sector into an infinite strip without being constant. This is in any case rather obvious.

Theorem 3.7 If $p \in P_{n}$ maps U into U then $\mathscr{G} z_{0} \in U$ such that

$$
\begin{equation*}
\left|p^{\prime}\left(z_{0}\right)\right| \leqslant n . \tag{3.4}
\end{equation*}
$$

3- Let $p_{\epsilon} P_{n}$ be mapping the open unit disk D into a given set U. The following theorem permits us to find from it a n-parameters family of polynomials $p_{\zeta_{1}}, \ldots, \zeta_{n}$ doing the same.

Theorem 3.8 Let $p \in P_{n}$ be mapping D into U then for any choice of $\zeta_{1}, \ldots, \zeta_{n} \in D$, the polynomial $p_{\zeta_{1}}, \ldots, \zeta_{n}$ given by

$$
\begin{align*}
& p_{\zeta_{1}, \ldots, \zeta_{n}}(z)=a_{0}+a_{1} \frac{\left(\zeta_{1}+\ldots+\zeta_{n}\right) z}{\binom{n}{1}}+a_{2} \frac{\left(\zeta_{1} \zeta_{2}+\ldots+\zeta_{n-1} \zeta_{n}\right) z^{2}}{\binom{n}{2}}+ \\
&+\ldots+a_{n} \frac{\zeta_{1} \ldots \zeta_{n} z^{n}}{\binom{n}{n}} \tag{3.5}
\end{align*}
$$

also maps D into U.
One immediate consequence of this result is that $\forall \lambda \in D, a_{0}+a_{n} \lambda \in U$ which generalizes the fact that, when $U=D$, we have $\left|a_{0}\right|+\left|a_{n}\right| \leqslant 1$.

Let now \mathscr{U}_{n} denote the class of normalized univalent polynomials of degree n, [3]. It is well-known (this is Dieudonne's criterion [3]) that for a normalized polynomial $p(z)=z+a_{2} z^{2}+\ldots+a_{n} z_{n}$ we have $p \in \mathscr{U} \mathscr{U}_{n} \Leftrightarrow \forall \varphi \in[0, \pi / 2],\left(D_{\varphi} p\right)(z) \neq 0$ in D where $D_{\varphi} p$ denotes the Dieudonnés derivative of p with respect to φ defined by

$$
\left(D_{\varphi} p\right)(z)=\left\{\begin{array}{l}
p^{\prime}(z) \text { if } \varphi=0 \tag{3.6}\\
\sum_{v=1}^{n} a_{v} \frac{\sin _{v \varphi}}{\sin _{\varphi}} z^{v-1} \text { if } \varphi \neq 0
\end{array}\right.
$$

For each set S containing the origin, we define the class $\mathscr{U}_{n}(S) \subseteq \mathscr{U}_{n}$ of normalized univalent polynomials of type S by $p \epsilon \mathscr{U}_{n}(S) \Leftrightarrow p$ is normalized and $\forall \varphi \epsilon\left[0, \frac{\pi}{2}\right], D_{\varphi} p: D \rightarrow C \backslash S$.

The previous theorem gives the following variational formula for $\mathscr{U}_{n}(S)$.

Theorem 3.9 If $p \in U_{n}(S)$ and $\zeta_{1}, \ldots, \zeta_{n-1} \in D$ then
$p\left(\zeta_{1}, \ldots, \zeta_{n-1} ; z\right)=z+a_{2} \frac{\left(\zeta_{1}+\ldots+\zeta_{n-1}\right)}{\binom{n-1}{1}} z^{2}+\ldots+a_{n} \frac{\zeta_{1} \ldots \zeta_{n-1}}{\binom{n-1}{n-1}} z^{n}$
also belongs to $\mathscr{U}_{n}(\mathbb{S})$ where $p(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{n}$.
We immediately infer from this that if $z+\ldots+a_{n} z^{n} \in \mathscr{U}_{n}(\mathbb{S})$ then

$$
\begin{equation*}
\left|a_{n}\right| \leqslant \frac{1}{n} \inf _{z \in S}|z-1| \tag{3.9}
\end{equation*}
$$

and the estimate is best possible.

4. Proofs

Proof of Theorem 1.1 The case where $w_{0} \ldots w_{k}=0$ being an immediate consequence of (1.1) we need only to look at the case $w_{0} \ldots w_{k} \neq 0$. Let $\zeta \in \Omega$ then ζ being a (w_{0}, \ldots, w_{k}) - point of p it is, in particular, a $\left(w_{0}, w_{1}\right)$ -- point of p and the relation $p^{\prime}(\zeta)=p(\zeta) \sum_{v=1}^{n} \frac{1}{\zeta-z_{v}}$ which can be written as

$$
\sum_{v=1}^{n}\left(\zeta-z_{v}\right) /\left|\zeta-z_{v}\right|^{2}=\overline{\left(w_{1} / w_{0}\right)}
$$

implies that

$$
\begin{equation*}
\zeta=\left(\overline{\left(w_{1} / w_{0}\right)}+\sum_{\nu=1}^{n} a_{v} z_{v}\right) / \sum_{v=1}^{n} \alpha_{v} \tag{4.1}
\end{equation*}
$$

where $\alpha_{v}=1 /\left|\zeta-z_{v}\right|^{2}, v=1, \ldots, n$. That is

$$
\begin{equation*}
\zeta \epsilon L_{\theta_{0}}+K=K_{\theta_{0}} . \tag{4.2}
\end{equation*}
$$

The point ζ being also a ($w_{\nu}, w_{\nabla+1}$) - point of $p^{(\nu)}$ for $1 \leqslant v \leqslant k-1$ we similarly deduce that

$$
\begin{equation*}
\zeta \in L_{\theta_{v}}+K^{(v)}, v=1, \ldots, k-1 \tag{4.3}
\end{equation*}
$$

where $K^{(\nu)}=\operatorname{Conv}\left[p^{(\nu)}\right] \subseteq K$ by (1.1).
We thus have

$$
\begin{equation*}
\zeta \epsilon L_{\theta_{v}}+K=K_{\theta_{v}}, \nu=1, \ldots, k-1 \tag{4.4}
\end{equation*}
$$

and (4.2) together with (4.4) gives the desired conclusion

$$
\zeta \epsilon \bigcap_{v=0}^{k-1} K_{\theta_{\nu}}
$$

Proof of Theorem 1.2 We have $\left(L_{\zeta} p\right)(z)=p(z) \sum_{v=1}^{n}\left(\zeta-z_{v}\right) /\left(z-z_{v}\right)$. Let $z_{0} \epsilon z\left(\mathscr{L}_{\xi} p\right)$. If $z_{0}=z_{v}$ for some ν, there is nothing to prove, so we suppose
that $z_{0} \neq z_{\nu}$ for every ν and we can write $\sum\left(\zeta-z_{v}\right) /\left(z_{0}-z_{\nu}\right)=0$ and obtain that

$$
\begin{equation*}
\zeta \cdot \sum\left(\bar{z}_{0}-\bar{z}_{v}\right) /\left|z_{0}-z_{v}\right|^{2}=\sum\left(\bar{z}_{0}-\bar{z}_{v}\right) z_{v}| | z_{0}-\left.z_{\nu}\right|^{2} . \tag{4.5}
\end{equation*}
$$

Putting $a_{\nu}=\left(1 /\left|z_{0}-z_{\nu}\right|^{2}\right) / \sum_{\mu}\left(1 /\left|z_{0}-z_{\mu}\right|^{2}\right), \nu=1, \ldots, n$ we get from (4.5) that

$$
\begin{equation*}
\bar{\zeta}=\left(z_{0} \sum \beta_{v} \bar{z}_{v}-\sum \beta_{v}\left|z_{v}\right|^{2}\right) /\left(z_{0}-\sum \beta_{v} z_{v}\right), \tag{4.6}
\end{equation*}
$$

where $\beta_{v}=a_{\nu} / \sum_{\mu} a_{\mu}, \nu=1, \ldots, n$.
Suppose now that $d\left(z_{0}, \operatorname{Conv}[z(p)]\right) \geqslant \delta$. Since we have $\sum \beta_{\nu} z_{\nu} \in \operatorname{Conv}$ $[z(p)]$ we obtain from (4.6)
$|\zeta| \leqslant\left(\left|z_{0}\right|\left|\sum \beta_{v} \bar{z}_{p}\right|+\sum \beta_{v}\left|z_{v}\right|^{2}\right) /\left|z_{0}-\sum \beta_{v} z_{v}\right| \leqslant\left|z_{0}\right| M /\left|z_{0}-\sum \beta_{v} z_{v}\right|+M^{2} / \delta$.
Let us now show that

$$
\left|z_{0}\right| /\left|z_{0}-\sum \beta_{v} z_{v}\right| \leqslant(M+\delta) / \delta .
$$

If $\left|z_{0}\right| \leqslant M+\delta$ this is immediate and if $\left|z_{0}\right|>M+\delta$ we have $\left|z_{0}-\sum \beta_{v} z_{v}\right|$ $\geqslant\left|z_{0}\right|-\left|\sum \beta_{v} z_{v}\right|=\left|z_{0}\right|-\alpha$, say, where $0 \leqslant \alpha \leqslant M$. Consequently,

$$
\left|z_{0}\right| /\left|z_{0}-\sum \beta_{\eta} z_{\eta}\right| \leqslant\left|z_{0}\right| /\left(\left|z_{0}\right|-\alpha\right) \leqslant(M+\delta) /(M+\delta-a) \leqslant(M+\delta) / \delta
$$

because the maximum of the functions $t /(t-a)$ for $t \epsilon[M+\delta, \infty)$ occurs at $t=M+\delta$. Relation (4.8) thus holds and combined use of (4.7) and (4.8) then gives

$$
\begin{equation*}
|\zeta| \leqslant M \cdot(1+2 M / \delta) \tag{4.9}
\end{equation*}
$$

which contradicts the hypothesis of the theorem.
Proof of Theorem 1.3 To prove this result, we refer to the Grace's apolarity theorem (2.1). For each $\omega \in \mathbb{C}$, define $p_{\omega} \in P_{n}$ by

$$
p_{\omega}(z)=p(z+\omega)=\sum_{v=0}^{n} \frac{p^{(v)}(\omega)}{v!} z^{\prime}
$$

and put $q(z)=\sum_{n=0}^{n}(-1)^{n-v} n^{(n-p)} \alpha_{n-,} z^{n}$.
By a simple calculation we find that $\left\{p_{\omega}, q\right\}=p^{*}(\omega)$. Now $\omega \in z\left(p^{*}\right)$ $\Leftrightarrow\left\{p_{\infty}, q\right)=0$ and if C is a circular region containing $z(q)$ then, by (2.1), we have that $\mathcal{T} v_{0}$ such that $z_{r_{0}}-\omega \epsilon C$, that is $\mathcal{S}^{2} v_{0}$ such that $\omega \in z_{v_{0}}-C$ which implies that $\omega \in z(p)-C$. We can thus write $z\left(p^{*}\right) \subseteq z(p)-C$ and putting $\pi(z)=(-1)^{n} q(-z)$ we finally find that

$$
z(\pi) \subseteq C \Leftrightarrow z\left(p^{*}\right) \subseteq z(p)+C
$$

which implies (1.5).

Proof of Theorem 1.4 Suppose that the trivial case i) does not occur. If $\zeta=z_{v_{0}}$ for a certain ν_{0} we have only to take the sequence $\left\{\alpha_{v}\right\}$ where $\alpha_{\nu_{0}}=1$ and $\alpha_{\nu}=0$ for $\nu \neq \nu_{0}$ and conclusion ii) holds. If for every ν $\zeta \neq z$, we have

$$
0=P^{\prime}(\zeta) / P(\zeta)=\sum_{v=1}^{\infty}\left(\zeta \mid z_{v}\right)^{p} /\left(\zeta-z_{v}\right)=\sum_{v=1}^{\infty} \frac{\left(\bar{\zeta} \bar{\zeta}_{\nu}\right)^{p}}{\left|z_{v}\right|^{p p}} \cdot \frac{\left(\bar{\varsigma}-\bar{z}_{v}\right)}{\left|\zeta-z_{v}\right|^{2}}
$$

which implies that

$$
\begin{equation*}
\sum_{v=1}^{\infty} \frac{z_{v}^{p}}{\left|z_{v}\right|^{2 p}} \cdot \frac{\left(\zeta-z_{v}\right)}{\left|\zeta-z_{p}\right|^{2}}=0 \tag{4.10}
\end{equation*}
$$

Equality (4.10) immediately leads to

$$
\left.\zeta \cdot \sum_{v=1}^{\infty} z_{v}^{p}| | z_{\nu}\right|^{2 p}\left|\zeta-z_{\nu}\right|^{2}=\left.\sum_{v=1}^{\infty} z_{v}^{p+1}| | z_{\nu}\right|^{2 p}\left|\zeta-z_{\nu}\right|^{2}
$$

and conclusion ii) follows by putting $\alpha_{v}=1 /\left|z_{v}\right|^{2 p}\left|\zeta-z_{v}\right|^{2}$.
Proof of Theorem 2.1 a) Let $\pi_{1}(z)=(z-\sigma)^{n}$ and $\pi_{2}(z)=(z-\eta)^{n}$ then $\left\{\pi_{1}, \pi_{2}\right\}=(\eta-\sigma)^{n}$ as is easily verified. Equality (2.2) then follows from the bilinearity of $\{p, q\}$.
b) We have $p(z)=\sum_{v=0}^{n}\binom{n}{\nu} a_{\nu} z^{\nu}=a_{n} \prod_{v=1}^{n}\left(z-z_{v}\right)$ and $q(z)=\sum_{v=0}^{n}\binom{n}{\nu} b_{v} z^{v}$ $=b_{n} \prod_{v=1}^{n}\left(z-\zeta_{v}\right)$.

Write now (as we can always do) the polynomial p in the form

$$
\begin{equation*}
p(z)=\sum_{\mu=1}^{N} \omega_{\mu}\left(z-\lambda_{\mu}\right)^{n} \tag{4.12}
\end{equation*}
$$

where $\omega_{\mu}, \lambda_{n}$ and N are suitable constants. We immediately have:

$$
\begin{equation*}
\sum_{\mu=1}^{N} \omega_{\mu} \lambda_{\mu}^{\nu}=(-1)^{\nu} a_{n-\nu}, \quad \nu=0,1, \ldots, n \tag{4.13}
\end{equation*}
$$

Moreover,

$$
\begin{gathered}
L_{\zeta_{n-1}}[p(z)]=\sum_{\mu=1}^{N} \omega_{\mu}\left(\zeta_{n}-\lambda_{\mu}\right)\left(z-\lambda_{\mu}\right)^{n-1}, \\
L_{\ell_{n-1}} L_{\zeta_{n}}[p(z)]=\sum_{\mu=1}^{N} \omega_{\mu}\left(\zeta_{n}-\lambda_{\mu}\right)\left(\zeta_{n-1}-\lambda_{\mu}\right)\left(z-\lambda_{\mu}\right)^{n-2}, \\
\vdots \\
L_{\zeta_{1}} \ldots L_{\zeta_{n}}[p(z)]=\sum_{\mu=1}^{N} \omega_{\mu}\left(\zeta_{n}-\lambda_{\mu}\right) \ldots\left(\zeta_{1}-\lambda_{\mu}\right) .
\end{gathered}
$$

That is

$$
\begin{aligned}
L_{\zeta_{1}} \ldots L_{\varepsilon_{n}}[p(z)]= & \frac{(-1)^{n}}{b_{n}} \sum_{\mu=1}^{N} \omega_{\mu} q\left(\lambda_{\mu}\right)=\frac{(-1)^{n}}{b_{n}} \sum_{\mu=1}^{N} \omega_{\mu} \sum_{v=0}^{n}\binom{n}{v} b_{v} \lambda_{\mu}^{\gamma} \\
& =\frac{(-1)^{n}}{b_{n}} \sum_{\nu=0}^{n}\binom{n}{v} b_{v} \sum_{\mu=1}^{N} \omega_{\mu} \lambda_{\mu}^{\nu}
\end{aligned}
$$

and this is equal by (4.13) to

$$
\frac{(-1)^{n}}{b_{n}} \sum_{\nu=0}^{n}\binom{n}{v} b_{\nu}(-1)^{v} a_{n-1}=\frac{1}{b_{n}}\{p, q\}
$$

which gives (2.3).
c) By (1.3) we have

$$
\begin{gathered}
\left.\frac{L_{\zeta_{n}}[p(z)]}{p(z)}\right|_{z=\omega}=1-\frac{\left(\zeta_{n}-\omega\right)}{n} \sum_{v=1}^{n} \frac{1}{z_{v}-\omega}=1-\left(\frac{\zeta_{n}-\omega}{\lambda_{n}-\omega}\right), \\
\left.\frac{L_{\zeta_{n-1}} L_{\zeta_{n}}[p(z)]}{L_{\zeta_{n}}[p(z)]}\right|_{z=\omega}=1-\frac{\left(\zeta_{n-1}-\omega\right)}{n-1} \sum_{v=1}^{n-1} \frac{1}{z_{v}^{\prime}-\omega}=1-\left(\frac{\zeta_{n-1}-\omega}{\lambda_{n-1}-\omega}\right), \\
\vdots \\
\left.\frac{L_{\zeta_{k}} \ldots L_{\zeta_{n}}[p(z)]}{L_{\zeta_{k+1}} \ldots L_{\zeta_{n}}[p(z)]}\right|_{z=\infty}=1-\frac{\left(\zeta_{k}-\omega\right)}{k} \sum_{v=1}^{k} \frac{1}{z_{v}^{(n-k)}-\omega}=1-\left(\frac{\zeta_{k}-\omega}{\lambda_{k}-\omega}\right), \\
\left.\frac{L_{\zeta_{1}} \ldots L_{\zeta_{n}}[p(z)]}{L_{\zeta_{2}} \ldots L_{\zeta_{n}}[p(z)]}\right|_{z=\infty}=1-\frac{\left(\zeta_{1}-\omega\right)}{1} \sum_{v=1}^{1} \frac{1}{z_{v}^{(n-1)}-\omega}=1-\left(\frac{\zeta_{1}-\omega}{\lambda_{1}-\omega}\right)
\end{gathered}
$$

where $z_{v}^{(\mu)^{\prime}}{ }_{8}$ are the zeros of $L_{\zeta_{n-\mu}+1} \ldots L_{\varepsilon_{n}}[p(z)]$ (which are in C_{2}) and the $\lambda_{p}^{\prime} s$ are points in C_{2}. Multiplying now these equalities we find

$$
\begin{equation*}
\left.\frac{L_{\zeta_{1}} \ldots L_{\zeta_{n}}[p(z)]}{p(z)}\right|_{z=\omega}=\left(\frac{\zeta_{1}-\lambda_{1}}{\omega-\lambda_{1}}\right) \ldots\left(\frac{\zeta_{n}-\lambda_{n}}{\omega-\lambda_{n}}\right) \tag{4.14}
\end{equation*}
$$

and conclusion (2.4) follows by representation a).
d) Let $\mathbb{S}_{\nu}=\sum z_{\mu_{1}} \ldots z_{\mu_{\nu}}$ and $T_{\nu}=\sum \zeta_{\mu_{1}} \ldots \zeta_{\mu_{\nu}}$ denote the elementary symmetric functions of degree v of the zeros of p and q respectively. The identities

$$
p(z) / a_{n}=\sum_{v=0}^{n}(-1)^{n-v} S_{n-\nu} z^{\nu} \text { and } q(z) / b_{n}=\sum_{v=0}^{n}(-1)^{n-v} T_{n-v} z^{v}
$$

immediately give

$$
\{p, q\} / a_{n} b_{n}=\sum_{v=0}^{n}\left((-1)^{n-\nu} S_{n-\nu} T_{v} /\binom{n}{\nu}\right)
$$

We thus have to show that

$$
\begin{equation*}
\sum_{v=0}^{n}\left((-1)^{n-v} S_{n-v} T_{v} /\binom{n}{v}\right)=\frac{1}{n!} \sum_{\varphi \in S_{n}} \prod_{v=1}^{n}\left(\zeta_{v}-z_{\varphi(v)}\right) \tag{4.15}
\end{equation*}
$$

Since each of these two expressions is symmetric in z_{1}, \ldots, z_{n} and in $\zeta_{1}, \ldots, \zeta_{n}$ it is sufficient to show that the coefficients A_{v}, and B_{v} of

$$
z_{1} z_{2} \ldots z_{p} \zeta_{1} \zeta_{2} \ldots \zeta_{n-v}
$$

in the two sides of (4.15) are equal. In fact, we have: $A_{v}=B_{v}=(-1)^{v} /\binom{n}{v}$ as it is easily verified.

Proof of Theorem 2.2 i) Let $\delta>0$ and suppose that the conclusion is false; that is the sets $z(p)$ and $z(q)$ can be separated by C_{1} and C_{2} satisfying (2.6). By symmetry, we can always suppose that the zeros $\zeta_{1}, \ldots, \zeta_{n}$ of q are all in C_{1} (which we will first take to be a disk centered at ω say) and that the zeros z_{1}, \ldots, z_{n} of p are in C_{2}. If we put $r_{1}=$ radius of C_{1} and $r_{2}=d\left(\omega, C_{2}\right)$ we must have $\delta<r_{2}-r_{1}$.

By representation c) in theorem 2.1, we deduce that:

$$
\begin{aligned}
\left|a_{n}\right|\left|b_{n}\right| \delta^{n}=|\{p, q\}| & =\left|a_{n}\right|\left|b_{n}\right|\left|\frac{z_{1}-\omega}{\lambda_{1}-\omega}\right| \ldots\left|\frac{z_{n}-\omega}{\lambda_{n}-\omega}\right| \cdot\left|\zeta_{1}-\lambda_{1}\right| \ldots\left|\zeta_{n}-\lambda_{n}\right| \\
& \geqslant\left|a_{n}\right|\left|b_{n}\right|\left|z_{1}-\omega\right| \ldots\left|z_{n}-\omega\right|\left(\frac{r_{2}-r_{1}}{r_{2}}\right)^{n} \\
& >\left|a_{n}\right|\left|b_{n}\right|\left|z_{1}-\omega\right| \ldots\left|z_{n}-\omega\right| \frac{\delta^{n}}{r_{2}^{n}} .
\end{aligned}
$$

We thus have

$$
1>\left|z_{1}-\omega\right| \ldots\left|z_{n}-\omega\right| / r_{2}^{n}
$$

from which we get the existence of a $\nu_{0},\left(1 \leqslant v_{0} \leqslant n\right)$ such that $\left|z_{\nu_{0}}-\omega\right|<r_{2}$ which is a contradiction. In the case where C_{1} is a half-plane, an approximation of C_{1} by discs is required.

To show that the result is best possible it is sufficient to look at the polynomials

$$
p(z)=a_{n}\left(z-\sigma_{1}\right)^{n} \text { and } q(z)=b_{n}\left(z-\sigma_{2}\right)^{n}
$$

ii) We use here representation d) of theorem 2.1 which gives

$$
|\{p, q\}|=\left|a_{n}\right|\left|b_{n}\right| \delta^{n} \leqslant\left|a_{n}\right|\left|b_{n}\right|\left(\frac{1}{n!} \sum_{\varphi} \prod_{v=1}^{n}\left|\zeta_{\nu}-z_{\varphi(v)}\right|\right)
$$

from which we can assert the existence of a $\varphi_{0} \in \mathbb{S}_{n}$ such that

$$
\prod_{v=1}^{n}\left|\zeta_{v}-z_{\psi_{0}(\eta)}\right| \geqslant \delta^{n}
$$

and so the existence of v_{0} such that

$$
\left|\zeta_{r_{0}}-z_{\varphi_{0}\left(v_{0}\right)}\right| \geqslant \delta .
$$

The same example as above shows that the result is best possible.
Proof of Theorem 2.3 We need first the following reformulation of the condition of δ-apolarity (see Szegö [6] for the case $\delta=0$). We omit the proof which is easy.

Lemma. Let $l_{0}, l_{1}, \ldots, l_{n} \in \mathbb{C}, l_{n} \neq 0$ be given and let Λ be a linear operator defined on P_{n} which carries $\alpha(z)=\alpha_{0}+a_{1} z+\ldots+a_{n} z^{n}$ into the number

$$
\begin{equation*}
\Lambda(a)=l_{0} \alpha_{n}+l_{1} \alpha_{n-1}+\ldots+l_{n} \alpha_{0} . \tag{4.17}
\end{equation*}
$$

Then the polynomials $\alpha(z)$ and $l(z)=\sum_{v=0}^{n}(-1)^{\nu} l_{p}\binom{n}{v} z^{\prime \prime}$ are δ-apolar if and only if

$$
|\Lambda(\alpha)|=\left|a_{n}\right|\left|l_{n}\right| \delta^{n}
$$

Moreover, the polynomial $l(z)$ can be written in the form

$$
l(z)=\Lambda\left((x-z)^{n}\right)
$$

where $(x-z)^{n}=\beta(x)$ is considered as a polynomial in x.
Now define Λ (for polynomials $q \in P_{n-k}$) by

$$
\begin{aligned}
\Lambda(q)=\int_{0}^{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{k-1}} q\left(\omega_{1}+\left(\omega_{2}-\omega_{1}\right) t_{1}+\ldots+\right. & \left(\omega_{k}-\omega_{k-1}\right) t_{k-1} \\
& \left.+\left(\omega_{0}-\omega_{k}\right) t_{k}\right) d t_{k} \ldots d t_{1} .
\end{aligned}
$$

This expression is trivially linear in the coefficients of q and a formula of Newton [2] gives, for $p \in P_{n}$,

$$
\begin{equation*}
\Lambda\left(\boldsymbol{p}^{(k)}\right)=\left[\omega_{0}, \omega_{1}, \ldots, \omega_{k}\right]_{p} . \tag{4.18}
\end{equation*}
$$

Taking, as in the lemma, the polynomial $l(z)$ (of degree $n-k$) associated with Λ and taking (4.18) into account we get

$$
\begin{equation*}
l(z)=\Lambda(\beta(x))=\Lambda\left((x-z)^{n-k}\right)=\left[\omega_{0}, \omega_{1}, \ldots, \omega_{k}\right]_{r} \tag{4.19}
\end{equation*}
$$

where $r(x)=\frac{(x-z)^{n}}{n^{(k)}}, n^{(k)}=n(n-1) \ldots(n-k+1)$. Now from Lagrange's interpolation formula [2] we have

$$
\begin{align*}
l(z) & =\frac{1}{n^{(k)}} \sum_{v=0}^{k} \frac{\left(\omega_{v}-z\right)^{n}}{\left(\omega_{p}-\omega_{0}\right) \ldots\left(\omega_{p}-\omega_{p-1}\right)\left(\omega_{p}-\omega_{p+1}\right) \ldots\left(\omega_{p}-\omega_{k}\right)} \\
& =(-1)^{n-k} \frac{z^{n-k}}{k!}+\ldots \tag{4.20}
\end{align*}
$$

Since we also have that

$$
\begin{equation*}
p^{(k)}(z)=n^{(k)} z^{n-k}+\ldots \tag{4.21}
\end{equation*}
$$

we conclude by the lemma (with n replaced by $n-k$), (4.18), (4.19), (4.20) and (4.21) that $p^{(k)}(z)$ and $l(z)$ are δ-apolar with

$$
\delta=\left|\frac{\left[\omega_{0}, \ldots, \omega_{k}\right]_{p}}{\binom{n}{k}}\right|^{1 / n-k}
$$

and the result follows by theorem 2.2.
Note that part ii) of theorem 2.2 also gives a conclusion in theorem 2.3.
Proof of Theorem 3.1. This is an immediate consequence of theorem 1.1 if we note that the point $\zeta=0$ is a $\left(\omega_{0}, \ldots, \omega_{n}\right)$-point of p where $\omega_{\nu}=\nu!a_{v}$, $0 \leqslant \nu \leqslant k=n$.

Proof of Theorem 3.2. Under the hypothesis $\theta_{\nu_{0}}+\pi=\theta_{\nu_{1}}$ for two indices ν_{0} and ν_{1}, conclusion

$$
\Omega \subseteq \bigcap_{v=0}^{k-1} K_{\theta_{v}}
$$

gives $\Omega \subseteq K_{\theta_{p_{0}}} \cap K_{\theta_{\nu_{1}}}=K$ since K is convex.
Proof of Theorem 3.3. Conclusion ii) of theorem 1.3 with $p=0$ is merely $\zeta \sum \alpha_{v}=\sum a, z$, which trivially implies ii)*.

Proof of Theorem 3.4. Considering $P(w z)$ where $|w|=1$ we can suppose that the p half-lines issuing from the origin are determined by the $p^{\text {th }}$ roots of unity. The zeros z_{v} of P thus have the form

$$
z_{\nu}=\varrho_{\nu} \exp \left({ }^{2 k \pi i / p}\right), \quad\left(0<\varrho_{\nu}, 0 \leqslant k<p\right)
$$

and ii) of theorem 1.3 gives

$$
\zeta \cdot \sum_{v=1}^{\infty} \alpha_{\nu} \varrho_{v}^{p}=\sum_{v=1}^{\infty} \alpha_{\nu} \varrho_{\nu}^{p} z_{v}
$$

Putting now

$$
\beta_{v}=\alpha_{v} \varrho_{v}^{p} / \sum_{v=1}^{\infty} a_{\nu} \varrho_{v}^{p}
$$

we get

$$
\zeta=\sum_{v=1}^{\infty} \beta_{v} z_{v}, \sum_{v=1}^{\infty} \beta_{v}=1, \beta_{v} \geqslant 0, v=1,2, \ldots
$$

which proves the theorem.

Proof of Theorem 3.5. Let $a \in U^{*}$ then $z[p(z)-a] \cap U=\varphi$.
Let now $\zeta \in U$ and draw a circle centered at ζ which is completely contained in U. Call this circle $D_{e}(\zeta)$ where ϱ is its radius. From (1.3) we conclude that the zeros of the polynomial

$$
\frac{1}{n} \mathscr{L}_{\zeta}[p(z)-a]=p(z)-a-\frac{(z-\zeta)}{n} p^{\prime}(z)
$$

are outside $D_{e}(\zeta)$. That is, for any $z \epsilon D_{e}(\zeta)$ we have

$$
\begin{equation*}
\omega(z)=p(z)-\frac{(z-\zeta)}{n} p^{\prime}(z) \epsilon U^{*} \tag{4.22}
\end{equation*}
$$

Let now ζ_{1} be an arbitrary point in $D_{\mathrm{e}}(\zeta)$. Another application of (1.3) permits us to write

$$
\begin{equation*}
p(z)-\frac{\left(z-\zeta_{1}\right)}{n} p^{\prime}(z)=\omega(z)+\frac{\left(\zeta_{1}-\zeta\right)}{n} p^{\prime}(z) \epsilon U^{*} . \tag{4.23}
\end{equation*}
$$

Since $\omega(z) \epsilon U^{*}$ we must have

$$
\frac{1}{n}\left|\zeta_{1}-\zeta\right|\left|p^{\prime}(z)\right| \leqslant R \text { for exvery } z \in D_{e}(\zeta)
$$

This last relation being true for any $\zeta_{1} \epsilon D_{e}(\zeta)$ we deduce that

$$
\varrho\left|p^{\prime}(z)\right| / n \leqslant R \text { for } z \epsilon D_{e}(\zeta) \subseteq U,
$$

that is

$$
\left|\boldsymbol{p}^{\prime}(z)\right| \leqslant n R / \varrho .
$$

To show that in the case where $U=D$ (the open unit disc) the inequality is best possible it suffices to check that equality occurs for a polynomial of the form $a_{0}+R z^{n}$ for a suitable a_{0}.

Proof of Theorem 3.6. Let $p \in P_{n}$ and $\left[D_{e_{i}}\left(w_{i}\right)\right]_{i=1}^{\infty}$ be a sequence of disks such that for each $i, D_{e_{i}}\left(\omega_{i}\right) \subseteq U$ is a disk of radius ϱ_{i} centered at ω_{i}. We can always assume that $\varrho_{i} \uparrow \infty$ and $\left|\omega_{i}\right| \uparrow \infty$. Theorem 3.5 then gives $\left|\boldsymbol{p}^{\prime}\left(\omega_{\mathfrak{i}}\right)\right| \leqslant n R / \varrho_{i} \downarrow 0$ which means that $p^{\prime}(z) \equiv 0$, that is p is a constant.

Proof of Theorem 3.7. This is trivial since there exists a $z_{0} \in U$ such that $\varrho\left(z_{0}\right)=R$.

Proof of Theorem 3.8. Let $w \in D$ and consider the polynomial q_{ω} defined by

$$
\begin{align*}
q_{\omega}(z) & =\prod_{v=1}^{n}\left(z-\zeta_{\nu} \omega\right) \\
& =z^{n}-\left(\zeta_{1}+\ldots+\zeta_{n}\right) \omega z^{n-1}+\ldots+(-1)^{n} \zeta_{1} \ldots \zeta_{n} \omega^{n} . \tag{4.24}
\end{align*}
$$

We have $z\left(q_{\omega}\right) \subseteq D$. Take $a \notin U$ then $z[p(z)-a] \cap D=\varphi$. From (2.1) we must have

$$
\left\{p(z)-a, q_{\omega}(z)\right\} \neq 0
$$

that is

$$
\begin{equation*}
p_{\varsigma_{1}, \ldots, \zeta_{n}}(\omega) \neq a \tag{4.25}
\end{equation*}
$$

Since this is true for every $\omega \in D$ we must conclude that $p_{\zeta_{1}, \ldots, \delta_{n}}(D)$ excludes every point a excluded by U, which means that $p_{\varsigma_{1}, \ldots, \iota_{n}}: D \rightarrow U$.

Proof of theorem 3.9 Let $p \in U_{n}(S)$ then $D_{\varphi} p \in P_{n-1}$ maps D into C / \mathbb{S} which implies by (3.5) that

$$
\left(D_{\varphi} p\right)_{\varsigma_{1}, \ldots, \zeta_{n-1}}: D \rightarrow C / S
$$

But $\left(D_{\varphi} p\right)_{\zeta_{1} \ldots, \zeta_{n-1}}(z)=D_{\varphi} p\left(\zeta_{1}, \ldots, \zeta_{n-1} ; z\right)$ which means that

$$
p\left(\zeta_{1}, \ldots, \zeta_{n-1} ; z\right) \in U_{n}(S) .
$$

Conclusion (3.9) is a consequence of (3.7) and (3.8) by taking suitable $\zeta_{,}^{\prime} 8$.
This work have been supported by the N.R.C. of Canada.
I am very much indebted to Professor Q.I. Rahman for his various valuable suggestions.

REFERENCES

[1] Bernstein, S., Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mémoite de l'Académie Royale de Belgique (2), vol. 4 (1912), 1-103.
[2] Davis, P. J., Interpolation and Approximation, Blaisdell Publishing Company, Toronto, (1963).
[3] Dieudonné, J., Recherche sur quelques problemes rebatifs aux polynômes et aux fonctions bornées d'une variable complexe, Ann. Ecole Norm. Sup. (3), 48 (1931), 78-81.
[4] Lax, P. D., Proof of a Conjecture of P. Erdōs on the Derivative of a Polynomial, Bull. Amer. Math. Soc., vol. 50 (1944).
[5] Marden, M., Geometry of Polynomials, Amer. Math. Soo., Math. Surveys. No 3, Providence, Rhode Island, (1966).
[6] Szeg ö, G., Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., vol. 13 (1922), 28-55.
[7] Szegö, G., Uber einen Satz, Herrn Serge Bernstein, Schriften der Königsberger Gelehrten Gessellchaft, vol. 22 (1928), 59-70.

Streszczenie

W pracy tej autor otraymuje kilka twierdzeń określających położenie zer wielomianów otrzymanych przez pewne operacje z wielomianu danego,
względnie z dwu danych wielomianów. Wyniki te stanowią uogólnienie klasycznych rezultatów Gaussa-Lucasa, Laguerre'a, Grace i Heawooda.

Резюме

В әтой работе автор получает несколько теорем, определяющих распределение нулей полиномов, которые получены из данного либо из двух данных полиномов с помощью некоторых операций. Эти результаты становят обобщение классических результатов Гаусса--Льукаса, Льагэрра, Греса и Хэавода.

