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Introduction

The theorems of Gauss-Lucas and of Grace have proven themselves
to be of fundamental importance in the theory of the zeros of polynomials.
We study here some extensions of these results together with a variety
of their consequences.

For simplicity of reading we have gathered in section O relevant defi-
nitions and notations which will be used in the text. Sections 1 and 2
contain results of the Gauss-Lucas type and Grace’s type respectively.
Section 3 deals with applications. Section 4 consists in the proofs of all
the theorems.

0. Definitions and notations

Let P denote the set of all complex polynomials and for n >0, P,
denote the set of all complex polynomials of degree n. If pe P, and p(2)
= a,(2—2,) ... (2—2,) we denote by z(p) the set {z,,...,2,} of its zeros.
If a, =1, p is said to be monic. For p, ge P, where

" n

P(2) =Z‘?) a2 and ¢q(?) =2(:') b,z

v=0 b =0

we call the expression
n
0= (=17 () mb.
=0

the apolarity expression for p and ¢. In the situation {p, g} = 0 we
say that p and ¢ are apolar while if |{p, ¢}| = |a,|b,| 6" we shall say
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that p and ¢ are é-apolar. For {¢C (the complex plane) and peP,, £,p
defined by (Z,p)(2) = np(2)— (2—{)p’(2) is the polar derivative of p
with respect to the pole . A point 1¢ € will be called a (w,, w,, ..., w;)
—point of a regular function f if f(1) = wy, f' (1) = wy, ..., f® () = w,.

For g: A - C (where A < € and w,, w,,..., w,eA given, we call the
quantity [w,, w,, ..., w;],, which is defined recursively by [w,], = g(w,),
ooy [wiedy = g(wi)y ooy ([Woy wovy Wiy Jg—[Wyy ey Wi ]p)[(Wo—wy) = [y,

...y W], the (usual) difference quotient of order k of g with respect
to the points w,, w,, ..., w,. If g is regular, the difference quotients always
have a meaning even when two of the ;s are equal (using limiting processes).

For a set § = (, the convex hull of S is denoted as usual by Conv(S)
and if 6 is an angle, we write S, for the set S+ L, where L, is the half-line
{re*|r > 0}, that is, S, is that part of € swept by S when the latter is
carried to oo along a direction making an angle 0 with respect to the
positive real axis. A set C < C is called a circular region, if it consists of
a disk, the exterior of a disk or a half-plane (open or closed). Two sets
Sy, 8, = Care said to be separated by two circular regions C,, C,if 8; = O,
i=1,2 and C,NnC, = ¢. The ‘distance’” d(S,, S,) between the two

gets 8, and 8§, is defined, as usual, by d(S,, 8;) = inf |2;—2,|. Note that
Zitst
this is not a distance in the mathematical sense of the term.

1. On the theorem of Gauss-Lucas
This well known theorem [5] states that
peP = 2(p') < Conv[z(p)]. (1.1)

The result locates the zeros of p’ in terms of the convex hull of the set
of the zeros of p. Using the (w,,w,, ..., w,) — points of p, instead of
the zeros of p’ (i.e., (w,, 0, w,, ..., w,) — points of p) we state the following
generalization of (1.1).

Theorem 1.1 Let pe P,, K = Conv[z(p)] and take w,, w,, ..., w,eC,
where 0 < k < n. Then the set Q2 of all the (w,, wy, ..., w,) — points of p
satisfies

k-1
Q< (N K,,0, = (argw,—argw,,)(mod2x) (1.2)
v=0
in the case wyw, ... w, # 0 and Q2 < K in the case wowy ... w, = 0.

The theorem of Laguerre [5] states that for any polynomial peP,,

we have

(£¢C,z(p) = O] = 2(L,p) = C (1.3)
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where C is a circular region. Now, if we note that as { — oo, the set z(#;p)
tends to the set z(p’) (this is easily seen by looking at the zeros of

(—JC— -?’CP) ) = b (? b 1) ')

which tends uniformly on every compact to p’(z)) we have the qualitative
result that as { becomes large, the zeros of .#,p come near to Conv[z(p)].
In this connection we state the quantitative

Theorem 1.2. Let peP, with z(p) = {#,...,2,} and M = max]|z,|
then for every Aez(Z;p) we have 1

1&l > M-(1+ :—E:f) = d(4, Conv[z(p)]) < 0. (1.4)

Note that when 6| 0 we come back to (1.1). We locate now the set
of zeros of linear combinations of the derivatives of p.

n
Theorem 1.3. Let pe P, and p°(2) = Y a,p")(z) then

rm=(

2(p*) < N {(z(»)+ 0)|C 2 2(n)} (1.5)

n
where n(z) = Y n"a, 2" and C ranges over the circular regions containing

y=0

z(n). The symbol n'® denotes, as usual, the product n(n—1)... (n—k41).
In the case ay =0,a, =1,a; =... =a, =0 we come back to 1.1
as easily seen since z(n) = {0, oo} in this case because n(z) = n!z""' 02".
We close this section by giving an extension of (1.1) for Weierstrass’
canonical products.

Theorem 1.4. Lei

P ﬁl . s i(z)=+ +1 4 (1.6)
2) = — —] exp |— — oo +—— i
) » 1 z' e ] z' + z' p z’
be a canonical product of genus p. Then the zeros ¢ of P’ satisfy

1) =0

or

o oo
i) £+ X a,2? = Y a,2°*' for a non-trivial sequence of nonm-negative

ye=] Y]

numbers «,.
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2. On the theorem of Grace

This result [5] reads as follows: given p, qeP, then
{p,q} =0 =[2(p) < C1,2(q) < O, = C, N C; # @] (2.1)

where C, and C, are circular regions, That is to say, the sets z(p) and 2(q)
cannot be separated by two circular regions when p and ¢ are apolar.

We give first a representation theorem for the apolarity condition
which will be useful for this section.

Theorem 2.1. The following representations for {p, q} are valid
M N

a) If p(2) = Z;a.(z—a.)" and q(z) = X B.(z—7,)" then

{p ¢ q}= Z ﬂrﬁn(’}p_ 0’,}” (2‘2)
b) Let p(2) = g”;(:) a,? and q(z) = é(:) b,2” then
{py 4} =bpLy... L, [p(2)] (2.3)

1
where L, = — %, and the [, are the zeros of q.
14 » r

¢) Let 2,....,2, and ¢, ..., L, be the zeros of p and q respectively and
C,, C, be two disjoint circular regions such that {{;, ..., {,} S Cy,y {21y -+oy 2,}
< C;. Moreover suppose that C, i3 a disc with center w. Then H 4, ..., 4,¢C,
such that

(010 = dda o pt) e[ =t i) @)

o—12, o T

d) If p(2) = a,(2—2) ... (2—2,), ¢(2) = by(2—&y) ... (2—C;) then

ﬂnb” v »
w =2 hs;]_] (R (2.5)

where 8, i8 the symmetric group of order n.

Observe that representation (2.3) immediately imply (2.1) if one
takes (1.3) into account.

We will use parts ¢) and d) of theorem 2.1 to prove

Theorem 2.2 If p and q are S-apolar then
1) The sets of their zeros are not too far from each other. More precisely,
z(p) and z(q) cannot be separated by two circular regions C, and C, such that

d(Cy, C,) > 6. (2.6)
The result is best possible.
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it) Their respective zeros are nmot uniformly too nmear. More precisely,
Uz, e2(p), H{,e2(q) such that d(z,,,) = . 2.7
The result is best possible.

This result thus extends (2.1) in two directions in the context of
d-apolar polynomials.

Grace, Heawood and Szegd (6] have proved the following generali-
zation of Rolle’s theorem.

Theorem Let pe P, be such that p(—1) = p(1) then p’ possesses a zero
in every circle passing through + icot x/n and in the two half-planes Rez > 0
and Rez < 0.

Using the notation of difference-quotients, the hypothesis p(—1)
= p(1) can be written [—1, 1], = 0 and this theorem gives a conclusion
on 2(p’). Using general difference-quotients of order k¥ we draw now con-
clusions on z(p™) without even assuming that the difference-quotients
vanish.

Theorem 2.3. Let w,, w,, ..., w,e€C and peP, be monic. Then

1

[@oy ey W]y |PF

n
)
for every circular region C containing all the zeros of the polynomial (of
degree n— k)

afz(e™), €) < (2.8)

k
T ((D,— Z)”

(2.9)

ég‘ (0,— o) (0, — ®y) ... (0,— ©,_)) (0,— ©,;,) ... (0,— @)

This concludes section 2.

3. Applications

1- We start with a few simple consequences of theorems 1.1 and 1.4.

n
Theorem 3.1 If pe P, where p(2) = 3 a,2" is such that two of its successive

v=0

coefficients a0, a, 4, satisfy
|arga, —arga, .| < 7/2 (3.1)

then the open right half-plane cannot contain the whole set z(p).
Condition (3.1) can be thought as a condition stating that the argu-
ments of the coefficients of p do not oscillate too much.
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Theorem 3.2 If, in theorem 1.1, we have 6,,+ 7 = 0, for two indices
v, and v, then 2 < Conv[z(p)].

This theorem says that for a much wider class of points than z(p’),
a conclusion of type (1.1) still holds.

Theorem 3.3 If, in theorem 1.4, we have p =0 then conclusion i) can be
writlen as

ii)* teConv {2, 2,, ...}.
This is the known extension of (1.1) given in [5].

Theorem 3.4 If, in theorem 1.4, all the z, s are situaied on p half-rays
i8suing from the origin and separated by equal angles then it) can be written
as 11)* as above.

Combined utilizations of theorems 1.1, 1.2, 1.3 and 1.4 give rise to
a wide class of related results of the type just mentioned.

2- When the polynomials p and ¢ are written in the form

p(2) = Y ap(:) and g(2) = 3 B0.(2)
v=0 ?=0
where the ¢, s form a basis for the vector space P, , the apolarity expression
takes (by bilinearity) the form

p,g} =2 D wnab, (3.2)

ym0 =0

where the w,,s depend only on {g}l , Thus theorem 2.2 permits us
to draw conclusions about z(p) in terms of the a,s8 when ¢ and z(q) are
known.

We give now a theorem which generalizes well-known theorems of
S. Bernstein [1], P.D. Lax [4] and G. Szegd [7] about estimations for
|p’(2)|. Let U and U* = € be open sets then

Theorem 3.5 If pe P, maps U into U* VzeU,
Ip’(2)] < nR/[e(2) (33)

where R is the supremum of the radii of all circles contained in U* and o(z)
18 the supremum of the radii of all the circles contained in U and containing z.
The result is best possible when U is the open unit disk D.

The cases U =D,U* =D,U = D, U* = D\{0} and U =D, U"*
= {2] |Rez| < 1} give Bernstein’s, Lax’s and Szegd’s results respectively
as it is immediately seen.

Other applications of this result are, for example,
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Theorem 3.6 If U contains arbitrarily large disks while U* does mot
and peP maps U into U* then p must be a constant.

For example, this simple theorem says that p cannot map an infinite
sector into an infinite strip without being constant. This is in any case
rather obvious.

Theorem 3.7 If pe P, maps U into U then Hz,eU such that

1P’ (20)| < m. (3.4)

3- Let pe P, be mapping the open unit disk D into a given set U.
The following theorem permits us to find from it a n-parameters family
of polynomials p;, ..., {, doing the same.

Theorem 3.8 Let pe P, be mapping D into U then for any choice of
L1y ++y CneD, the polynomial p; , ..., L, given by

(&, + ﬂ +Ca)2 +a, (8182t ---I:‘ o S +
(1) (2J

$5 i Dl

n
()
also maps D into U.
One immediate consequence of this result is that VieD, ay+a,ieU
which generalizes the fact that, when U = D, we have [a,|+ |a,| < 1.
Let now %, denote the class of normalized univalent polynomials of
degree n, [3]. It is well-known (this is Dieudonné’s criterion [3]) that
for a normalized polynomial p(z) = z+ay22+ ... +a,2, we have
Pe¥, <> Vpe[0, /2], (D,p)(2) # 0 in D where D,p denotes the Dieu-
donné’s derivative of p with respect to ¢ defined by

Py,,....0,(2) = Ao+ ay

RLESA (3.5)

p'(2) if ¢ =0,
(Dep)(@)=) \1_ sin,, 771 if ¢ #0. (3.6)
l ey SH

. ym]

For each set S containing the origin, we define the class #,(S) < %,

of normalized univalent polynomials of type 8 by pe#,(S) < p is nor-
L W

?], D,p: D —>C\8. (3.7)

The previous theorem gives the following variational formula for
U, (8).

malized and Ve [0,
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Theorem 3.9 If peU,(8) and &y, ..., L, €D then

(ot 2o £dpa) RTINS +a,,—c""c —L 2" (3.8)
n—1 n—1
(") (:5)
also belongs to #,(8) where p(2) = 2+ a,2*4 ... +a,2".
We immediately infer from this that if 2+ ... 4+ a,2"e%,(S) then

P(lryeeeylnoy; 2) =2+ @,

1,
|a,| <— inf|z—1] (3.9)
N 2eS

and the estimate is best possible.
4. Proofs

Proof of Theorem 1.1 The case where w, ... w;, = 0 being an immediate
consequence of (1.1) we need only to look at the case w,...w, # 0. Let
L eQ then { being a (w,, ..., w,) - point of p it is, in particular, a (w,, w,) -

which can be written as

-point of p and the relation p’({) = p({) S

re] »

N (t—2)[1t—2|2 = (w;/w,)

ve=1

implies that

¢ = ((wnfw0) + 2 a2)/ 2 a, (4.1)

where a, = 1/|(—2,|2,» = 1,...,n. That is
C€L00+K = Koo. (4.2)

The point ¢ being also a (w,,w,,,) - point of p® for 1< »r<k—1
we similarly deduce that

CeLy, +K®, v =1,...,k—1 (4.3)

where K = Conv[p”] < K by (1.1).
We thus have

leLy+K =Ko ,v=1,...,k—1 (4.4)
and (4.2) together with (4.4) gives.the desired conclusion
k-1
leN K,,.

ve=0

Proof of Theorem 1.2 We have (L;p)(2) = p(2) 2“7 (C—=2,)/(z—2,). Let
r=]

2ye2(Z,p). If 2z, = 2, for some », there is nothing to prove, so we suppose
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that z, # 2, for every » and we can write ) ({—2,)/(z,—2,) = 0 and obtain
that

- (Zo—2) lza— 212 = Y (Be—2)2,] 20— 2. (4.5)

Putting a, = (1/[20—2, |2)/Z(1/lzo—z,,l v =1,...,n we get from
(4.5) that

¢ = (2 382~ Blal) [(z— 3B.2), (4.6)

where 8, = a,[Zu#, v=1,...,7n
M

Suppose now that d(z,, Conv[z(p)]) = é. Since we have J'B,2,¢Conv
[2(p)] we obtain from (4.6)

181 < (120l | 3 8% 1212) /| 20— X 82| < 1201 M /| 20— 3 o2, |+ 2)0.
(4.7

Let us now show that
120l / | 20— 3 B2 | < (M + 8)]6. (4.8)

If |2| < M + 6 this is immediate and if |z,| > M+ & we have | z,—
= 20| — | Y B.2,| = |2/—a, say, where 0 < a< M. Consequently,

”O_E ﬂ,Z,l < (20l [(12o] — @) < (M + 8) (M + 8—a) < (M + 6)/8

because the maximum of the functions t/(t— a) for te[ M+ 8, co) occurs
at ¢t = M+ 4. Relation (4.8) thus holds and combined use of (4.7) and
(4.8) then gives

16 < M-(1+2M/0) (4.9)
which contradicts the hypothesis of the theorem.

Proof of Theorem 1.3 To prove this result, we refer to the Grace’s
apolarity theorem (2.1). For each weC, define p, e P, by

. )
poe) = pleta) = 32

n
and put q(z) = 2 (—1)""n(”")a,,_,z',

Y ()

By a simple calculation we find that {p,, q} = p*(w). Now wez(p®)
<> {Pa, g) = 0 and if C is a circular region containing z(g) then, by (2.1),
we have that @, such that z,,—weC, that is "y, such that wez, —C
which implies that wez(p)—C. ‘We can thus write 2(p*) s Z(P)—C and
putting n(z) = (—1)"¢(—2) we finally find that

z(n) < C < 2(p*) < z(p)+C

which implies (1.5).
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Proof of Theorem 1.4 Suppose that the trivial case i) does not occur.
If { =2, for a certain », we have only to take the sequence {a,} where
a,, =1 and a, = 0 for » # », and conclusion ii) holds. If for every »
¢ # 2, we have
@2y (—1,)

Izvlzp lg_ zvlz

0 = P'(Q)PG) = ) (Cla)flt—a)= D)

which implies that
% (£—3)

2" |E— 2|
v=1

(4.10)

Equality (4.10) immediately leads to

[o¢) [o.¢]
Tl
5 Y #laP Il = D) 2 |zP [t — 2,8

v=1 r==1
and conclusion ii) follows by putting e, = 1/|2,|*?|{—z,|2.

Proof of Theorem 2.1 a) Let =,(2) = (2—o)" and =,(2) = (2— 7)" then
{71, 7y} = (p— o) a8 is easily verified. Equality (2.2) then follows from
the bilinearity of {p, q}.

b) We have p(z) = 3 (f] 0,7 = a, [ (e—2) and q(z) = ¥ (:‘) b2
=b,[](z—¢,).

p=a]

Write now (as we can always do) the polynomial p in the form

o
-

N

p(e)=D ,(z—4,)" (4.12)

p=1
where @,, 4, and N are suitable constants. We immediately have:

N

D ol =(—1a,,, v=0,1...,0. ’ (4.13)
Ji==]
Moreover,
3
L, [p(2)] = 2 0 (Cn— A (E—24,)"*,
N
L, L [p(2)] = 0,(tn—A)(Eaa— A (e— 4,2,
pu=1

N

Ly I [p(2)] = ) 0,(Ea— A on (Gi— 4)-

p=1
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That is
N N n
{==1)" (—”l)" n )
Ly o L, @) = - Zwﬂquﬂ) i Zw“Z(‘_)b,}.“
p=1 u=1 y=0
(—1" 1(n), N, 5
N\ < ._.e('*) ey CeH
i V=0 p=1

and this is equal by (4.13) to

S

y=0

which gives (2.3).
¢) By (1.3) we have

L, [p(2)] (it g Vi ek s t—ow
p(2) il e n % 2,—w —1_(1“—w)’
L;”_‘Lc“[p(z)] . (Ca1— ) "gﬁ 1 _1_(C —1"“’)
L 2@] |ea = w1 &z—o =\ ,—o)
L, ... L [p()] (A Y g _(Ck—w)
L=, i k ﬁ 2N _ o o Mh—ow]’

Leyyy - L [9(2)]

Le oo Ly [p(2)]
L2 Lcn[p(z)]

(GLi—e) N1 (h—e
T2y )

S @ =]

v

where 2{*'s are the zeros of L, ,,, - L [p(2)] (which are in C,) and
the 4,2 are points in C,. Multlplylng now these equalities we find

Ly, ... Iy [p(2)] =(cl—zl)._.(cn—ln) (4.14)

P (2)

w— A o— A,

and conclusion (2.4) follows by repreqentation a).

d) Let 8, = _22 VR and tF, = Z’¢ .. £,, denote the elementary
symmetric functlons of degree v of the zeros of p and ¢ respectively. The
identities

p(R)ay, = 3 (—1)"8,_ 2 and q()/by = D) (—1)""T, .2

ye=( ve=(
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immediately give

(#s afantn = X (- 208,02,/ (7).

re=()

We thus have to show that

Slevrten /()% S[[es 0

Since each of these two expressions is symmetrlc in 2y,...,2, and
in {y,...,¢, it is sufficient to show that the coefficients 4, and B, of

2129 oo 2y 018y -0 o081

in the two sides of (4.15) are equal. In fact, we have: 4, = B, = (— 1)"/(:)
ag it is easily verified.

Proof of Theorem 2.2 i) Let 4 >0 and suppose that the conclusion
is false; that is the sets z(p) and z(g) can be separated by ', and C, satis-
fying (2.6). By symmetry, we can always suppose that the zeros {,, ..., {,
of ¢ are all in €, (which we will first take to be a disk centered at  say)
and that the zeros z,,...,2, of p are in C,. If we put », = radius of C,
and ry = d(w, C,) we must have é < ry—r,.

By representation ¢) in theorem 2.1, we deduce that:

2,—

|anlba] 0" = [{P, a}] = |aa]]by] B[S St R (S

l_wl

A,—ow

re— 7 \"
> |ay| byl [23— ] ... tz,.—ml( = )

2
n

> lan‘ Ibnl lzl_ wl 900 lzn_ wl F'
2

We thus have
1> (73— o...|2,— o|/r}

from which we get the existence of a »y, (1 < #, < n) such that |z, —w| < 7,
which is a contradiction. In the case where C, is a half-plane, an approxi-
mation of C, by discs is required.
To show that the result is best possible it is sufficient to look at the
polynomials
P(2) = a,(2—0,)" and ¢(2) = b,(2— a3)".

ii) We use here representation d) of theorem 2.1 which gives

[(p) ) = lagl1b,] 8" < Ia,.llbnl( Z[]lc w(.)l)

ve=1
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from which we can assert the existence of a g,eS, such that

” |Cr_':¢n[r]I :/) 4

ym=]
and so the existence of », such that
JCvo_- zﬂpu(ru]] :3 a

The same example as above shows that the result is best possible.

Proof of Theorem 2.3 We need first the following reformulation of the
condition of 3-apolarity (see Szegé [6] for the case 4 = 0). We omit the
proof which is easy.

Lemma. Let 1y, 1,,...,1,eC, I, + 0 be given and let A be a linear operator
defined on P, which carries a(z) = ay+ a;2+ ... +a,2" into the number

A(a) = lLa,+ a1+ ... +1,a,. (4.17)

Then the polynomials a(z) and l(z) = Y (— 1)1 ( )z are d-apolar if and
only if <
[A(a)] = |a,] L] 8™
Moreover, the polynomial 1(z) can be written in the form
l(2) = A((z—2)")
where (x—z)" = B(x) i8 considered as a polynomial in .
Now define ‘4 (for polynomials qeP,_,) by
a0
A(g) = fJ . J 9(w1+(wz o)+ oo F(0p— @) by
+ (wo’— wk) tk) dtk .o dt]_.
This expression is trivially linear in the coefficients of ¢ and a formula
of Newton [2] gives, for peP,,

APW) = [wy 0y, oevy W] (4.18)

Taking, as in the lemma, the polynomial I(z) (of degree n — k) associated
Wwith A and taking (4.18) into account we get

l(z) = A(ﬁ(w)) = A((w_z)n-k) = [woy @1y «vvy iy (4.19)
where r(z) = —(m_‘—,:), n® =n(mn—1)...(n—k+1). Now from Lagran-
n
ge’s interpolation formula [2] we have
k
1 (m — _:]n
l(z v
)= m ‘Z (0, — @) +vr (0,— 0, 1) (0,— ©,41) - (0, — )
zn—k

= (_l)n—k P + — (4.20)

2 — Annales
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Since we also have that
p®(z) = n®n—k4 . (4.21)

we conclude by the lemma (with n replaced by n— k), (4.18), (4.19), (4.20)
and (4.21) that p*)(2) and I(2) are d8-apolar with

—k
Lwo, ey @]y 1in

H

and the result follows by theorem 2.2.
Note that part ii) of theorem 2.2 also gives a conclusion in theorem 2.3.

6=

Proof of Theorem 3.1. This is an immediate consequence of theorem 1.1
if we note that the point { = 0is a (w,, ..., w,)-point of p where o, = »!a,,
0<rvr<k =n.

Proof of Theorem 3.2. Under the hypothesis 0,o+n = 0,1 for two

indices », and v,, conclusion
k—1
Qc NK,

(Y]

ives Q< K, nK = K since K is convex.
0' 0'
0 1

Proof of Theorem 3.3. Conclusion ii) of theorem 1.3 with p = 0 is merely
£Y a, = Y a,2, which trivially implies ii)*.

Proof of Theorem 3.4. Considering P (wz) where |{w| = 1 we can suppose
that the p half-lines issuing from the origin are determined by the p‘
roots of unity. The zeros z, of P thus have the form

z, = g,exp(*™?),  (0< ,,0< k< p)

and ii) of theorem 1.3 gives

o0 o0
|

¢ Nagl = Y adbz.
rv=] r=1

Putting now

_ P " p
ﬂv _ avev/‘j_i @, 0,
we get
¢=§ﬁ~=--§ﬁ- =1,5=0,» =1;2,...
1

= y=1

which proves the theorem.
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Proof of Theorem 3.5. Let acU* then z[p(z)—a]ln U = ¢.

Let now {eU and draw a circle centered at { which is completely
contained in U. Call this circle D,({) where g is its radius. From (1.3)
we conclude that the zeros of the polynomial

1

— #[p()—a] = p(s)—a—
are outside D,({). That is, for any zeD,({) we have
(z— C)

w(z) = p(z)— p'(2)eU"* (4.22)

Let now ¢, be an arbitrary point in D,({). Another application of
(1.3) permits us to write

pe= = @) = oot By @)

Since w(z)e U* we must have
1 ’
- [£,—C[[p"(2)] < R for exvery zeD,(Z).

This last relation being true for any (,¢D,(l) we deduce that

elp’'(2)|/n < B for zeD,({)
that is

P’ (2) < nR]g.

To show that in the case where U = D (the open unit disc) the ine-
quality is best possible it suffices to check that equality occurs for a poly-
nomial of the form a,+ R2" for a suitable a,.

Proof of Theorem 3.6. Let peP, and [D,(w;)]2, be a sequence
of disks such that for each ¢, D, (w;) = U is a disk of radius g; centered
at w;. We can always assume that p; 1 co and |w;| 1 co. Theorem 3.5 then
gives [p’(w;)| < nR/p; | 0 which means that p’(z) == 0, that is p is a constant.

Proof of Theorem 3.7. This is trivial since there exists a 2,¢ U such that
0(z) = R

Proof of Theorem 3.8. Let we D and consider the polynomial ¢, defined
by

0u(2) =[] (z—t,0)

re=)

2P o= (Dybbaronpel Bl T 4, 4 = ). o G aatoi(4.24)
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We have z(q,) = D. Take a¢U then z[p(z)—a] N D = ¢. From (2.1)
we must have

{p(2)—a, q,(2)} # 0
that is

P,...t, (@) # a. (4.25)

Since this is true for every w e D we must conclude that p, . (D)excludes
every point a excluded by U, which means that Pyt D~ U

Proof of theorem 3.9 Let peU,(S) then D peP, , maps D into C/8
which implies by (3.5) that

(DgP)ty, ..ty s D —C[8.

But (pr)cl____.cn_l(z) = D,p(lyy ...y {u_1; 2) which means that
Pluy s baor; DeU(S).

Conclusion (3.9) is a consequence of (3.7) and (3.8) by taking suitable ,s.

This work have been supported by the N.R.C. of Canada.
I am very much indebted to Professor Q.I. Rahman for his various
valuable suggestions.
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Streszczenie

W pracy tej autor otrzymuje kilka twierdzen okreflajacych polozenie
zer wielomianéw otrzymanych przez pewne operacje z wielomianu danego,
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wzglednie z dwu danych wielomianéw. Wyniki te stanowig uogélnienie
klasycznych rezultatéw Gaussa-Lucasa, Laguerre’a, Grace i Heawooda.

Pesiome

B aroit pa6ore aBTOp moiy4aer HEeCKOJbKO TeopeM, ONpeRenfiomux
pacnpefelieHMe HyJeil IOJMHOMOB, KOTOpBIE IOJIy4eHR M3 JaHHoOro jau6o
M3 [BYX [IAHHBIX IIOJMHOMOB C IIOMOIIbIO HEKOTOPHIX omepauuil. ITH
pe3yabTaThl CTAHOBAT o006o0GlleHMe KilacCMYeCKMX peayabsraToB Iaycca-
-JIpyraca, JIbarappa, I'peca u Xoaagsopa.






