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1. Introduction

Let 8 be the class of functions f(z) = 2+ a,2? ... regular and uni-
valent in the unit disc K, = {z: 2| < 1} and let 8* be the subclass of
functions starlike with respect to the origin. It is well known that f(2)
= 24 a,2%+... belongs to 8* if and only if

(1.1) re{zf'(2)/f(2)} > 0 for all zeK,.

A few years ago M. S. Robertson [3] introduced a subclass of S
consisting of functions f(2) = 2+ a,22+... which satisfy the condition

(1.2) re{zf'(2)[f(z)—f(—2)]"'} > 0 for all zeK,.

Such functions will be called here starlike with respect to symmetric
points and the corresponding subeclass of S will be denoted by S**.

It is easy to see that feS** implies geS®® where g(z) = —f(—2).
In fact, let P denote the class of functions p(z) = 1+ ¢,2+... regular
in K, and such that rep(z) > 0 in K,. Then the condition (1.2) can be
written in the form

(1.3) ey (20
f(2)—f(—2)

Putting — 2 instead of z in (1.3) we obtain

=p(2) peP.

(1.4) 2(—2) _ _ 24'(2)
f@)—=f(—=2)  g(2)—g(—2)

which means that geS**,

= p(—2)
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From (1.3) and (1.4) it follows that h = 4(f+g) satisfies (1.1) which
means that heS*.

Let L, be the class of functions f(2) = 2z @,2%-+... regular in K,
and such that there exists a normalized convex mapping of K,, say
P(3) = 24-by2% +..., for which re{f'(2)/®'(2)} >0 in K,. As pointed
out in [2], L, is a proper subelass of the class L of close —to — convex

functions. From heS8* it follows that @(2) = [ ¢~ 'h()dS is a normalized
0

eonvex mapping of K,. The condition (1.3) implies that re {f'(2)/®'(2)} > 0
which means that 8** c L,.

In this paper we find the structural formula for feS8** (Theorem 1)
and give a slight generalization of a theorem of Robertson (Theorem 2).
We also find a counterpart of Theorem 2 for spiral — like functions
introduced by L. Spatek [4] (Theorem 3.)

2. Structural formula for feS**

We now derive a structural formula for functions of the class S°**
expressing any feS8** in terms of peP. We have

Theorem 1. The function f(z) belongs to the class 8** if and only if there
éxists a function peP such that
(2.1) Jf(z) = fzf’("l)lexpif”[P(C)wLP(—C)—"]C_ld’“‘ d.

e B |

Proof. We first prove the necessity of (2.1). Suppose feS**. Then,

from (1.2) it follows that

(2.2) 24 (2)[f(2)—f(—2)]" = p(2)
where peP. Putting —z in (2.2) we obtain
(2.3) 24" (—2)[f(A—f(—2)]7' = p(—2).

It follows from (2.2) and (2.3) that
@& (—2) =p(2)/p(—2).

Hence
(24) f'(—=2) =p(—2)f(2)[p(2).
On the other hand, we have from (2.2):
—f(—=2) = 24" (2)—f(2)p(2)]/p(2)
and the differentiation of both sides yields

(2.5) f(—=2) = [p(2)]*[22pf" + 2pf' — 22p"f'— p*f’].
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Comparing (2.4) and (2.5) we obtain easily

"(2) p'(2)
flo) q(2) {—
where
(2.6) q(2) = — [p(2) + p(—2)—2]"".

?
This gives after a repeated integration the structural formula (2.1).

Sufficiency. Obviously f{z) as given by the formula (2.1) is regular
in ', and has an expansions z-+ a,22+ ... near the origin. Hence it is
sufficient to verify that f'(z) # 0 and (1.2) holds. We first prove the
identity

2 L] n
2.7  2zexpl [q(@)dl] = [[p(n)+p(—m)lexp{[q(O)d}dy
[} 0
where ¢(z) i8 defined by (2.6). Obviously, both sides are regular in K,
and vanish at the origin. Morcover, after differentiation of the left-hand
side of (2.7) w.r.t. z and substituting 5 for z, we obtain the integrand of the

right hand side. This proves the identity (2.7).
From (2.1) we easily obtain

(2.8) ['(2) = p(z exp{fq(C)d*}

and this means that f'(2) # 0 in K,. Moreover,

(2.9) —f(—2) = fp(—n){uqu(i )dl}dy).

By addition it follows from (2.1) and (2.9) that

(2.10) J(2)—f(—2) = f[P(n)+P {ekaQ(C)dC}dﬂ
Using (2.7), (2.8) and (2.10) we finally obtain

F(2)—f(—2) = 22f'(2)[p(2).
This proves the sufficiency of (2.1).

3. An extension of Robertson's lemma and its applications

M. S. Robertson has given in [3] a sufficient condition that a function
f(z) should belong to the class 8**. This condition was stated in terms
of subordination. In what follows the symbol f(z) 3, F(z) means that
fis subordinate to F in the disc K, = {2: [2| < r},i.e. there exists a function
o(2) regular in K,, such that ©(0) = 0, [0(z)| < r and f(2) = F(w(?))
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in K,. We shall prove that Robertson’s condition after a slight modifica-
tion is also necessary. For the proof we need Lemma 2 which can be
proved by using a result due to Robertson [3] which is quoted
here as

Lemma 1. Suppose w(z,t) = D b,(t)2" is regqular as a function of
Nl

zel | for each te (0, 1). Suppose moreover, that w(z, 0) = z and |w(z,t)| < 1
for any zeK, and te(0, 1). If the limit

w(z,t)—z

lim ——— = w(?)

ot 2t°

exists for some o > 0, then rew(z) < 0 in K,. If w(z) i8 reqular in K, and
rew(0) # 0, then rew(z) <0 in K,.

Using this Lemma we shall prove

Lemma 2. Suppose F(z,t) is reqular in K, for each te (0, 6), F(z,0)
= f(2),fe8, and F(0,1) = 0 for each te(0, 6)>. Suppose moreover, that
for each re(0,1) there exists 6(r)e(0, d) such that for any te(0, 6(r)) we
have F(z,t) 3, f(z) and the limit

L P01
t>ot 2t°

F(2)

exists for some o > 0.

Then re{F(2)|f'(2)} € 0 in K,. If F(z) is reqular in K, and re F(0) +# 0
then re{F(2)/f'(2)} <0 in K,.

Proof. It follows from our assumptions that there exists for any
re(0, 1) a function w(z, t), regular in K, for each t¢(0, (r)> which satisfies
the following conditions: w(z,0) =2z, w(0,t) =0 for all te(0, 6(r));
lo(z,t)| < r and F(z,t) = f(w(z,t)) for zeK, and te(0, 6(r)). Moreover,
Lli)m w(z,t) = 2z = w(z, 0). Consider now

+

F(z,)—f(z) _ o flo(z, ) —f(o(z, 0))
21° ] °

F(z) =lim
04 2l

04

We may assume that 4(r) is so small that for each te(0, 4(r)> we have
F(z,1) # f(2). Otherwise F(z) = 0 and there is nothing to prove. If
F(z,t) # f(z) for any te(0, 6(r)> then w(z,t) # z, hence by Schwarz’s
Lemma |w(z, )| < |o(z, 0)] for z +# 0 and we can write

_F(i‘.') — lim f(w(‘?? t)) _f(m(:! 0)) lim “')(z, t)—w(z, 0) i
ot o(z,t)—w(z,0) ot )
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The first limit exists and so does the second limit. Thus Lemma 1
which is applied to the function w(l, ) = r-*ew(r{, 6(r)t), LeK,, T€(0, 1)
we see, that

rew(z) = re lim A% s e O <0
tot ot

for zeK,. Hence re{F(z)/f'(2)} < 0 in K,. Since r can be an arbitrary
number of (0, 1), we have re{F(z)/f'(2)} <0 in K,. If re F(0) + 0 then
re{F(0)/f'(0)} =reF(0) < 0. If F is regular and f'(z) -# 0 then re{F(z)/
/f’ (2)} is harmonic and by the maximum principle re {¥(2)/f'(2)} < 0in K,.

Now we are able to prove

Theorem 2. A necessary and sufficient condition that feS** is that
for any re(0,1) there should exist d(r) > 0 such that for each te(0, o(r))
we have

(L—=0f(2) +1f(—2) 3, f(2).

Proof. Sufficiency. We apply Lemma 2 with p =1 and F(z,1)
= (1—1)f(2) + tf(—2). Then

F(2) = i{om (2t) 7 [F (2, ) —f(2)] = —27Y(f(2)—f(—2)).

By Lemma 2 we have

re‘_(zf'(z))—l(f(z)_f(_z))l <07 z‘KU
and this implies (1.2).

Necessity. Consider v(z,1) = re{eF,(z,1)/Fi(z,1)} = re{—2|f (2)—
—Yf' (2)—f' (—2))|(f(2) —f(—2)]-}. Since fe$**, we have wv(z,0)<0
in K,. By the maximum principle for harmonic functions we have

v(2,0) < —e(r) <0 in K,.
By continuity of »(z,t) with respect to ¢ we can find a positive d4(r)
1
such that v(z,t) < 2 e(r) < 0 for each te(0, 6(r)) and each zeK,. Now,

by a result of Bielecki and Lewandowski [1], the inequality re{zF, x
X (z, t)|Fy(z,1)} < 0, ze K,, means that the image of K, under F(z,1)
shrinks with increasing t. Therefore F(z,t) 3, F(z,0) = f(z) and this
proves the necessity.

Let now S be the class of spiral-like functions (cf. [5]), i.e. the class

of functions f(z) = 2+ a,2?+ ... regular in K, and such that for some
ae(—;,%) we have ref{e “zf'(z)/f(2)} > 0 in K,. Z. Lewandowski [3]
has given necessary and sufficient conditions that f should belong to the
class § in terms of an incquality between the absolute values of certain



58 Jan Stankiewicz

expressions involving f. We can give another characterization of the class
S which is an analogue of the characterization of the class 8** as stated
in Theorem 2.

Theorem 3. A necessary and sufficient condition that a function f(z)
= 2+ a,2%+ ... reqular in I{, should belong to the class S is that there should

L 2 A
erist a real number ae(—?,‘—) ] and a positive function o(r) defined

in (0, 1) such that for any te(0, o(r)) we have

(1—t6")f(2) 3,f(2).

The proof of Theorem 3 is a repetition of the proof of Theorem 2.
We have only to change auxiliary function #(z, t) which should now be
chosen as (1—te')f(z).
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Streszczenie

Niech 8 oznacza klase¢ funkeji f(2) = 2+ a,224-... holomorficznych
i jednolistnych w kole I{,. Przez P oznaczmy klase funkeji p(z) = 1-+
+¢,2+ ... holomorficznych w kole K, i takich, ze Rep(z) >0 w K,.
Funkcja f(2) = 2+ a,2¢ ... nalezy do klasy S*° jezeli spelia waru-
nek (1.2).

W pracy tej dowodz¢ wzoru strukturalnego (2.1) dla funkeji feS**.
Wzor ten pozwala kazdej funkeji klasy P przyporzadkowaé pewns funkcje
klasy S*°.

W dalszej czesci pracy dowodze Lematu 2, ktory jest uogodlnieniem
Twierdzenia B z pracy M. S. Robertsona [4]. W oparciu o Lemat 2 podaje
w terminach podporzadkowania obszarowego warunki konieczne i wy-
starczajace aby funkcja nalezala do klasy 8** (Twierdzenie 2) wzglednie
do klasy a — spiralnych (Twierdzenie 3).



HekoTophle 3aMeTKH 0 3Be3AHHX QPHKLUMUAX OTHOCUTENBHO CUMMETPUYECKUX Touek D9

PesomMme

IMycts 8 o6Go3navaer knacc QyHkuuit f(z) = 2+ a,2?+ ... ronoMophHbIx
H OJHOJMCTHBIX B kpyre I ;. O6o3HayuM yepe3 P knacc pyHkuuit p(2) =1+ ¢,2+
+ ... rosoMoppHeix B kpyre I, u Takux, rae Rep(z) > 0 B K,. ®PyHkuus
f(2) = 2+ a,2?4... npunaanexut k knaccy S**, ecau Benoauser ycnosue (1.2).

B paGoTe noKa3blBaeTcA CTPyKTypanbuas Qopmyna ans dyskumuit feS*,
ITa dhopMyna no3BosseT 11 Kax 10K QyHKLUMH kaacca [ HAHTH COOTBETCTBYOLLYIO
eit dyHkumio kaacca 8°°.

[anee mokasbiBaeTcs JeMMa 2, koTopas ssasercs o6oOuieHueM Teopembl B
u3 pabotei M. C. PobeptcoHa [4].

Onupascb Ha JEMMY 2, NOJAIOTCS NP MOMOLIY 06JaCTHOTO NMOAYMHEHMs He-
00X0aMMBlE M JOCTAaTOYHBIC YCIOBHS, YTOObI ()YHKUMs TNpHHAATEKANA K Kjaaccy
S8** (Teopema 2) MM K KJAcCy u —cnupanbHbX QyHKuMil (Teopema 3).






