UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XIX, 7

SECTIO A

1965

Z Katedry Funkcji Analitycznych Wydzialu Mat. Fiz. Chem. UMCS Kierownik: prof. dr Jan Krzyż

JAN STANKIEWICZ

Some Remarks on Functions Starlike with Respect to Symmetric Points

Pewne uwagi o funkcjach gwiaździstych względem punktów symetrycznych

Некоторые заметки о звездных функциях относительно симметрических точек

1. Introduction

Let S be the class of functions $f(z)=z+a_2z^2+\ldots$ regular and univalent in the unit disc $K_1=\{z\colon |z|<1\}$ and let S^* be the subclass of functions starlike with respect to the origin. It is well known that $f(z)=z+a_2z^2+\ldots$ belongs to S^* if and only if

(1.1)
$$\operatorname{re} \left\{ zf'(z)/f(z) \right\} > 0 \text{ for all } z \in K_1.$$

A few years ago M. S. Robertson [3] introduced a subclass of S consisting of functions $f(z) = z + a_2 z^2 + ...$ which satisfy the condition

(1.2)
$$\operatorname{re} \{zf'(z) \lceil f(z) - f(-z) \rceil^{-1} \} > 0 \text{ for all } z \in K_1.$$

Such functions will be called here starlike with respect to symmetric points and the corresponding subclass of S will be denoted by S^{**} .

It is easy to see that $f \in S^{**}$ implies $g \in S^{**}$ where g(z) = -f(-z). In fact, let P denote the class of functions $p(z) = 1 + c_1 z + \ldots$ regular in K_1 and such that $\operatorname{re} p(z) > 0$ in K_1 . Then the condition (1.2) can be written in the form

$$\frac{2zf'(z)}{f(z)-f(-z)} = p(z) \quad p \in P.$$

Putting -z instead of z in (1.3) we obtain

(1.4)
$$\frac{2zf'(-z)}{f(z)-f(-z)} = \frac{2zg'(z)}{g(z)-g(-z)} = p(-z)$$

which means that $g \in S^{**}$.

From (1.3) and (1.4) it follows that $h = \frac{1}{2}(f+g)$ satisfies (1.1) which means that $h \in S^*$.

Let L_0 be the class of functions $f(z)=z+a_2z^2+\ldots$ regular in K_1 and such that there exists a normalized convex mapping of K_1 , say $\Phi(z)=z+b_2z^2+\ldots$, for which $\operatorname{re}\{f'(z)/\Phi'(z)\}>0$ in K_1 . As pointed out in [2], L_0 is a proper subclass of the class L of close — to — convex functions. From $h \in S^*$ it follows that $\Phi(z)=\int\limits_0^z \zeta^{-1}h(\zeta)d\zeta$ is a normalized convex mapping of K_1 . The condition (1.3) implies that $\operatorname{re}\{f'(z)/\Phi'(z)\}>0$ which means that $S^{**}\subset L_0$.

In this paper we find the structural formula for $f \in S^{**}$ (Theorem 1) and give a slight generalization of a theorem of Robertson (Theorem 2). We also find a counterpart of Theorem 2 for spiral—like functions introduced by L. Špaček [4] (Theorem 3.)

2. Structural formula for $f \in S^{**}$

We now derive a structural formula for functions of the class S^{**} expressing any $f \in S^{**}$ in terms of $p \in P$. We have

Theorem 1. The function f(z) belongs to the class S^{**} if and only if there exists a function $p \in P$ such that

$$(2.1) f(z) = \int_{0}^{z} p(\eta) \left\{ \exp \frac{1}{2} \int_{0}^{\eta} \left[p(\zeta) + p(-\zeta) - 2 \right] \zeta^{-1} d\zeta \right\} d\eta.$$

Proof. We first prove the necessity of (2.1). Suppose $f \in S^{**}$. Then, from (1.2) it follows that

$$(2.2) 2zf'(z)[f(z)-f(-z)]^{-1} = p(z)$$

where $p \in P$. Putting -z in (2.2) we obtain

$$(2.3) 2zf'(-z)[f(z(-f(-z))]^{-1} = p(-z).$$

It follows from (2.2) and (2.3) that

$$f'(z)/f'(-z) = p(z)/p(-z).$$

Hence

(2.4)
$$f'(-z) = p(-z)f'(z)/p(z).$$

On the other hand, we have from (2.2):

$$-f(-z) = [2zf'(z)-f(z)p(z)]/p(z)$$

and the differentiation of both sides yields

$$(2.5) f'(-z) = [p(z)]^{-2}[2zpf'' + 2pf' - 2zp'f' - p^2f'].$$

Comparing (2.4) and (2.5) we obtain easily

$$\frac{f''(z)}{f'(z)} = q(z) + \frac{p'(z)}{p(z)}$$

where

$$(2.6) q(z) = \frac{1}{2} [p(z) + p(-z) - 2]z^{-1}.$$

This gives after a repeated integration the structural formula (2.1).

Sufficiency. Obviously f(z) as given by the formula (2.1) is regular in K_1 and has an expansions $z+a_2z^2+\ldots$ near the origin. Hence it is sufficient to verify that $f'(z)\neq 0$ and (1.2) holds. We first prove the identity

(2.7)
$$2z\exp\left[\int\limits_0^{\pi}q(\zeta)d\zeta\right]=\int\limits_0^{\pi}\left[p(\eta)+p(-\eta)\right]\exp\left\{\int\limits_0^{\eta}q(\zeta)d\zeta\right\}d\eta$$

where q(z) is defined by (2.6). Obviously, both sides are regular in K_1 and vanish at the origin. Moreover, after differentiation of the left-hand side of (2.7) w.r.t. z and substituting η for z, we obtain the integrand of the right hand side. This proves the identity (2.7).

From (2.1) we easily obtain

(2.8)
$$f'(z) = p(z) \exp\left\{\int_0^z q(\zeta) d\zeta\right\}$$

and this means that $f'(z) \neq 0$ in K_1 . Moreover,

(2.9)
$$-f(-z) = \int_0^z p(-\eta) \{\exp \int_0^\eta q(\zeta) d\zeta\} d\eta.$$

By addition it follows from (2.1) and (2.9) that

(2.10)
$$f(z) - f(-z) = \int_{0}^{\pi} [p(\eta) + p(-\eta)] \{ \exp \int_{0}^{\eta} q(\zeta) d\zeta \} d\eta.$$

Using (2.7), (2.8) and (2.10) we finally obtain

$$f(z)-f(-z) = 2zf'(z)/p(z)$$
.

This proves the sufficiency of (2.1).

3. An extension of Robertson's lemma and its applications

M. S. Robertson has given in [3] a sufficient condition that a function f(z) should belong to the class S^{**} . This condition was stated in terms of subordination. In what follows the symbol $f(z) \to_r F(z)$ means that f is subordinate to F in the disc $K_r = \{z \colon |z| < r\}$, i.e. there exists a function $\omega(z)$ regular in K_r , such that $\omega(0) = 0$, $|\omega(z)| < r$ and $f(z) \equiv F(\omega(z))$

in K_r . We shall prove that Robertson's condition after a slight modification is also necessary. For the proof we need Lemma 2 which can be proved by using a result due to Robertson [3] which is quoted here as

Lemma 1. Suppose $\omega(z,t) = \sum_{n=1}^{\infty} b_n(t) z^n$ is regular as a function of $z \in K_1$ for each $t \in \{0,1\}$. Suppose moreover, that $\omega(z,0) \equiv z$ and $|\omega(z,t)| < 1$ for any $z \in K_1$ and $t \in \{0,1\}$. If the limit

$$\lim_{t\to 0^+}\frac{\omega(z,t)-z}{zt^\varrho}=\omega(z)$$

exists for some $\varrho > 0$, then $\operatorname{re} \omega(z) \leq 0$ in K_1 . If $\omega(z)$ is regular in K_1 and $\operatorname{re} \omega(0) \neq 0$, then $\operatorname{re} \omega(z) < 0$ in K_1 .

Using this Lemma we shall prove

Lemma 2. Suppose F(z, t) is regular in K_1 for each $t \in (0, \delta)$, $F(z, 0) \equiv f(z)$, $f \in S$, and F(0, t) = 0 for each $t \in (0, \delta)$. Suppose moreover, that for each $r \in (0, 1)$ there exists $\delta(r) \in (0, \delta)$ such that for any $t \in (0, \delta(r))$ we have $F(z, t) \to_r f(z)$ and the limit

$$\lim_{t\to 0^+}\frac{F(z,t)-f(z)}{zt^\varrho}=F(z)$$

exists for some $\varrho > 0$.

Then $\operatorname{re}\{F(z)|f'(z)\} \leqslant 0$ in K_1 . If F(z) is regular in K_1 and $\operatorname{re}F(0) \neq 0$ then $\operatorname{re}\{F(z)|f'(z)\} < 0$ in K_1 .

Proof. It follows from our assumptions that there exists for any $r \in (0, 1)$ a function $\omega(z, t)$, regular in K_r for each $t \in (0, \delta(r))$ which satisfies the following conditions: $\omega(z, 0) \equiv z, \omega(0, t) = 0$ for all $t \in (0, \delta(r))$; $|\omega(z, t)| < r$ and $F(z, t) \equiv f(\omega(z, t))$ for $z \in K_r$ and $t \in (0, \delta(r))$. Moreover, $\lim_{t \to 0+} \omega(z, t) = z = \omega(z, 0)$. Consider now

$$F(z) = \lim_{t \to 0+} \frac{F(z,t) - f(z)}{zt^\varrho} = \lim_{t \to 0+} \frac{f\left(\omega(z,t)\right) - f\left(\omega(z,0)\right)}{zt^\varrho} \,.$$

We may assume that $\delta(r)$ is so small that for each $t \in (0, \delta(r))$ we have $F(z,t) \not\equiv f(z)$. Otherwise $F(z) \equiv 0$ and there is nothing to prove. If $F(z,t) \not\equiv f(z)$ for any $t \in (0, \delta(r))$ then $\omega(z,t) \not\equiv z$, hence by Schwarz's Lemma $|\omega(z,t)| < |\omega(z,0)|$ for $z \neq 0$ and we can write

$$F(z) = \lim_{t
ightarrow 0^+} rac{fig(\omega(z,\,t)ig) - fig(\omega(z,\,0)ig)}{\omega(z,\,t) - \omega(z,\,0)} \lim_{t
ightarrow 0^+} rac{\omega(z,\,t) - \omega(z,\,0)}{z t^o}\,.$$

The first limit exists and so does the second limit. Thus Lemma 1 which is applied to the function $\omega(\zeta,\tau)=r^{-1}\omega(r\zeta,\delta(r)\tau),\,\zeta\,\epsilon K_1,\,\tau\,\epsilon(0,1)$ we see, that

$$\operatorname{re}\omega(z)=\operatorname{re}\lim_{t o 0^+}rac{\omega(z,\,t)-\omega(z,\,0)}{zt^0}\leqslant 0$$

for $z \in K_r$. Hence $\operatorname{re}\{F(z)/f'(z)\} \le 0$ in K_r . Since r can be an arbitrary number of (0,1), we have $\operatorname{re}\{F(z)/f'(z)\} \le 0$ in K_1 . If $\operatorname{re}F(0) \ne 0$ then $\operatorname{re}\{F(0)/f'(0)\} = \operatorname{re}F(0) < 0$. If F is regular and $f'(z) \ne 0$ then $\operatorname{re}\{F(z)/f'(z)\}$ is harmonic and by the maximum principle $\operatorname{re}\{F(z)/f'(z)\} < 0$ in K_1 .

Now we are able to prove

Theorem 2. A necessary and sufficient condition that $f \in S^{**}$ is that for any $r \in (0, 1)$ there should exist $\delta(r) > 0$ such that for each $t \in (0, \delta(r))$ we have

$$(1-t)f(z)+tf(-z) \rightarrow_r f(z)$$
.

Proof. Sufficiency. We apply Lemma 2 with $\varrho=1$ and F(z,t)=(1-t)f(z)+tf(-z). Then

$$F(z) = \lim_{t \to 0^+} (zt)^{-1} [F(z, t) - f(z)] = -z^{-1} (f(z) - f(-z)).$$

By Lemma 2 we have

$$\operatorname{re} \left\{ - \left(z f'(z) \right)^{-1} \left(f(z) - f(-z) \right) \right\} < 0 \,, \qquad z \, \epsilon \, K_1 \,,$$

and this implies (1.2).

Necessity. Consider $v(z,t) = \operatorname{re} \{zF_z'(z,t)/F_t'(z,t)\} = \operatorname{re} \{-z[f'(z)--t(f'(z)-f'(-z))][f(z)-f(-z)]^{-1}\}$. Since $f \in S^{**}$, we have v(z,0) < 0 in K_1 . By the maximum principle for harmonic functions we have

$$v(z, 0) < -\varepsilon(r) < 0$$
 in K_r .

By continuity of v(z,t) with respect to t we can find a positive $\delta(r)$ such that $v(z,t)<\frac{1}{2}\,\varepsilon(r)<0$ for each $t\,\epsilon\langle 0\,,\,\delta(r)\rangle$ and each $z\,\epsilon K_r$. Now, by a result of Bielecki and Lewandowski [1], the inequality $\operatorname{re}\{zF_z'\times (z,t)/F_t'(z,t)\}<0,\,z\,\epsilon K_r$, means that the image of K_r under F(z,t) shrinks with increasing t. Therefore $F(z,t)\to_r F(z,0)=f(z)$ and this proves the necessity.

Let now \check{S} be the class of spiral-like functions (cf. [5]), i.e. the class of functions $f(z)=z+a_2z^2+\ldots$ regular in K_1 and such that for some $a\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ we have $\operatorname{re}\{e^{-ia}zf'(z)|f(z)\}>0$ in K_1 . Z. Lewandowski [3] has given necessary and sufficient conditions that f should belong to the class \check{S} in terms of an inequality between the absolute values of certain

expressions involving f. We can give another characterization of the class S which is an analogue of the characterization of the class S^{**} as stated in Theorem 2.

Theorem 3. A necessary and sufficient condition that a function $f(z) = z + a_2 z^2 + \dots$ regular in K_1 should belong to the class \check{S} is that there should exist a real number $a \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and a positive function $\delta(r)$ defined in (0,1) such that for any $t \in (0,\delta(r))$ we have

$$(1-te^{ia})f(z) \rightarrow_r f(z)$$
.

The proof of Theorem 3 is a repetition of the proof of Theorem 2. We have only to change auxiliary function F(z, t) which should now be chosen as $(1-te^{ia})f(z)$.

REFERENCES

- [1] Bielecki, A., Lewandowski, Z., Sur certaines familles de fonctions a-étoilées, Ann. Univ. Mariae Curie-Skłodowska, 15 (1961), p. 45-55.
- [2] Krzyż, J., Some Remarks on Close-to-convex Functions, Bull. Acad. Polon. d. Sci., 12 (1964), p. 25-28.
- [3] Lewandowski, Z., Some Remarks on a Paper of M. S. Robertson, Ann. Univ. Mariae Curie-Skłodowska, 17 (1963), p. 43-46.
- [4] Robertson, M. S., Applications of the Subordination Principle to Univalent Functions, Pacific Journ. of Math., 11, (1961), p. 315-324.
- [5] Špaček, L., Přispěvek k teorii funkci prostych, Časopis Pest. Mat., 62 (1933), p. 12-19.

Streszczenie

Niech S oznacza klasę funkcji $f(z)=z+a_2z^2+\ldots$ holomorficznych i jednolistnych w kole K_1 . Przez P oznaczmy klasę funkcji $p(z)=1+c_1z+\ldots$ holomorficznych w kole K_1 i takich, że $\operatorname{Re} p(z)>0$ w K_1 . Funkcja $f(z)=z+a_2z^2+\ldots$ należy do klasy S^{**} jeżeli spełnia warunek (1.2).

W pracy tej dowodzę wzoru strukturalnego (2.1) dla funkcji $f \in S^{**}$. Wzór ten pozwala każdej funkcji klasy P przyporządkować pewną funkcję klasy S^{**} .

W dalszej części pracy dowodzę Lematu 2, który jest uogólnieniem Twierdzenia B z pracy M. S. Robertsona [4]. W oparciu o Lemat 2 podaję w terminach podporządkowania obszarowego warunki konieczne i wystarczające aby funkcja należała do klasy S^{**} (Twierdzenie 2) względnie do klasy α — spiralnych (Twierdzenie 3).

Резюме

Пусть S обозначает класс функций $f(z)=z+a_2z^2+\dots$ голоморфных и однолистных в круге K_1 . Обозначим через P класс функций $p(z)=1+c_1z+\dots$ голоморфных в круге K_1 и таких, где $\operatorname{Re} p(z)>0$ в K_1 . Функция $f(z)=z+a_2z^2+\dots$ принадлежит к классу S^{**} , если выполняет условие (1.2).

В работе доказывается структуральная формула для функций $f \in S^{**}$. Эта формула позволяет для каждой функции класса P найти соответствующую ей функцию класса S^{**} .

Далее доказывается лемма 2, которая является обобщением теоремы B из работы М. С. Робертсона [4].

Опираясь на лемму 2, подаются при помощи областного подчинения необходимые и достаточные условия, чтобы функция принадлежала к классу S^{**} (теорема 2) или к классу α —спиральных функций (теорема 3).