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1. Introduction

In this paper we are concerned with the notions of subordination
and domination which will be now defined. Suppose C, = {z: [2| < r}
where r > 0 and suppose f, F are functions regular in ¢, which satisfy:
f(0) = F(0) = 0. We say that f is subordinate to F in C, and denote this
(f, F,r) if there exists a function w regular in C,, w(0) = 0, |w(2)| <7
in C,, such that f(z) = F(w(z)) in C,. If F is univalent, (f, F, r) means
that the image of C, under f is contained in the image of C, under F.
F will be called domain majorant of f in C,.

On the other hand, if |f(2)| < [F(2)| holds in C, with r¢(0, 1), then
we say that f is dominated by F in C, and denote this in the following
manner: |f, F,r|. F will be called a dominant of f in C,. In the parti-
cular case F(z) = z both relations (f, F,), |f, F,r| are equivalent by
the Schwarz Lemma, in general case they are not, however, equivalent.
Moreover, by the Schwarz Lemma and the maximum principle. it follows
that (f, F,r) = (f, F, '), |f, Fyr| = |f, F, 7’| for any r'€(0,r). It was
M. Biernacki who was concerned as the first with the relation between
subordination and domination [7], [8]. He obtained for some -classes
of regular functions f, F with univalent F the theorems of the following
type: (f, F, 1) = |f, ', r| where 7¢(0,1) does not depend on the parti-
cular choice of functions involved. Some results of Biernacki were genera-
lized and extended by G. M. Golusin [10] and Shah Tao-shing [25]. The
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converse relation was investigated by the present author in [14], further
results in this direetion were obtained in [15] and [16], as well as in a series
of papers written in common by the present author and A. Bielecki
[1]-[5] and concerning also the problem first considered by Biernacki.
We have given o simple geometrical method which showed to he very
convenient in investigating some classes of regular functions. In Bier-
nacki’s papers we meet two kinds of assumptions. First he assumed that
both the subordinate function and its majorant belong to the same class
(e.g. both are univalent, resp. both are starlike). Later on he put on the
subordinate functions less restrietive assumptions than those involving
majorants. In what follows we shall start with the assumptions analo-
gous to the latter ones. Some of the results presented here were already
published in various journals whereas some are new. Although the cirele
of problems presented here is by no means exhausted, the present author
believes that it is worthwhile to give a systematic and complete treatment
on the subject in order to exhibit the methods applied here. However,
a complete proof will he given only in case the corresponding theorem
is published here for the first time. The last chapter contains a set of
related problems which still remain unsolved, resp. only a partial solu-
tion of them is known.

2. Notations. Preliminary results

Let 8 Dbe the class of functions F(2) = 2+ a,2%2+... regular and
univalent in €. In what follows we shall be concerned with the following
subelasses of 8: the class § of functions with real cocfficients; the class
8. of convex functions; the class S, of a-starlike functions, i.e. the class
of functions feS8 such that re{zf (2)/f(2)} > « with «e{0,1). The case
« — O corresponds to the class 8, of functions starlike w.r.t. the origin.

Let O be the domain whose boundary consists of the left half of the
circumference [z| = '! and of two circular ares through z = »" tangent
to 2] — " at 2 = +&"" (0> 0 is an integer). Suppose K is a fixed
subelass of 8 and D(K, ») is the region of variability of the expression
g(2,)/g(z;), where 2,, 2, range over the circumnference JC, and g ranges
over the class K. Using this notation we can now state a theorem first

published in [17] which represents a general solution to the converse
of Biernacki’s problem.

Theorem 1. Suppose 7r,e(0,1) and K = 8. Then |f, F,1| implies
(f, Fyry) for every FeK and every f(z) — a"2"+a, 2" ..., regular
in C, aml_such that a, > 0 if and only if either for any re(0,r,) the sets
D(K,7r),0; ' are disjoint (n > 1), or have only one point z = 1 in common
(n = 1).
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3. The second problem of Biernacki

We now consider a fixed subelass K of § and we want to determine
the greatest possible real number 7,6(0, 1) such that for any f regular
in €, and such that f(0) = 0,f(0) > 0 the assumptions (f, ¥, 1), Fek,
imply |f, ¥, 7,|. In [7] Biernacki proved the following

Theorem 2. There exists a number v, > 1[4 such that for any F €S and
any funetion f reqular in C, and such that f(0) = 0, f'(0) > 0 the condition
(f, 1, 1) implies |f, F,r,] and no greater number has this property for
all admissible f, F.

In 1951 Golusin proved that } < r, < 5(3—-1""5), [10]. He also proved
that for F(2) = z(1+2)"% and f(z) = F(z?) the disk where f is dominated
by F has radius 3(3—V5).

A few years later Shah Tao-shing proved [25] that r, = 3(3—V5).
In connection with the second problem of Biernacki Golusin was con-
cerned with the majorants I' = S, and obtained the following

Theorem 3. If FeS, and f is regular in C, and satisfies f(0) = 0,

f(0) =0, then (f, F,1) implies |f, F,r, with ry = }(3—V5);r, cannot
be replaced by any greater number.

4. The second converse problem

The second problem of Biernacki concerns the estimate of the radius
of domination for a given class of majorants and a given elass of subordi-
nate functions.

We can put in a natural way an analogous question so far as the con-
verse problem is concerned, i.e. given a class of dominants and given
a class of dominated functions find the greatest number R such that
Ify F, 1| implies (f, F, R) for all admissible funetions f, F. Taking S
as the class of dominants and assuming that the dominated funections
f are regular in €, and satisfy f(0) = 0,f'(0) >0, we realize that the
methods leading to Theorem 2 and its generalizations cannot be used
for the converse problem. However, we proved [14] the following.

Theorem 4. There exists a number R,0.21 < R< R, = 0.29 ..., such
that for any FeS and any f regular in C, with f(0) = 0, f'(0) > 0, the
assumption |f, F, 1| implies (f, F, R).

Here I, is the unique positive root of the equation #3224+ 3x—1 — 0.
If the admissible dominants F range over 8, then we have, cf. [15], the
following.
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Theorem 5. If F eS8, and f is regular in C, and satisfies: f(0) = 0,
f'(0) > 0, then |f, I, 1| implies (f, F', R,) where Ry = 0.29 ... is the number
defined in Theorem 4.

If F,(2) =2(1+2)" and f,(z) = zF,(z), then the greatest disk of
subordination has radius I2,.

It is an obvious consequence of Theorem 5 that the constant I? defined
in Theorem 4 does not exceed R,. In [17] we gave the following generali-
zation of Theorem 5.

Theorem 6. Let R, ,,n =1,2,... denole the smallest positive root
of the equation a" = (1—2)*(1-+xz) % If FeS, and f(z) = a,2"+... is
regular in C,,a, > 0, then |f, F,1| implies (f, F, R, ,). In case F,(2)
=2(14+2)"% and f,(2) = (—1)""'2"F(2) the number R, , cannot be
replaced by any greater number.

Theorem 1 plays an essential role in proving Theorem 6. Moreover,
Theorem 5 is a particular case of Theorem 6 (n = 1).

5. Coefficients of dominated functions

It is possible to give estimates of Taylor coefficients of subordinate
functions in terms of coefficients of the majorant, cf. e.g. [11], p. 406-409.

J. E. Littlewood, cf. [19], p. 222, proved that if f(z) = a,2+ a,22+...
is regular in C, and (f, F, 1) holds with ¥ ¢S, then |a,| < n.

It is quite natural to ask whether the assumption |f, ¥, 1| leads to
analogous estimates. Let G, be Landau numbers, cf. [13], p. 29, defined
as follows:

J:\% 1-3)\12 {1-3...(2n—1)\®
GF“(?) +(2-4) L7, o v T e e <

Let N be the class of functions w(z) regular in C; and such that |w(z)|
<1in C,.

If w(z) =by+bz+... and w(z)eN, then |by|+b,+...7b,] <G,
n=20,1,2,...,cf. [13], p. 26. These estimates are sharp. Using this
results we shall prove the following.

Theorem 7. If F ¢S, f(z) = a,2+ a,2*+ ... is regular in C, and |f, F, 1|
holds, then l|a,| < nG,_,.

Proof. We may suppose without loss on genecrality that a, > 0. There
exists w(2) = byt b2+ ...€N bye(0,1) such that f(z) = F(2)w(z). If
F(2) = 2+ A,22+... then the coefficients a, can be expressed in the
following way:

n-1

(1) an=2bkA,,_k,n=1,2,...

k=0
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Put F(re®) = u(re”) -iv(re). Since A, are real, we have v(re”)
= 3 A,"sinn0. The funetion v(re”’) has a constant sign in (0, ). After

N1
a maltiplication by sinz0 and integration we obtain

f ®)sinn0do, 0 <r< 1.

allc

(2)

9 n—1

Hence a, = — | o(re") pX b "sin[(n—k)0]d6, i.e.

T o

n

(3) an == [ o(re") 8, ,(6)d0,
T 0

where

n-1

S, _1(6) =k2; by r*~"sin[(n— k) 0].

n-1 1
Put P"'(2) =k2:)bkz”‘k. Hence 2"P,_, (—z-) = by+ by2+...+ b 2"

1 p ¢
Py Pn_l (T) -'Pnfl (l)
2 z 2

mate quoted above gives |8, ,(0)] < G,_,r ". It is well known, cf. [15],
p. 221 that if T,(0) = ¢;8in0-+...+ ¢,8innf and |T,(0)| < 1 for 0¢<0, 2x),
then |T,(6)| < n|sinf|. With T, ,(0) =r"8,_,(0)/G,_, we obtain the
inequality :

Now, [|8,_,(0) = "2 :reia, and Landau’s esti-

1(0)] < Gp_yr "n|sinb).

Using this and the formulas (2), (3) we have

n

2 0y«
|| < —;nr‘”Gn_lfv(re )sin0d0 = nmr'—"@,_,

0

and in the limiting case r —> 1 we finally obtain the inequality |a,|< nG,_,.

The bound obtained is not sharp, e.g. for » = 2 we have according
to Theorem 7: |a,| << 2(1+}), whereas in fact we can derive the sharp
estimate |a,) <2 as a corollary of Theorem 9. It is well known that

1
G, ~ — logn, hence according to Theorem 7 we have a, = O(nlogn).
4

In a recent paper [21] T. Mac Gregor proved a sharper result:
la,] < .

The two following theorems are further examples of analogues between
subordination and domination in absolute value [16]:
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Theorem 8. If f(2) = a,z+... and F(z) = A, z+... are analytic in O,
and |f, F', 1| holds then

n n
kZ: laklz<k21 [Ael® n=1,2,..

A corresponding theorem with the assumption (f, F', 1) can be found
in [19], p. 168, also cf. [11], p. 406. For the second cocfficient a, a better
estimate than that given by Theorem 7 can be obtained.

Theorem 9. Under the assumptions of Theorem 8 we have
lagl < 1+ |4,12/414,, i A4, # 0;
las| < [A.l, f A, =0.

6. Some problems involving the derivative

In [7] another problem was also investigated by Biernacki. Given
a function f(z) = a,2+ ay2®--...,a, =0, regular in €, which satisfies
(f, F,1) with FeS. Does there exist an absolute constant », > 0 such
that |f', F’, r,| holds. Biernacki found an affirmative answer under a supple-
mentary assumption of univalence of f. He could prove that there exists
ry > 0.1 such that (f, ¥, 1) with univalent f and €8 implies |f’, F', r|.
Golusin improved this result [11] and showed that », > 0.12 even if f
is not univalent. A few years ago Shah Tao-shing found the best possible
ry =3—V8 =0.17..., [26].

In [16] we have stated and proved similar theorems where the assumpt-
ion of subordination is replaced by the assumption of modular domination.

Theorem 10. If f(z) = az--...,0 < a < 1, is reqular in C,; and F 8,
then |f, F, 1| implies |f'y ', s(a)|, where s(a) i3 the smallest positive root
of the equation ax®*—3ar>—3c-1-1 — 0. The quantity s(a) cannot be replaced
by any greater mumber.

If F,(z) = 2(1+2)"% and fo(2) == (1 - a2)~' (2 + a) F,(2), then & > s(a)
implies fo(x) > F,(z). This shows that s(a) is best possible even in the
case F' ranges over the more restrictive class S,. It is casy to see that

8(a) is strictly decreasing in ¢0,1) and lims(a) = 2—V3. This implies
a—]—

Theorem 11. If f is regular in C,, f(0) = 0,f (0) > 0 and F eS8, then
|f, F, 1| @mplies |f’, F',2—V3| and 2—V3 cannot be replaced by any
greater number.

If the class of majorants is restricted to §,, neither Theorem 10, nor
Theorem 11 can be sharpened. Even in case the dominated function f
is univalent and starlike the radius of domination remains the saine.
In fact we have proved [16] the following
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Theorem 12. If Fe8,, f is univalent and starlike in €', and satisfies
f(0) = 0,f(0) =0, then |f, F', 1| implies |f', F',2—V3| and the constant
2—V3 is best possible.

We can also state an analogue of a result due to Schiffer [24] where
the assumption (f, /7, 1) is replaced by |f, ', 1], ¢f. [16].

Theorem 13. If f is reqular in €., f(0) = 0, and F eS8, then |f, F, 1|
implies

If(2)] < (L4 J2])(1—|2)~2

Equality holds for F,(2) = 2(1—2)"% and f,(z) = F(z).
The estimate of [f'] is the same as given by Schiffer.

7. First problem of Biernacki and its converse.

The first problem of Biernacki which was stated by him earlier and
is less diflicult is obtained as a particular case of the second problem
by making an additional supposition that f which is subordinate to ¥
is of the same type as F. In other words, if FeK < §, then f'(0) > 0
and f(2)/f (0)e K.

Biernacki proved [7],[8], by use of Julia’s variational method
following theorems.

Theorem 14. If FeS,f(0) >0,(f (0))'feS then (f, F,1) implies
Ify By 1°|, where 1° = 0.39 ... is the unique positive root of the equation
2In(1+x)/(1—x)—darctanz = n. The number r° cannot be replaced by
any greater nimber.

Theorem 15. If f'(0) >0,(f(0)"'feS, and FeS, then (f,F,1)

implies |f, I, ry|, where vy = V2—1 cannot be replaced by any greater
number.

Theorem 16. If f'(0) >0,(f(0)) 'feS. and FeS, then (f, F,1)
implies |f, ¥, where ri = 0.543 ... which is the positive root of the
equation 2arcsinz+ 4arctanx = & cannot be replaced by any greater
number.

The Theorems 14-16 due to Biernacki were generalized in a common
paper by A. Bielecki and the present author [2]. It was proved that the
constants r° #y, 7 remain unchanged even in case f is regular in C, and
satisfies f'(0) > 0, f(z) # 0 for z # 0.

It seems to be natural to consider the converse of both the first and
second problem of Biernacki. The research in this direction done by
A. Bielecki and the present author results in proving some new theorems
by a quite useful method based on the notion of homotopy. This method
is described in the next chapter.
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8. Homotopic subordination and domination chains

Let II be the class of functions k(z,t) = a,(t)z+ a,(t)22+...te(t;, t,),
a,(t) > 0, which satisfy the following conditions:

(i) for any fixed te{f,,t,> the function A(z,t) is regular and uni-
valent in C,,

(ii) for any fixed zeC, the function k(z,t) and its derivative h(z, )
are continuous w.r.t. telt;,t,>.

We say that h(z,t)e H is increasing in absolute value inside C,, 0 < r
<1 it t,t"elty, t,),t" <t implies |h(z,1t'), h(z,t"”), r|. Similarly, we
say that h(z,t)eH is domainwise increasing inside C,, 0 <r < 1, if t,
" elly, tyy,t' <t implies (h(z,t'), h(z,t"’), r).

Let H° be the subclass of H consisting of all h(z, t) which satisfy geS,
with ¢(z,t) = h(z, t)/h,(0, t).

In [1], p. 47-49 A. Bielecki and the present autor have proved the
following results which enabled them to create a general method of
solving both the first and the second problem of Biernacki, as well as
their converse.

Lemma 1. If h ¢ H and either larg {hy(2, t)/zh,(2, 1)}| < 7|2, or hy(z,1) = O
for any zeC,, telt,, t,> then h is domainwise increasing in C,. Conversely,
if heH is domainwise increasing in C,, then either |arg{h,(z,t)/zh.(z, t)}|
< /2 (or hy(2,1) = 0 for telty,t,)).

Lemma 2. The function heH s increasing in absolute value in C, if
and only if either |arg {h(2, 1) [h(z, 1)}| < 7|2, or hy(2,1) = O for tet,,t,>
and zeC,.

Homotopies h(z,t) which are domainwise increasing resp. increasing
in absolute value were considered already by many authors, Lowner,
Schaeffer-Spencer, Pommerenke, cf. ([20], [23], [22].

The lemma 1 has been also applied by Bielecki and the present author
in [6] where a simple proof of the following theorems was given: the
class of close-to-convex functions (introduced by W. Kaplan in [12])
is a subclass of linearly accessible functions (introduced by M. Biernacki
in [9]).

This proof was considerably simpler than that earlier published by
the present author [18].

Let R(a) be the smallest positive root of the equation

] 2r
arcsin +2arctanr = w2, ae(0,1).

Lbri (1)

It is easy to see that R(a)e(0, 1).
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Using the Lemmas 1,2 Bielecki and the present author obtained in
[1] the following basic results for the first problem of Biernacki and its
converse.

Theorem 17. If ae (0,1), h(z,t)eH" for any te {,,t,) and h(z,1)
increases in (', in absolute value, then also h(z,t) increases domainwise
n (‘R['r]'

Theorem 18. If ae (0,1), h(z,t)eH" for any te ,,t,) and h(z,1)
increases in C, domainwise, then also h(z,t) increases in absolute value
mn Clg(a).

By the above stated results both Biernacki’s problem and its converse
are reduced to the investigation of a relevant homotopy h(z,t). The
following homotopy

0 for z2=0
h(z,t) = AT F(z
vz, 1) :[—f(—)—] [ ( )],:eCl,O(t< 1,

& ?

~

shows to be quite useful in some cases. It is easy to see that this homotopy
runs over H" if Fe8, and f(2)/f (0)eS, (f°(0) > 0). Using this homotopy
as well as Theoren. 17 we can obtain the solution of the converse of first
problem of Biernacki. Putting « = 0, resp. « = } we obtain for R(a)
the same values as those given by Theorems 15 and 16.

9. The class S, and some generalizations of the first problem
of Biernacki and its converse

Let v(t), te<0, 1), be a real, non-decreasing and lower semicontinuous
function vanishing at ¢ = 0 and put

(A) r(v) =sup(z: 0 <o <1,v(r)+ 2arctanz < xn/2);

this implies that 0 < r(v) < 1. Let S, be the class of all functions F(z)
= 2+ A,2% ... regular in C, and such that for any re(0,1) we have

28" (2)
arg - 72

<o(r), lzl<r<1.

The present author and A. Bielecki have proved [2] the following.

Theorem 19. If F S, and f(z) = a,2"+...,a, >0, is reqular in C,
and f(z) #0 for any 0 < |z2| <1 then (f,F,1) implies |f, F(2"), 7 (v)|
where r(v) is defined by (A).

Theorems 14-16 due to Bicrnacki show to be corollaries of Theorem 19.
We only need to take n = 1 and v(r) equal In(1+r)/(1—r), arcsin X
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X s , aresinr resp. which are the corresponding
a
12 Ty (1—1r?)

bounds for the classes 8, 8., S., cf. e.g. [11], p. 146, [1], p. 46 and [27].

The essential tool in proving Theorem 19 is Lemma 1. Moreover,
it is worthwhile to mention that the assumptions concerning f(2) in
Theorem 19 are less restrictive than those made by Biernacki. An analo-
gous result was also given by Bielecki and the present author for the
converse problem, cf. e.g. [3], p. 300.

Theorem 20. If r(v) >0,f(0) >0,f(2)/f(0)eS, and FeS, then
If, Fy 1| implies (f, I', r(v)) where r(v) is given by (A).

Using this as well as the well known estimate of arg{zf'(z)/f(z)} for
the class § we obtain, cf. [3], p. 301, the following

Theorem 21. If FeS,f(0) >0,f(z)/f (0)eS then |f, F,1| implies
(fy, I, r°), wherer® — 0.39 ... is the Biernacki constant defined in Theorem 11;
r® cannot be replaced by any greater nwmber.

This theorem gives the solution to the converse of the first problem
of Biernacki as stated in Theorem 14.

In [4], [6] some general theorems due to Bielecki and the present
author have been proved under weaker assumptions:

Theorem 22. Suppose F(z) and w(z) =a,2"+...p=>1,a, # 0, are
regular in C,, F(0) = 0,0 < |w(2)| <1 in 0< |2| < 1,w(z) £ €%z with
real a. Suppose, moreover, I'eS, and f(z) = F(w(z)). Then the relation
Ify, F, o] holds with o being the unique root of the equation v(r) + arctang(r)
= n/2, where ¢ is a (rather complicated) explicit erpression depending
on ryarga, and p and quoted in [1], p. 92. For p = 1, arga,, = 0, we obtain
in particular the results concerning the first problem of Biernacki.

Theorem 23. Suppose FeS, and ¢(2) = by+b,2+... is regular in
C, and such that 0 < |g(2)| < 1. If f(2) = g(2)F(2), then (f, F', p) holds
with o being the least root of the equation v(r)-+arctang(r) = —':—

Here ¢ depends on b, in a rather complicated way. The case argb, = 0
corresponds to Theorem 20.

10. Estimates of radius of subordination in some problems
involving the class S7.

Theorem 21 with an explicit function v(r) corresponding to the class
8 gives a sharp estimate.
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On the other hand, the problem whether the estimate of radius of
subordination given by Theorem 20 is sharp, still remains open. In this
chapter we show that if the class considered and the corresponding function
v(r) are chosen in a suitable manner then the bound obtained by Theorem 20
is sharp.

Let 8% be the class of functions F(z) = 244,22 +... regular in C,
such that #'(z) 4 0in C,and |F(2)] > 0for 0 < |2| < 1. Suppose, morcover,
that

i et
r) = sup |suparg ———
! Fjﬂ, wer & F(z)

is continuous in <0, 1). We may assume without loss on generality that
! 2F'(2) .
8} contains F(z) # z. Then a,rg-}ﬁ is a non-constant harmonic
z
. P g zF"(2)
function in (’;. This implies that suparg — -
lz1<r F(2)
strictly increasing functions of 7e<0,1). We can take

2F'(2) 1
vo(7) = sup !—supurg = (2) .
Fes? Lizi=r r(z) |

and also ov(r) are

With this choice of v(r) we sce that for any & > 0 there exists FeS)

iy . 2 (2)
and z = re” such that arg Fia)

= v(r)—e. We now prove

Theorem 24. F Sy, f(0) >0, f(2)/f (0)eS) then |f, F,1| implies
(f, F, r(vy)) where r(v,) is given by the formula (4). The number r(v,) cannot
be replaced by any greater number.

Proof. The first part of this theorem follows from Theorem 20. We
now prove the second part. Suppose that with the assumptions of
Theorem 24 the relation (f, ¥, R) holds for some R > r(v,). Given ¢ > 0
choose real z and y so that »(v,) < # < y < R and also

(B) T2 < vy(x)—e+2arctany < m,

Wwhere v,(y) < x/2. Such a choice is possible by continuity of v,(r). Suppose
Fe8; is such that for some w, [u| = z, we have

wF' (n)
C T g B A g L
(C) arg F () Vy(T) —&
There exists a real 6 such that

14 ﬁio
(D) arg -— Y0 garctans

1— ue®
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Put for |2 <1 and te(0,1)
9(z,t) = F(pz)h(z,1)

(E) h(z,t) = 1—(1—1t)(1+tpze®) /(1 — tpze”),
= o
p = Y y Po = P
t F’ he(zy t
From the ecquation q,(z ) = w _z_(z,_) it follows by
((z t) F(pz) h(z,t)
. . = zhi(z, 1)
the uniform convergence in (': bzt >0 as t—>1 that for
’

t' sufficiently close to 1 and for all {e{t, 1) the functions g(z, t) belong
to 8. In [3] we proved that |h(z, t)| < 1in C, for te(t,, 1) and ¢, sufficiently
close to 1. We have Re{g/(z, t)/g(z, )}, = Re(L+ pze”)[(1— pze”®) > 0
by (E). It follows from (B), (C), (D) that

. !P(g;(Poat)} R B DI g,lfﬂy{:
| 9:(Post) Jea F(p o) 1—ppoe
wF’ (u) 1+ ué’

T
= arg u =elp)—ect3arctana ¢ (2 , n)-

Fu) VBT

Hence there exists t, = max(t’,¢,) such that the homotopy g¢(z,?)
satisfies for any te{,, 1) the following conditions:

(2,1 o
(F) Res I‘h }i in C, and
2, 1)
(G) Re (gi(po, t)/pogi(po, ) <0, Ipl=y.
T 2 ;(z t N
Now, v(y)<?, hence |arg g(z,’t)) <=2 in Cp, for tedty, 1)

which means that g(z,t) are starlike in this disk.

By (F) and Lemma 2 we have for any t,, te{ty, 1) t, < t5: |g(2, 1,)]
< |g(2, t3)] in €, whereas by (G) and Lemma 1 (f, F,y) does not hold
which contradicts the definition of R. This proves Theorem 24.
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Streszczenie

W pracy tej omawiam zagadnienia dotyczgce podporzadkowania
funkeji i nierownofei modulow, jakie w ostatnich latach byly, miedzy
innymi, przedmiotem badan w lubelskim $rodowisku matematyeznym.
Praca ta zawiera tez pewne nowe wyniki (twierdzenie 7, twierdzenie 24).

Pe3somMme

B paGoTe paccMaTpuBatoTcs npobiaeMsl, Kacalolldecs noauHHeHHs (QyHKuMH
U HepaBeHCTBA MoAyJjeH, ObiBluMe B MocieaHHe rolbl NpPeIMETOM HCCAeAOBAaHHIA
no6auHCKUX MaTeMaTHkoB. [1pHBOASTCS HEKOTOpble HOBbIE pe3yabTaThl (Teope-
Ma 7, 24).



