ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN — POLONIA

VOL. XIX, 1

SECTIO A

1965

Z Katedry Funkcji Analitycznych Wydz. Mat. Fiz. Chem. UMCS Kierownik: prof. dr Jan Krzyż

ZBIGNIEW BOGUCKI

On a Theorem of M. Biernacki Concerning Subordinate Functions

O twierdzeniu M. Biernackiego dotyczącym funkcji podporządkowanych К теореме М. Бернацкого, относящейся к подчиненным функциям

1. Introduction

Let the functions f and F be regular in the unit disk K_1 . The function f is said to be subordinate to F in K_1 if there exists a function ω regular in K_1 such that $\omega(0) = 0$, $|\omega(z)| < 1$ in K_1 and $f = F \circ \omega$ in K_1 .

In this case we write $f \ni F$. M. Biernacki [4] was first to consider the following problem. Suppose S_0 is a fixed subclass of the class S of functions regular and univalent in the unit disk K_1 and subject to the usual normalization. Suppose, moreover, that $f \ni F$, $F \in S_0$ and f satisfies some additional conditions (e.g. $f(z)/f'(0) \in S_0$). Find the greatest number $r_0 \in (0, 1)$ such that the above stated conditions imply $|f(z)| \leq |F(z)|$ for any $z \in K_{r_0} = \{z: |z| < r_0\}$ and any pair of admissible functions f, F. Variant forms of this problem were investigated by Biernacki [5], Golusin [6], Shah Tao — shing [10], Bielecki and Lewandowski [2], [3]. In [1] Bielecki and Lewandowski have given a general method of evaluating r_0 in case we know the estimate of $\arg(zF'(z)/F(z))$ for $F \in S_0$ and $f(z) = a_1 z + a_2 z^2 + \dots$ satisfies the following conditions: f'(0) > 0, $f(z) \neq 0$ for $z \neq 0$. In this paper we give a different method of evaluating the constant r_0 for $F \in S_0$, where S_0 is a fixed subclass of S and $f(z) = a_1 z + a_2 z^2 + \dots$ is regular in K_1 . This method can be effectively applied in case we know the region of variability of the expression $F(z_2)/F(z_1)$, where z_1, z_2 are arbitrary fixed points of K_1 and F ranges over S_0 .

2. Auxiliary lemmas

In what follows we shall need Lemma 1 which is a generalization of a result of Rogosinski.

Lemma 1. Let B_n be the class of functions ω such that $\omega(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots$, is regular in K_1 , $a_n \ge 0$, $|\omega(z)| < 1$ in K_1 . Suppose z_1 is a fixed point in K_1 . Let $H_n(z_1)$ be the closed domain whose boundary is the union of the semicircle $z = i |z_1| z_1^n \cdot e^{it}$, $0 \le t \le \pi$, and two circular arcs l_1 , l_2 joining z_1^n to $i |z_1| z_1^n$ and $-i |z_1| z_1^n$ to z_1^n resp., both arcs l_1 , l_2 being tangent to the circle $|z| = |z_1|^{n+1}$. Then for each $\omega \in B_n$ we have $\omega(z_1) \in H_n(z_1)$ and, conversely if $\zeta_1 \in H_n(z_1)$, then there exists $\omega \in B_n$ such that $\omega(z_1) = \zeta_1$. The arcs l_1 , l_2 have the following parametric representation:

$$2.1) l_1: w = z_1^n (\alpha + i |z_1|) (1 + i\alpha |z_1|)^{-1}, \ 0 \leqslant \alpha \leqslant 1.$$

$$(2.2) l_2: w = z_1^n (a - i |z_1|) (1 - ia |z_1|)^{-1}, \ 0 \leqslant a \leqslant 1.$$

The proof of this lemma can be easily obtained in an analogous way as in [7], or [8]. In what follows we write H(z) instead of $H_1(z)$.

Lemma 2. Suppose S_0 is a fixed closed subclass of S such that (2.3) $F \in S_0$ and $|\eta| \leq 1$ implies $\eta^{-1} F(\eta z) \in S_0$.

Suppose $Q_n(z_1, S_0) = \{u \colon u = F(z_2)/F(z_1)\}$, where z_1 is a fixed point of K_1 , z_2 ranges over $H_n(z_1)$ and F ranges over S_0 . Then $Q(z_1, S_0) = Q_1(z_1, S_0)$ has the following properties:

- (i) $Q(z_1, S_0)$ is connected,
- (ii) $Q(z_1, S_0) = Q(\eta z_1, S_0), \text{ where } \eta z_1 = |z_1|,$
- (iii) 0 < r < R < 1, then $Q(r, S_0) \subset Q(R, S_0)$.

Proof. The property (i) is obvious. By (2.3) we see that any $F \in S$ can be continuously deformed into identity. Hence we easily deduce that $Q(z_1, S_0)$ is arcwise connected.

- (ii). Take arbitrary $z_1 \in K_1$. For any $u \in Q(z_1, S_0)$ we can find $f \in S_0$ and $z_2 \in H(z_1)$ such that $u = f(z_2)/f(z_1)$. Take now an arbitrary η such that $|\eta| = 1$. By (2.3), $F(z) = \eta^{-1} f(\eta z) \in S_0$. Obviously $\zeta_2 = \eta z_2 \in H(\eta z_1)$. Hence $u = F(\zeta_2)/F(\eta z_1) \in Q(\eta z_1, S_0)$. This means $Q(z_1, S_0) \subset Q(\eta z_1, S_0)$ and consequently $Q(z_1, S_0) = Q(\eta z_1, S_0)$.
- (iii) Suppose 0 < r < R < 1 and $r = \lambda R$ ($0 < \lambda < 1$). If $u \in Q(r, S_0)$ then we can find $f \in S_0$ and $z_2 \in H(r)$ such that $u = f(z_2)/f(r)$. If $F(z) = \lambda^{-1} f(\lambda z)$, then $F \in S_0$ by our assumption. Moreover, $u = f(z_2)/f(r) = F(\zeta_2)/F(R)$ where $\lambda \zeta_2 = z_2$. From the definition of H(r) it follows that $z_2 \in H(r)$ implies $\lambda^{-1} z_2 = \zeta_2 \in H(R)$ and consequently $u \in Q(R, S_0)$. Hence (iii) follows.

3. Main result

Let A_n be the class functions f analytic in the unit disk K_1 and such that $f(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots$, where $n \ge 1$ and $a_n \ge 0$. Put $\mathscr{C}K_1 = \{z \colon |z| \ge 1\}$. The main result of this paper is the following:

Theorem. Consider a fixed subclass S_0 of the class S satisfying the conditions of Lemma 2. Put

$$(3.1) r_0 = \sup \{r: [Q_n(z_1, S_0) \cap \mathscr{C}K_1] - \{1\} = \emptyset; |z_1| = r\}.$$

Then the conditions: $f \in A_n$, $F \in S_0$, $f \ni F$ in K_1 , $f \neq F$ imply |f(z)| < |F(z)| if and only if $0 < |z| < r_0$.

Proof. We first prove the sufficiency. Suppose there exist two functions $f \in A_n$, $F \in S_0$, $f \neq F$, such that $f \ni F$ in K_1 and $|f(z_1)| \geqslant |F(z_1)|$ with some $0 < |z_1| < r_0$. Then $f(z) = F(\omega(z))$ with $f \in A_n$ means that $\omega \in B_n$. We have $f(z_1) = F(\omega(z_1)) = F(z_2)$, where $z_2 = \omega(z_1)$, i.e. $z_2 \in H_n(z_1)$, $z_2 \neq z_1$. Now, $|F(z_2)| \geqslant |F(z_1)|$ means that $u = F(z_2)/F(z_1)$ has absolute value $\geqslant 1$ without being equal 1. This implies that $[Q_n(z_1, S_0) \cap \mathscr{C}K_1] - \{1\}$ is not empty. Now, $0 < |z_1| < r_0$, and this contradicts the definition of r_0 .

Suppose now $z_1 \, \epsilon \, K_1$ is such that $|z_1| > r_0$. This means that there exists $u \neq 1$ and $F \, \epsilon \, S_0$ such that $|u| \geqslant 1$, $u = F(z_2)/F(z_1)$ and $z_2 \, \epsilon \, H_n(z_1)$. By Lemma 1 we can find $\omega \, \epsilon \, B_n$ such that $z_2 = \omega(z_1)$. Consider now $f = F \circ \omega$. Obviously $f \, \epsilon \, A_n$. Moreover, $f(z_1) = F(\omega(z_1)) = F(z_2) = u F(z_1)$ and this implies $|f(z_1)| \geqslant |F(z_1)|$. This means that |f(z)| < |F(z)| not necessarily holds for $|z_1| > r_0$. Suppose now $\{z_k\}$ is an arbitrary sequence of complex numbers such that $r_0 < |z_k| < 1$, $\{|z_k|\}$ strictly decreases and $\lim_{k \to \infty} |z_k| = r_0$. As above we can find $F_k \, \epsilon \, S_0$ and $\omega_k \, \epsilon \, B_n$ such that for

 $f_k = F_k \circ \omega_k$ we have $|f_k(z_k)| \ge |F_k(z_k)|$. Since S_0 and B_n are compact families, we can find by choosing suitable subsequences a point z_0 with $|z_0| = r_0$, and two functions $F_0 \in S_0$, $\omega_0 \in B_n$, such that $|f_0(z_0)| \ge |F_0(z_0)|$ where $f_0 = F_0 \circ \omega_0$. Thus |f(z)| < |F(z)| not necessarily holds for $|z_0| = r_0$.

4. An application

We now apply Theorem 1 with $S_0 = S^*$ which is the subclass of functions starlike w.r.t. the origin to obtain in a different way a well known result due to G. M. Golusin [6]. Suppose n = 1. If $F \in S^*$ and $z_1, z_2 \in K_1$ $(z_1 \neq 0)$, then the point $[F(z_2)/F(z_1)]^{1/2}$ is situated in the closed disk with boundary

$$(4.1) w = (z_2/z_1)^{1/2} (1-z_1 e^{it}) (1-z_2 e^{it})^{-1}, -\pi \leqslant t \leqslant \pi,$$

whose centre and radius are

$$s = (1 - |z_2|^2)^{-1} (q - |z_2|^2 q^{-1}), \ R = |z_2| (1 - |z_2|^2)^{-1} |q - q^{-1}|,$$

where $q = (z_2/z_1)^{1/2}$, and conversely, if u is inside the disk (4.1), there exists $F \in S^*$ such that $u = [F(z_2)/F(z_1)]^{\dagger}$, cf. e.g. [9]. We take here

those branches of square root which give 1 as z_2 approaches z_1 . In view of Lemma 2 we can assume that $z_1 = r \epsilon(0, 1)$ and $z_2 \epsilon H(r)$. Since w^2 as given by (4.1) is an analytic function of $z_2 \epsilon H(r)$ its modulus attains a maximum on $\partial H(r)$. In order to prove that $[Q(r, S^*) \cap \mathscr{C}K_1] - \{1\}$ is empty for some $r \epsilon(0, 1)$ we have only to show that

$$|(z/r)[(1-re^{it})/(1-ze^{it})]^2|<1$$

for any $z \in H(r) - \{r\}$. The boundary $\partial H(r)$ of H(r) is given by the following equations:

$$(4.3) z = z_0(\theta) = r^2 e^{i\theta}, \quad \frac{\pi}{2} \leqslant \theta \leqslant \frac{3\pi}{2}$$

$$(4.41) z = z_1(a) = r(a+ir)/(1+iar), 0 \le a \le 1;$$

(4.42)
$$z = z_2(a) = r(a - ir)/(1 - iar), \quad 0 \le a \le 1.$$

Suppose z is situated on the arc (4.3). Then (4.1) gives

$$|w|^2 = |w(t, \, heta)|^2 = r|(1-re^{ti})/(1-r^2e^{i(t+ heta)})|^2;$$

hence $\max_{t,\theta} |w(t,\theta)|^2 = |w(-\pi,\pi)|^2 = r(1-r)^{-2}$. Now, if $0 < r < \frac{1}{2}(3-\sqrt{5})$, then $r(1-r)^{-2} < 1$ and (4.2) holds for z given by (4.3). Suppose now z is represented by (4.41), or (4.42). From (4.1) we obtain

$$|w| \leqslant |s| + R = (1 - r^4)^{-1} \sqrt[4]{(a^2 + r^2)(1 + a^2r^2)} \times \sqrt{(1 - ar^2)^2 + r^2(a - r^2)^2} + r(1 - a)\sqrt{1 + r^2}.$$

Now, by an elementary calculation we show that

$$(4.6) \qquad (1-r^4)^{-2}\sqrt{(a^2+r^2)(1+a^2r^2)} \times \\ \times [\sqrt{(1-ar^2)^2+r^2(a-r^2)^2}+r(1-a)\sqrt{1+r^2}]^2 < 1,$$

holds for all $a \in (0, 1)$ and $r \in (0, \sqrt{2}-1)$. This implies that (4.5) holds on both open arcs (4.41), (4.42) with $r_1 = \frac{1}{2}(3-\sqrt{5}) \in (0, \sqrt{2}-1)$. Hence (4.2) holds with $r < r_1$. This shows that the sets $[Q(r, S^*) \cap \mathscr{C}K_1] - \{1\}$ are empty for $r \in (0, r_1)$. On the other hand, the set $[Q(r_1, S^*) \cap \mathscr{C}K_1] - \{1\}$ contains the point -1. In fact $z_2 = -r_1^2 \in H(r_1)$ and for $F(z) = z(1+z)^{-2}$ we have $F(z_2)/F(z_1) = -r_1(1-r_1)^{-2} = -1$. This proves that r_0 as given by (3.1) with $S_0 = S^*$ is equal to $r_1 = \frac{1}{2}(3-\sqrt{5})$.

Suppose now $n \ge 2$. The boundary $\partial H_n(z_1)$ of $H_n(z_1)$ is given by the equations (2.1), (2.2) and the equation

$$(4.7) \hspace{1cm} z=z(\theta)=r^{n+1}e^{i\theta}, \arg z_1^n+\frac{\pi}{2}\leqslant \theta \leqslant \arg z_1^n+\frac{3\pi}{2}.$$

In an analogous manner as above we obtain with (4.7) and (4.1), that $\max_{\theta,t}|w^2(t,\theta)| = \left|w^2\left(-\frac{1}{n}\pi,\frac{n+1}{n}\pi\right)\right| = r^n\left(\frac{1+r}{1-r^{n+1}}\right)^2. \text{ With (2.1) or (2.2)}$ and (4.1) we have $\max_{\theta,t,\theta}|w^2(\theta,t,\theta)| = \max_{\theta,t,\theta}r^{n-1}\left|\frac{a+ir}{1+iar}\left[(1-re^{i(t+\theta)})\times \left(1-\frac{a+ir}{1+iar}r^ne^{i(nt+\theta)}\right)^{-1}\right]^2\right| = \left|w^2\left(1,-\frac{1}{n-1}\pi,\frac{n}{n-1}\pi\right)\right| = r^{n-1}\left(\frac{1+r}{1-r^n}\right)^2.$ Hence, the following conditions: $n \geq 2$, $f \in A_n$, $F \in S^*$, $f \supset F$ and $0 < |z| < r_0(n)$ imply |f| < |F|, where $r_0(n)$ is the least positive root of the equation $r^{n-1}\left(\frac{1+r}{1-r^n}\right)^2 = 1$

In this place I should like to express my gratitude to Professors J. Krzyż, Z. Lewandowski and J. Siciak for their help and criticism in writing this paper.

REFERENCES

- [1] Biolocki, A. et Lewandowski, Z. –, Sur une generalization de quelques theoremes de M. Biernacki sur les fonctions analytiques, Ann. Polon. Math. 12 (1962), 65-70.
- [2] -, Sur certaines majorantes des fonctions holomorphes dans cercle unite, Coll. Math. 9 (1962) 299-303.
- [3] -, Sur un type de fonctions holomorphes subordonnees, Folia Societatis Scientiarum Lublinonsis 2 (1962), 92-94.
- [4] Biernacki, M. -, Sur quelques majorantes de la theorie des fonctions univalentes, C. R. Acad. Sci. Paris 201 (1935), 256-258.
- [5] -, Sur les fonctions univalentes, Mathematica 12 (1936), 49-64.
- [6] Голузин, Г. М. —, Мажорация подчиненных аналитических функций I, Математический сборник, 29 (1951), 209-224.
- [7] —, Геометрическая теория функций комплексного переменного, Москва Ленинград 1952.
- [8] Lewandowski, Z. -, Starlike Majorants and Subordination, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 15 (1961), 79-84.
- [9] -, Sur certaines classes de fonctions univalentes dans le cercle unite, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 13 (1959), 115-126.
- [10] Shah Tao-shing, Goluzin's Number ½ (3-v/5) Is the Radius of Superiority in Subordination, Sci. Rec. 1 (1957), 258-261.

Streszczenie

Niech A_n będzie klasą funkcji $f(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots, a_n \ge 0$, regularnych dla |z| < 1, zaś S_0 niech oznacza pewną ustaloną podklasę funkcji F, klasy S.

W pracy tej dowodzę, że nierówność |f(z)| < |F(z)|, $0 < |z| < r_0$, przy założeniu $f \to_1 F$, zachodzi wtedy i tylko wtedy, gdy liczba r_0 jest określona przez warunek (3.1).

Opierając się na powyższym twierdzeniu wyznaczam stałą r_0 znalezioną wcześniej przez G. M. Gołuzina, w przypadku gdy n=1 i $S_0=S^*$.

Резюме

Пусть A_n обозначает класс функций $f(z)=a_nz^n+a_{n+1}z^{n+1}+\ldots, a_n\geqslant 0$, голоморфных в круге |z|<1, а S_0 — подкласс функций F класса S.

В работе автор доказывает, что неравенство |f(z)| < |F(z)|, $0 < |z| < r_0$ при условии $f \to F$ выполняется тогда и только тогда, если число r_0 определено условием (3.1).

Опираясь на доказанную теорему, автор определяет константу r_0 (найденую ранее Г. М. Голузиным) при n=1 и $S_0=S^*$.