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1. Introduction

Let the functions f and F be regular in the unit disk &';,. The function
f is said to be subordinate to F in K, if there exists a funetion o regular
in A, such that w(0) =0, |o(2)] < 1in K, and f = Fow in K,.

In this case we write f 3 F. M. Biernacki [4] was first to consider
the following problem. Suppose S, is a fixed subelass of the class S of
functions regular and univalent in the unit disk K; and subject to the
usual normalization. Suppose, morcover, that f 3 F, FeS, and f satisfies
some additional conditions (e.g. f(z)/f'(0)e8,). Find the greatest number
r,€(0, 1) such that the above stated conditions imply [f(2)] < |F ()]
for any zek, = {z: [¢| < ro} and any pair of admissible functions f, F.
Variant forms of this problem were investigated by Biernacki [5],
Golusin [6], Shah Tao — shing [10], Bielecki and Lewandowski [2],[3].
In [1] Bielecki and Lewandowski have given a general method of evalua-
ting 7, in case we know the estimate of arg(zF’(z)/F(z)) for FeS, and
f(z) = a2+ a,2%+ ... satisfies the following conditions: f'(0) > 0, f(z) # 0
for z + 0. In this paper we give a different method of evaluating the con-
stant ro for FeS,, where S, i8 a fixed subclass of S and f(2) = a2+ a,2% ...
is regular in K,. This method can be effectively applied in case we know
the region of variability of the expression F(z,)/F(z,), where 2,2, are
arbitrary fixed points of K, and F ranges over S,.

2. Auxiliary lemmas

In what follows we shall need Lemma 1 which is a generalization of
a result of Rogosinski.
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Lemma 1. Let B, be the class of functions o such that o(z) = a,2"+
dap 2" ., is regular in Ky, a,>0,|o(z)| <1 in K,. Suppose z,
18 a fixed point in K,. Let H (z) be the closed domain whose boundary is the
union of the semicircle z = ilz,|2)-€",0 <t < =, and two circular arcs
Iy, 1y joining 2 to i|2,| 2} and —1|2,|2} to 27 resp., both arcs 1,, 1, being tangent
to the circle |z| = |z,|"*'. Then for each weB, we have v (z,)eH,(z) and,
conversely if [ eH, (%), then there erists weB, such that w(z,) = ;. The
arcs 1,,1, have the following parametric representation :

2.1) Ii: w= 2} (a+i|5) (L +ialz|)™, 0<a<l.
(2.2) l: w =2 (a—ilz))(1—ialz)™", 0<a< .

The proof of this lemma can be easily obtained in an analogous way
as in {7], or [8]. In what follows we write H(z) instead of H,(z).

Lemma 2. Supposc 8, is a fizved closed subclass of S such that
(2.3) FeS, and |y <1 implies 7 'F(yz)eS,.

Suppose Q,(2,, Sy) = {u: v = F(z,)|F(z,)}, where 2, is a fired point of
K,, z, ranges over I,(z) and F ranges over S,. Then Q(z,,8,)=Q,(21,8,)
has the following properties:

(i) Q(2,, S,) 18 connected,
(ii) Q (215 8o) = Q(n21, 8,),. where 9z, = |24,
(iii) 0<r< R<1, then Q(r, Sy) = Q(R, S,).

Proof. The property (i) is obvious. By (2.3) we see that any FeS
can be continuously deformed into identity. Hence we easily deduce that
(2, 8,) is arcwise connected.

(ii). Take arbitrary z,¢K,. For any wueQ(z,, 8,) we can find feS,
and 2,¢H (2,) such that v = f(2,)/f(z,). Take now an arbitrary » such that
|| = 1. By (2.3), F(z) = 5 'f(n2) 8,. Obviously ¢, = 52, H(52,). Hence
u = F(L,)|F(92,) eQ(n2,, 8,). This means Q(z,, S,) = @(5z,, S,) and conse-
quently Q(z,, 8,) = Q(52,, S,).

(iii) Suppose 0<r< R<1 and r =AR(0 < A< 1). If ueQ(r, S,)
then we can find feS, and z,eH(r) such that » = f(2,)/f(r). If F(z2)
= A 'f(Az), then FeS, by our assumption. Moreover, wu = f(z,)/f(r)
= F({,)|F(R) where A{, = z,. From the definition of H(r) it follows
that z,e¢H(r) implies A~ 'z, = (,eH (R) and consequently wueQ(R, S,).
Hence (iii) follows.

3. Main result

Let A, be the class functions f analytic in the unit disk A, and such
that f(2) = @,2"+ @, 12" +..., where 2>1 and a,>0. Put €K,
= {2: [2| = 1}. The main result of this paper is the following:
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Theorem. Consider a fixed subclass S, of the class S satisfying the
conditions of Lemma 2. Put

(3.1) ry = sup [r: [Qu(z, 8y) N €K, 1—{1} = Glz| =r).

Then the conditions: fedA,, FeS,,f 3 F in K,,f # F imply |f(z)| < |F(2)
if and only if 0 < |2| < r,.

Proof. We first prove the sufficiency. Suppose there exist two
functions fed,, Feb(,,f - F, such that f 3 F in K, and |f(z,)| = |F(z,)|
with some 0 < |28% r,. Then f(z) = F(w(z)) with feA, means that
weB,. Wehave f(z)) = F (m(z )} = F(2;), where z, = w(z,), i.e. z,¢H,(2),
2, # 2,. Now, |F(2,)| = |F(z,)] mecans that « = F(z,)/F(z,) has absolute
value > 1 without being equal 1. This implies that [@,(z,, 8;) N FKH,]—{1}
is not empty. Now, 0 < |2,| < g, and this contradicts the definition of »,.

Suppose now z,eK, is such that |z,| > r,. This means that there
exists v * 1 and FeS, such that (u| > 1, w = F(z,)/F(z,) and 2z,eH,(z).
By Lemma 1 we can find weB, such that z, = w(z,). Consider now
f = Fcw. Obviously fed,. Moreover, f(z,) = F(o(2))) = F(2,) = uF(z,)
and this implies |f(z,)| = |F(2,)|. This means that [f(z)| < |F(z)| not
neceessarily holds for |z,| > ry,. Suppose now {2;} is an arbitrary sequence
of complex numbers such that r, < 2] < 1, {|2x|} strictly decreases
and lim|z;| = r,. As above we can find F.eS, and o eB, such that for

k—soo
fr = Frow, we have |fi(z:)| = |Fr(2)|. Since S, and B, are compact
families, we can find by choosing suitable subsequences a point 2z, with
|z] = 19, and two functions FyeS,, wgeB,, such that |fi(z,)| = |F#(20)!
where f, = I,0 w,. Thus |f(2)| < |F(2)| not necessarily holds for |2,| = 7,.

4. An application

We now apply Theorem 1 with 8§, = 8* which is the subclass of
functions starlike w.r.t. the origin to obtain in a different way a well
known result due to G. M. Golusin [6]. Suppose n = 1. If FeS* and
2y, 2,¢ K, (2, # 0), then the point [F(z,)/F(z,)]'* is situated in the closed
disk with boundary

¢4.1) w = (23/2))' P} (L—2,6") (1 —2,6") !, — <
whose centre and radius are

8 = (L—|25]%) ' (g— |2,12¢7 "), B = |2g|(1—2,1%) ' 1g—q "1,

where ¢ = (2,/2,)"%, and conversely, if « is inside the disk (4.1), therc

exists FeS8® such that w = [F(z,)/F(2,)]}, cf. e.g. [9]. We take here
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those branches of square root which give 1 as 2z, approaches z,. In view
of L.emma 2 we can assume that z, = r¢(0, 1) and z,¢ H (7). Since w? as
given by (4.1) is an analytic function of z,eH () its modulus attains
a maximum on 0H(r). In order to prove that [Q(r, 8°) N €K,]— {1}
is empty for some 7¢(0, 1) we have only to show that

(4.2) (z/r) [(1— re¥)[(1—2e")]2 < 1

for any ze H (r) — {r}. The boundary dH (r) of H (r) is given by the following
equations:

(4.3) 2 =z2(0) =1%°, T <0- ‘—f
(4.41) 2 =2z (a) =r(at+w)[(1+iar), O0<a<l;
(4.42) 2 = 2,(a) = r(a—ir)[(1—iar), O0<a< 1.

Suppose 2 is situated on the arc (4.3). Then (4.1) gives
w]? = lw(t, 0)|2 = r(1—re") /(1 — r26"+M)|;
hence max w(t, 0)|2 = |w(—x,x)|? = r(1—7)-2 Now,if 0 < r < }(3—V3),
1,0

then 7(1—7) * < 1 and (4.2) holds for z given by (4.3). Suppose now z
is represented by (4.41), or (4.42). From (4.1) we obtain

(4.5) ol < Js|+R = (1—#)"'V (@ £ ) (L abrt)
'/(1.— ar2)2+ rz(a_r2)é+ r(l— a)}/I -I.. 7.2_].

Now, by an elementary calculation we show that

(S (=) (a* + ) (L + a?rt)
X[ '/‘(T—‘—‘ITZ)—LF Tﬁa— r2)2+r(l—a) ]/i + ri]z <1,

holds for all ae(0,1) and re(0, ¥2—1). This implies that (4.5) holds on
both open ares (4.41),(4.42) with 7, = }(3—V35)e(0,V2—1). Hence
(4.2) holds with r < r,. This shows that the sets [Q(r, 8*) N €K ,]— {1}
are empty for 7¢(0, r,). On the other hand, the set [Q(r,, 8*) N €K ]— {1}
contains the point —1. In fact 2, = —»jeH (r,) and for F(z) = z(1+2)*
we have F(z,)/F(z,) = —r,(1—r,)"? = —1. This proves that r, as given
by (3.1) with 8, = §* is equal to r, = }(3—V5).

Suppose now # = 2. The boundary 0H,(z,) of H,(z,) is given by the
equations (2.1), (2.2) and the cquation

? 7 37
(4.7) z = 2z(0) = "' ¢®, arga] -+ o <0< argel + 71
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In an analogous manner as above we obtain with (4.7) and (4.1), that

| 1 w41\ s 14w XS0
max |w?(t, 0)] = \w?| — — =, - afl=r - T) . With (2.1) or (2.2)
0.t | n n 1 | L—r"

w-ir .
and (4.1) we have max|w?(a,t, 0)] = maxs" ' - [(_l—re'(”o’) X
a,t,0 a,t,0 1-+iar

f-ir R 1 \| 14-r\?
X (l = ,” gt 0) J | u-'—'(l, —_—x, T _x " "— ”-) .
1-+iar / | n—1 "aw—1 | \1—7

Hence, the following conditions: n =2, fed,, I'e8*,f 3 F and 0 < |z|
< ro(n) imply |f| < |F|, where ry(n) is the least positive root of the

1-+7r\*®
equation " ! ( i ,..) 45
¥

In this place I should like to express my gratitude to Professors
J. Krzyz, Z. Lewandowski and J. Siciak for their help and criticism in
writing this paper.
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Streszczenie
Niech 4, bedzie klasa funkeji f(2) = a,2" +a,,2""' +...,a, 20,

regularnyeh dla 2] < 1, za$ §, niech oznacza pewna ustalona podklase
funkeji F, klasy §.
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W pracy tej dowodze, ze nierownosé |[f(2)| < |F(2)],0 < |2] < 7y,
przy zalozeniu f 3, F, zachodzi wtedy i tylko wtedy, gdy liczba 7, jest
okreslona przez warunek (3.1).

Opierajace sie na powyzszym twicrdzeniu wyznaczam staly », znale-
ziony wezesniej przez G. M. Gotuzina, w przypadku gdy » = 11 8§, = 8",

Pe3omMe

Mycts A4, o6o3uauaer knacc dyukumit f(2) = a,2" +a,, 2" +...,a,> 0,
rosioMop(pHbix B kpyre [z| < 1,a N, — noaknacc ¢yHkuuid F' xnacca 8.

B pa6oTe aBTOp noKa3blBacT, YTO HepaBeHCTBO |f(2)| < |F(2)], 0 < [2| < rg
npu ycioBuu f 3 K BbINOJNIHAETCA TOr4a H TOJbKO TOIAd, €CJM 4HCAO r, onpene-
JneHo yciaoBueM (3.1).

Onupasck Ha [OKa3aHHYK TEOpEMY, aBTOp ONpeae/seT KOHCTAHTY r, (HaHaeH-
yio pauee I. M. [onysuubimM) mpu n = 1 u §, = S".



