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1. Introduction. Notation and statement of results.

In his book [6] P. Montel suggested to investigate two classes of func-
tions regular and univalent in the unit circle K = {2: [2| < 1}. The former
class should satisfy the normalization conditions

(1.1) f(0) =0,
(1.2) f(2y) = 244
while the latter one should satisfy

(1.2a) fl(z) =1

'nstead of (1.2), where 2, +# 0 is a fixed point of K.

The problem of determining the domain of all possible values of f(z)
for the former class was treated in [4] for the general case and in [5] for
the particular case of starshaped functions.

In this paper we obtain distortion theorems for functions regular and
univalent in K which satisfy (1.1), (1.2) and (1.1), (1.2a) resp. and have
real Taylor coefficients at the origin. The corresponding theorems are
obtained as corollaries of analogous theorems concerning the more general
classes of functions which satisfy

(1.3) imz-imf(z) > 0
for any zeK with imz + 0, instead of univalency. The inequality (1.3)

means that any function satisfying this condition takes real values only
on the real axis and such functions are called following W. W. Rogosinski
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[9] typically — real. Let T'(z,) be the class of functions regular in & which
satisfy (1.1)-(1.3) with 0< 2z, <1 and let S(z,) be the corresponding
subclass of univalent functions.
Similarly, let T'(z,) be the class of functions regular in K which satisfy
(1.1), (1.2a) and (1.3) and let 8’(z,) be the corresponding subeclass of univa-
lent functions.
We also consider the class 7', of functions regular in A which satisfy (1.1),
(1.3) and
(1.2b) lim f(x) = 1, x real,

1l
as well as the corresponding subclass &, of univalent functions.

In this paper we find structural formulae for the classes 7'(z,), 1" (z,), 1',
(Theorems 2.1, 4.1, 5.1) which yield in a standard manner the correspond-
ing sets Q(z,z2,), 2(2,2,), £2,(2z) of all possible values f(z) where z, z,
are fixed and f ranges over the given class (Theorems 2.2, 4.2, 5.2). This
enables us to find the exact bounds of [f(2)], [f'(2)], imf(2)|. In the limit-
ing case 2z, —~ 0, T(z,) becomes the well known class T of typically-real
functions with the usual normalization f(0) = 0, f'(0) = 1, and we obtain
the corresponding results due to G. M. Golusin [3] and M. P. Remisova
[7]. Since some parts of the boundary of the sets considered above corre-
pond to univalent functions, we obtain at the same time distortion theo-
rems for the corresponding subclasses of univalent functions.

In particular, the corresponding results for the class 8, (Theorems 4.1-1.6)
are generalizations of some theorems of V. Singh [11] obtained under
some further restrictions by variational methods.

The results given in this paper form a part of a Ph. D. thesis written
under supervision of Professor J. Krzyz.

I wish to express my sincere gratitude to Professor J. Krzyz for his
interest in this work and for his remarks, and also to Professor W. Kleiner
for helpful comments.

2. Structural formula for the class T(z,)

We have the known lemma [13, p. 134] for Riemann-Stieltjes integrals
which will be our basic tool for what follows.

Lemma 2.1. Let ¢(¢) be a continuous (real — or complex — valued)
function of the real variable te[0, 1], let h(¢) be a real, continuous and
positive function of te[0,1] and let §(f) be real and non-decreasing in
[0,1]). If

t
p(t) = [h(z)-dp(r),
0
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(=]
<

then the Riemann — Stieltjes integrals
1

. g(1)
(2.1) : ) du(t),
(2.1) [owadp

both exist and are equal.
We are now in a position to find a structural formula for T'(z,).

Theorem 2.1. If f(z) is a function of the class T'(z,), then there erists
a real, non-negative and non-decreasing function u(t), te[0, 1], satisfying

(2.2) [dut) =1

i 5
n oy [ 2l%t 14 220(20—1))
(2.3) 1(z) .f A1 22 2—1) du(l)

holds. On the other hand, if f(z) has the representation (2.3) with u(t) satis-
fying the above stated conditions, then feT(z,).

Proof. If fe7'(z,), then there exists obviously a positive number k
such that ¢ = kfeT. Conversely, for any ¢e¢T we can find » > 0 such
that xpel'(2,). As shown by M. S. Robertson [8], for any ¢e¢T we have
the representation

l- da(t
(2.4) v = | il

2241 +22(20—1)

where a(t) is non-negative and non-decreasing in [0, 1] and satisfies

(2.5) fda(t) =1

0
and any ¢ as given by (2.4), (2.5) belongs to T'.
In view of (2.4) we obtain for any feT(z,) the following representation

l xd
(2.6) f(2) —_—,f HMEC. 4 A

where f(f) = xa(t) is real, non-negative and non-decreasing in [0, 1]
and satisfies

- . dp (1) .
(2.7) J Z4+1+422(2t—1)

which is a consequence of (1.2).
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Next we put

f
1p
(2.8) u(t) —J - ap(x)

142521 —1)"

In view of (2.8) u(t) is real, non-decreasing and non-negative in [0, 1]
and satisfies

(2.9) f dp(t) —u(0) =1
which is a consequence of (2.7).
We now apply Lemma 2.1 with
g(t) = z[22+1+22(2t—1)],
h(t) = [7+1+22(2t—1)]*
and we obtain in view of (2.6) and (2.8) the following equality

1
T g(t)
h(t)

1@ = [ gwapw) = dult)

[} [
which yields the structural formula (2.3). Conversely, it is easy to verify
that any functions represented by (2.3) satisfies (1.2) and has the form
xp with peT and » > 0. This means that feT'(z,). Theorem 2.1 is proved.

The set of all possible values of the Riemann — Stieltjes integral
1

f H(t)du(t) where H(t) is a fixed, continuous, complex-valued function
0

and wu(!) is varying, can be determined by means of the following lemma
which is well known (cf. e.g. [1]).

Lemma 2.2. Let H(t) be a fixed, continous, complex-valued function
of a real variable 1¢[0,1] and let u(t) be a variable non-negative, non-
decreasing function of t¢[0, 1] which satisfies x(1)— #(0) = 1. Then the
set of all possible values of the integral

(2.10) I(g) = [ H(t)du(t)

is the convex hull of the curve w = H(?), 0 <t < 1.
Using the Theorem 2.1 and Lemma 2.2 we can easily determine the
set 2(z,2,). We obtain

Theorem 2.2. Put
1
(2.11") lo =2+ %

(2.11) ==,



On typically real funclions with Montel's normalization LY

The set 2(z,z,) of all possible values f(z) for a fized ze K and f ranging
over T'(2,) i8 the circular segment bounded by the circular arc

.
(2.12) w-_—,:usc“Jr':, —2<7<9,
with and-points
l 2
(2.13) 4= Lta)%
(1+2)?
(1—2p)2%
9.14 - ;
(2.14) (1—2)

For real z the set 2(z, z,) reduces to the interval with end-points A, B.

Proof. In view of (2.3) the values f(2) have the form (2.10) with
Lot 2(2t—1)
Hit) =2)—— 0<t <1,
() = 2 r+2(2—1)° S

The curve described by the point H (i) is the circular arc

T
w(t) = :,,-Cff—t--, —2<1<2,

with end-points determined by (2.13), (2.14). Our theorem now follows
readily as a consequence of Lemma 2.2.

3. Distortion theorems for the class 7'(2,).
Let I'y be the image of the circumference
1E—¥%—2)| = (L +2) under the mapping
(3.1) z=2(l) = (—Vi—4)2

where we take this branch of the square-root for which [2(¢{)] < 1. Let I,
be the image of the circumference

IE—3(L+2)] = 3((,—2) under the same mapping.

Both Iy and I', arc Jordan curves symmetric w.r.t. the real axis which
have a common tangent at z, and one-sided tangents at —1 and 1 resp.
intersecting at right angles. Let D,(k = 1, 2) be inside domains of I and
put D, = K\(D, u D,).

We now state the following

Theorem 3.1. If feT(2,), then the following exvact estimations hold:
if zeD, then

L Atz

(3.2) i < |f(=)) <

1422
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if zeD, then

(1+29)* 2] o (L=2)%e|
2 Tt SHOIS T
Put now
- _ e ore
(3.4) 1, = .

where Z,, { are given by (2.11'), (2.11).
If ze Dy, then
lla(e—2l(1 = 22,) . (1—2)2(1+2,)* |

(3.5) T =2 H_lmfz:zo)(l——zz;] < [ f(2)l <

Zollo—t) 2]

7o+ 1—t2]

The upper bound in (3.2) and the lower bound in (3.3) are attained by the
function

(3.6) fi(2) =

(14 20)%

(142)t

The lower bound in (3.2) and the upper bound in (3.3) are attained by the
function

(3.7) falz) =

(} — %)
(1—2)?

The upper bound in (3.5) 18 attained by the function

z(z'2)+ 1—zt,)

(3.8) fole) = <

where t, 18 defined by (3.4).
The lower bound in (3.5) is attained by the function
(3.9) fa(2) = 4fy(2) + (1= A)fa(2)
where A1¢[0,1] satisfies

| 1% (1—2)?

(1427 | (1—220)(2—2)

ES A
=lim— .
| (2—20) (1 — 22,)

Proof. The set £(z,z,) of all possible values f(2) is the circular seg-
ment determined by (2.12). According to the position of 4, B as given
by (2.13), (2.14) there are 3 possible cases.

(i) Suppose that <t OBA - T Since the circumference (2.12) contains
the origin, we have sup |f(z)| = |4, inf |f(z)] = |B|. On the other hand
!f feTzg) fe T(2g)
B4 < 0 in this case which implies, in view of (2.11'), (2.11),
0 2
(2.13), (2.14), re §+

re

> 0 and this means that zeD,\{—1}
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A
(ii) Suppose that <t OAB = ;l-, or re- T < 0 which implies similar-
ly as in (i) re—— - <0, i.e. 2z¢D,\{1}. We have now sup [f(z)| = |B],
56 1eT(zg)
inf [f(2)] = |4] and this yields (3.3).
1eT(25)

(iii) Suppose now that both angles <t OBA, <X OAB are less than 7;

This impli i >0 4 >0, i S B 0
18 1Inpiies re — — - I'e — , e, Té¢ —— < (), TIe w |
B B—A " TA-B 7 Mhoind T P

which means that zeD,. In this case the upper bound of [f(z)| corre-
sponds to a point of 0%2(z,2,) lying on the open circular are with and-
points 4, B, whereas the lower bound corresponds to a point on the chord
[A, B]. An elementary calculation yields now (3.5).

It is easy to see that the functions fy(z) (k = 1, 2, 3) are univalent.
This means that these functions realize the exact bounds of [f(z)] also
for the subclass S(z,) of univalent functions. Hence we obtain as a partic-
ular case of Theorem 3.1. the following

Theorem 3.2. If f(z) belongs to the class S(z,) of functions regular
and univalent in K which satisfy (1.1)-(1.3), then the following exact esti-
mations hold: if zeD,, then

. (1—2)%J2] _ _ (I +2)% 2]
(3.10) T—zp S If(2) < TEwT
if zelD),, then ]

. (1+29)*2] _ (1—z)2e
(3.11) TR 1f(2) 1— 2

if zeDy, then
(3.12) f(2)] -

where 1, is given by (3.4).

We now determine the set of all possible values of the derivative f'(z)
of feT(z).

Theorem 3.3. T'he set D(z, zy) of all possible values f'(z) for fived ze K
and variable f ranging over the class T(z,) is the closed convexr domain whose
boundary consists of the are
2o(1 —2) (& + 7)

220+ 1)
and the straight line seqment [A’, B'], where
LA G 2l

(1—2)*

:o(;o“t{)) 2|
224+ 1—1y|

(3.13) Wi(r) =

—2 <L T2

(3.14) A’
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(1+2)*(1—3)
(42

Proof. Differentiating (2. 3) we obtain

(3.15) B' =

B+ 1+25(2t—1)

(316  f)=0- 2)[ 1T a1y -
Hence the derivative f'(z) has the form (2.10) with
H(t) = ‘zq(l—z2)[to+g(2t—1)_]~! ey

2[0+2(2t—1))
Let ¢(7) be the complex function of the real variable which has a conti-
nuous derivative and does not vanish.

d '
Then we have ——arge(r) = im i (f)-.
di 9(7) lot T
Using this with ¢(z) = H,(r) where H,(t) = 1) we see that
T

arg H,(z) is strictly monotonic. Moreover, the change of argH,(r) does
not surpass =z (see e.g. [7]). This means that the convex hull of H,(z) as
well as that of H(t) are bounded by the corresponding arcs of H,(r)
and H(t) resp. and by the chords joining the end-points. Theorem 3.3
now follows in view of Lemma 2.2.

We now give the exact bounds of |f'(2)| for feT'(z,).

Let A,(k = 1, 2) be the inside domains of y; where y, are maps of the
circumferences [ —¢,| = {,+2, | —&| = {,+2 resp., under the transfor-
mation (3.1) and put 4, = K\ (4, v 4,).

The curves y,, ¥, are disjoint Jordan curves symmetric w.r.t. the real
axis which have at the points F 1 one sided tangents intersecting at an

angle g Under the above notation the following theorem holds.

Theorem 3.4. Suppose feT(z,). Then we have the sharp inequalities:
if zed,, then

_ (142)1—2] .
(3.17) IF (2)] < 11—‘*‘213-—’
if zed,, then
) < AP 2l
(3.18) @) < =2
if zed,, then
2 —
(3.19) e < el

2 |z — 2| |1 — 22| (1 + cos a) [2|
where a = arg(z,— 2)+ arg(1 —zz,) —argz.
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The signs of equality in (3.17) and (3.18) kold for f,(2) and f,(z) resp., where
fi(2) are defined by the formulae (3.6), (3.7). The sign of equality in (3.19)
holds for the function

= 2(1 +zz+zot)
(3.20) fiy = TS0,

where 1% = |{— ol — &,
Proof. It follows from (3.16) that

Sk @< 25 )l dpu(t)
where
(3.22) o e 2Lz +1+22(2t—1)]

[22+1+22(2t—1)]
Now, it can be easily deduced that

if zed,, then sup |s(zy, 2,1)| = 8(2¢y 2,1),
o<t<l

if zed,, then sup [8(zy, 2, t)| = 8(2,, 2, 0),
o<t<1

if zed;, then USl}pl (20,2, )| = s(zw 2y (16— &l— Co+2)/4)

Now, the well known estimation for Riemann-Stieltjes integrals implies
the Theorem 3.4.

All the extremal functions are univalent and this means that the
inequalities (3.17) — (3.19) are also best possible for the derivative f'(z)
of feS(z,).

The sets A4, defined above appear also in the bounds of imaginary
parts of functions of the classes 7'(z,) and S(z,). We have the following

Theorem 3.5. Suppose feT(z,). Then we have the sharp inequalilies:
if zed,, then

(3.23) limf(2)] < (1+2,)?im (sz’z ,

if zed,, then

(B2 fim f(2)] < (1—2,)2] m(l__“' 5

if ze Ay, then

(3.25) imf(2)| < il m 177 |

| - lm_
|2— 24! |1 — 22,4] (1 4 cos a) z

where a = arg(z,—z)+ arg(1l—zz,) —argz.
The extremal functions are the same as tn Theorem 3.4.
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Proof. It follows from (2.3) that
[1422\ [ 241+ 22(2—1)
. 5 T & o 0 Lzo ‘.4 -
= —im|— — - - lu(t
m f(2) o )J 21 oz@—1)e MU

and this gives

1
~2

tm 22| [ 1)l dpa 1
im =" [ 18(20y 2y 0)ldu(t)

(3.26) limf(2)] < azl

The right hand sides in (3.21) and (3.26) are the same apart from a factor
which does not depend on t. Using the same argument as in Theorem 3.4
we obtain the inequalities (3.23) — (3.25).

The same inequalities also hold for the class S(z,).

4. The structural formula for the class 7', and its applications.
The formula (2.3) enables us to find the structural formula for the
class T,. We prove the following

Theoremm 4.1. If feT, then there erists a non-negative, non-decreasing
funetion u(t) statisfying (2.2) and

(4.1) lim u(t) = p(0) = 0
such that e
1
(4.2) flapes [l "R du(t),
J 24 1+422(20—1)

(}onvérsely, if u(t) satisfies the above stated conditions, then the function
definied by the right hand side term in (4.2) belongs to T,.

Proof. Suppose fe7',. It is easy to see that

1 z
g(2) = (1— J®) 5

g

n

1
belong to T(l—-— - ) In view of Theoreni 2.1 we have
n

i

Z2+1+422,(2t—1
y,.(z)=fz[—+ ~+ 22, ( )]

2i1vaz@—n) 0

1 .
where z, = 1— — and u,(t) are non-negative, non-decreasing and satisfy
n

(2.2). In view of a theorem of Helly (cf. e.g. [11]) we can choose a con-
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vergent subsequence u,, (f) with the limit u(f) subject to analogous con-
ditions as u, (). We have limg,(z) = limg, (2) = f(2) and
k

n

z[Ck+ 1 +"Ck(2t-—1)]
Z11+22(20—1)

ynk(z) T

.
0

#"A (t) 9y

1
where (, =1— —. In the last integral the integrand tends in [0, 1]
Ny

41z
—— and this yields in the limiting case
224+ 1+ 22(2t—1)

the formula (4.2).

Suppose now that u(¢) is a non-negative, non-decreasing function which
satisfies (2.2) and (4.1). We shall prove f(¢) as defined by (4.2) belongs
to T',. We first verify that f(z) takes real values only for real z. We have

dtdp(t)
2241+ 2z(2t— 1))

f&) = F@) = le—zi1— i) [

1
e—zl(1—lzl) [
(2l + 1)+ 4 2] J S

1
We now take Ade(0,1) such that \/(u) = %.
8

1
Then [ 4tdu(t) = f-lfdp(l] 46:} = 20 > 0.
(1]

Hence |f(z)—f(z)| = 0 if and only if 2—2z = 0. We next verify that (1.2b)
holds.

Take an arbitrary & > 0. In view of (4.1), h(é) = u(d6)— u(0) < 3¢
for 6 sufficiently small. Again for real 2 sufficiently near 1 and for é already
chosen

A—zp e
(1—2)24 420
Thus we have
Ly F ) _ du(t)
N—f(z)] = l(l“‘z)zaf*(z 1)2—{—-4!2 T J (z— 1)’—{-4!2 ;
d=sty A X
\h(6)+zl———);—m<2 7l

and this proves that feT,.
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We have still to prove the necessity of (4.1). Suppose, on the contrary,
that u(0) = 0 < lim u(t) = A. Then we have u(t) = 24 (1 —A)»(t), where
1 [/

—0+

V(») =1 and »(2) is continuous at ¢ = 0. It is easy to see that lim f(z)
0 o

=1—4 < 1. The Theorem 4.1 is proved.

Corollary 4.1. The condition (1.2b) cannot be replaced by the condi-
tion limf(z) = 1. Let D be the square [rew| < 1, |imw| < 1 with removed
1

1 1
the segments: rew =1— —, |imw| > —,n =2,3,.... The function
n n

w = f(z) mapping conformally K on D with f(0) = 0, f’'(0) > 0 obviously
belongs to T,, the limit limf(z), however, does not exist.
21

We now determine the set 2(z) of values taken by f(z) for fixed ze¢ K
and varying feT',.

Theorem 4.2. Let { be defined by (2.11), let I" be the circular are defined
by the equation
T+ 2

(4.2) w = , —2<1<2,
Tyl
and put
(4.3) B =
' ST

The set 2(z) = {w: w = f(z), feT,} is the union of the open circular segment
whose boundary consists of I' and the straight-line segment [0, B,] and of
the arc I' with the origin excluded.

For real z the set 2(z) reduces to the segment (0, B,].

Proof. Let us consider the class T* of functions admitting the repre-
sentation (4.1). Obviously 7, < 7. The value f(z), feT*, has the form
considered in Lemma 2.2 with Ah(t) =41[{+2(2t—1)]1, 0 <t <1. The
curve described by the point % (t) is the circular arc (4.2) with and points
0, B,. Using the Lemma 2.2 we obtain the set D*(z) of values f(z), feT*,
which shows to be the closed circular segment corresponding to I We
now prove that all the points of D*(z) different from those on the segment
[0, B,) correspond to feT,. If wel', w # 0, then w can be expressed by
(4.1) with ux(t) = u,(t), where u,(t) has a jump equal 1 at 5e(0, 1]. This
gives obviously a function of the class 7',. Suppose now we{D*(z)\[0, B,)}.
There exists F, ¢T, corresponding to a point B, on I'such that B, = F,(z)
and we[B,, B,]. Then we have w = F(z) with F(2) = AF,(2)+ (1— A)F,(2),
where 0 <A <1 and F,(2) = 42(1+2)"2 which corresponds to u(t)
= Ap,(t)+ (1 — A) u, (t). Obviously FeT,. The points on [0, B,) correspond
to the functions AF,(z) with 0 < 4 < 1 which do not belong to T,. This
proves our theorem.
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Put now @, = K, ~ K,, where K, = {2: |z—i| < y2}, K, = {z: |2+
+1i| < y2} and suppose that

[124-2rel

(4.4) R

where ( is defined by (2.11).
Under this notation the following theorem holds.

Theorem 4.3. Suppose feT,. Then we have the sharp inequalities:
if zeG,, then

4lz]
(4.5) If(2)] < TEWIE
if ze K\G,, then
(2—1") 2|
(1.6) 1f(2)] < m

The signs of equality in (4.5) and (4.6) hold for
Fi(2) =42(14-2)"2 and F,(z) = ﬂ res
. 3 4+1—z2t* P
Proof. In view of (4.1), [f(2)] < sup |F(2,t)|, where F(z,1)

1tz O
— . An elementary calculation shows that sup |F(z,?
2241+ 22(2t—1) i o<t£x| =, 1)

= |F(z,1)| for z¢G,, whereas sup |F(z,1)] = |F(z, t,)|, where t, = 1 (2 —t*)

0<t<1

and t* is defined by (4.4). This gives (4.5) and (4.6).
Corollary 4.2. The greatest lower bound of |f(2)|, feT,, is equal O.

E O ey

Besides, for any fixed ze K, f,(2) —> 0, if ¢, — 0.

Eu%

, where 0 < e, <1, then obviously f,eT,.

Corollary 4.3. The extremal functions in (4.5) and (4.6) are univalent.
This implies that the estimations (4.5) and (4.6) also hold for the subclass
N, of functions univalent in K which satisfy f(0) = 0, hm f(z) =1 and
have real Taylor coefficients at 2z = 0. pee

We now find the bounds of |f'(2)| for the class T,. Let £, be the
Jordan domain with the boundary C, where ¢, is the map of the circum-
ference {{: | —2| = 4} under the transformation z = 2({) defined by (3.1).
We now prove

Theorem 4.4. Suppose feT,. Then we have the sharp inequalities :
if 2eQ,, then

(4.7) If' (2)] < 4]1—2|[]1 +2[*
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if 2ze K\ Q,, then

11+ 2]
1.8 ¢ < — - —, wlh
(7:8) F' @< e =211 1 cona)’ ere
a = 2arg(l—=z) —argz.
The signs of equality in (4.7) and (4.8) hold for

F,(z) = 42(1 +2)* and F(z) = ez —
i %odn i PR ot megegnie g £ 0 R
where t, = }|—2|, resp.

Proof. Differentiating both sides in (4.1) we obtain

41(1—22)

i du(t
s 1 2e@—1p PO

1
4.9 "(2) =
(4.9) re=1,

0
Put G(z,t) = 41[22+1 +22(2t—1)] *. An elementary calculation shows
that sup |G(z, )| is equal |G(z,1)| and |G(z,1,)| for ze2, and zeK\ 2,

o<i<1
resp. The estimations (4.7), (4.8) follow now readily from (4.9).
The set 2, is also involved in the estimation of the imaginary part
of feT,. We have

Theorem 4.5. Suppose feT,. Then we have the sharp inequalities:
if 2eQ,, then

(4.10) limf(z)] < 4|im 7 e b
if ze K\ Q,, then

Y 2] . 1428
411 — 1
( ) limf () 1—2[2(1+ cosa) Ilm P I

where u = 2arg(1—2z)—argz.
The signs of equality in (4.10) and (4.11) hold for F,(2) and F(z) resp.,
where F,(z), F(2) are defined as in the statement of Theorem 4.4,

Proof. Tt follows from (1.1) that for any fe7T, we have

1

imf(s) = —im- > [ s tut)
imf(z) = — i ;
z L.'/' 224+ 1+ 22(2t—1)2 r
Using the notation of the Theorem 4.t we have
1-+22
imf(z)| <’in Bl ! sup |G(z,t)|, and an analogour reasoning as that
B 0<t<1

used in proving the Theorem 4.4 yields (4.10) and (4.11).
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S. The structural formula for the class 7'(z,)
We now derive the structural formula for feT’(z,).

1 i
If fel"(2,) and a = :f[(T) then obviously, afeT. Conversely, if ¢eT,
then f(2) = @(2)/¢'(2,) belongs to T'(z,). This implies, in view of (2.4)
that any feT’(z,) has the form

: 5 ' zda(l)
(5.1) f“*-fzu4+zam—n

where «(t) is non-negative and non-decreasing in [0, 1] and satisfies

= (1""~o da(t)
(5.2) ]
[23+1+2¢(2t—1)F
Conversely, any f, as given by (i.1), with a(t) satisfying the conditions
just stated, belongs to 7" (z,). We now apply the Lemma 2.1 with ¢(?)
z
Tt 1+22(20—1)]

1—2
h(l), = —g——r B
[20+1+422(2t—1)T

Thiy gives the
Theorem 5.1. Suppose fel’(z,). Then there exists a function u(t) non-
1

negative and non-decreasing in [0, 1] with f du(t) = 1 such that
(1]

i 2
2 " 14 22,(2t—1
(5.3) fm=Tﬂ|m+iﬁu—ﬂwm

-

—%y 22+1422(2t—1)
Conversely, any function of the form (5.3) with u(t) satisfying just stated
conditions belongs to T'(z,).

Since the arc

(5.4) 0 = f~(z"+l+m°)». _2 <7<

1—2; 224142t

is not convex, the set of all posible values f(z) for a fixed z¢ K and f ranging
over T'(z,) which is the convex hull of the arc (5.4) has a complicated
form and the estimation of [f(2)| involves eclementary but tedious calcu-
lations.
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On the other hand, the set D’(z, z,) of all possible values f'(z), ze K
being fixed and f ranging over 1"(z,), can be found more easily.

Theorem 5.2. Suppose feT'(z,). Then the set D'(z,z)) = {w: w =
= f'(2),feT’'(2,)} is the closed conmvex domain with the boundary consist-
ing of the are of the cardioid

%(1—2°) (Co-+ )

(5.5) w = AL

:'(1 —-o} &+ )

Nt
~
A

[

where Ly, L are given by (2.10), (2.11) and of the straight line segment [A*, B*],
where

(1+2)(1—2)’
(1+20)(1—2)’

(1+2)'(1—2)
(1+2)'(1—2,)

(5.6) A =

(5.7) D=

Proof. Differentiating both sides of (5.3) w.r.t. z we obtain

1
o 1_2: FT2+1+22(2t—1)P
(5.8) f' (@) zz{! lzz+1+2z(2t—1)J Lk

with u(t) satisfying the usual conditions. The formula (5.8) has the form
occurring in L.emma 2.2 with

H(1—2)[ H+2(2t—1T
Hy = 24 zz)[i+- (2 )], 0<t<l,

21—z)Lc+2(2t—1)
The curve
Sot T )
5.9 0 = =N
G ( 4+~
is similar to the curve described by H (¢) and it is the map of the circum-
Go+T e x
ference Z = ;—I— containing the origin under the transformation
T

o = Z3. Hence H(t) also describes an arc of the cardioid

W(z) = Z(1— zz)(Co+T

L —-2<1<2

2a—A\ ¢+ r) ‘

with end-points 4*, B*. Using the Lemma 2.2 we obtain the Theorem 5.2.
We next give the exact upper bounds of [f'(2)| and [imf(2)| for fe T’ (z,).

Using the notation of Theorems 2.2 and 3.1 we obtain
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Theorem 5.3. Suppose fel”(z,).
if zeD,, then
(1+2)" [1—z
5.10 "(2)] < ;
(5.10) @< T

if zeD,, then

! ; (1—z) 14z
(5.11) If'(2)] ST A A

if zeD,, then

5 z%(co—to)z‘ et
(5.12) Iff (2)] < o |

The signs of equality in (5.10 — (5.13) are attained for the functions

= g (1'*'20)3 2

(5.13) {9 o g

i =) 2

(5.14) 1) =
2 2

(5.15) Flef 2 L — b :

1—2 224-1—1tz’

respectively. 1T'he real number t, is defined by (3.4).
Proof. Using (5.8) we obtain

f’( < z(z) |1_22 | (
2 XL — ————. Bup
| )N < |z|z 1 20 _;<l<2 w(T),

where w(7) is defined by (5.9). Moreover, |nm(t)| = — |w(t)|> where w(7)

é“l! =

1
is given by (2.12). Clearly sup |o(z)| = — sup|w(z)[2.

~0
Now, the same calculations as those used in proving Tneorem 3.1 yield
Theorem 5.3.

Corollary 5.1. All the functions (5.13) — (5.15) are univalent in K.
IHence the inequalities (5.10) — (5.12) are also best possible for the class
8’(z,) of functions ¢(z) univalent in K which satisfy ¢(0) = 0, ¢'(z,) = 1
and have real Taylor coefficients at the origin.

In the same notation we have
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Theorem 5.4. Suppose feT'(z).
If zeD,, then
[212(1 +20)° . 1422 |

(5.16) [imf(2)| < (1_zo)|1 +}| im- 7 |

if 2eD,, then

. : (1_30) L (P 3
5.17 mf(z)| < Jim :
@ Tl < Gipn—ar | ™% |
if zeDy, then
(Z0+1—2h)? [2]* | 1+z1'

(5.18) [imf(2)| < -(IW"%Z | — l

The signs of equality in (5.16) — (5.18) are atlained for the functions (5.13)
— (5.15) respectively.
Proof. The formula (5.3) gives

2> . 1+2% [zo+1+2zo(zt—1)]2

imf{zg) = — ——5im-— du(t).
=i 1—2 v ) mrirez@—1)p 0
Hence
2 1422
fimf(2)] < 2 [im 22| sup | (o)
—Zzo 4 re( - 2,2]

where () is given by (5.9). Now, the same reasoning as that used in
proving Theorem 5.3 yields Theorem 5.5.

Theorem 5.5. Since the extremal functions (5.13) — (5.15) are wuni-
valent, the inequalities (5.16) — (5.18) are also best possible for the class S’ (z,).
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Streszczenie

Praca dotyczy klasy 7'(z,) funkeji holomorficznych w kole jednostko-
wym K spelniajacych warunki:

(1) J(0) =0
(2) imf(z)-imz >0 dla imz # 0
(3) f{;u} =2y 0 <3 < 17

klas 1"(z,) i 1',, ktore otrzymujemy zastepujac odpowiednio warunek (3)
warunkiem:

(4) fz) =1, 0<z<]l,
wzglednie warunkiem
(5) lim f(x) =1

Il

oraz ich podklas 8(z), 8'(2,) i N, utworzonych z funkeji jednolistnych.

Ze znanego wzoru Robertsona wyprowadzono przedstawienia parame-
tryczne tych klas i w oparciu o nie wyznaczono obszar £(z, z,) wartoSci
f(z) przy z ustalonym w kole K i funkeji f zmmieniajacej sie w klasie T'(z,)
oraz obszar A (z, z,) warto$ci pochodnej f'(z). Analogiczne wyniki uzyskano
dla klas 7T"(z,) i T,. Stad otrzymano ostre oszacowanie |[f], |f'|i [imf| w tych
klasach, przy czym prawie wszystkie 83 ostre w podklasach funkeji jedno-
listnych.

Pesdome

B pa6ore nccirepoan kiace T(2,) Gpynknnii, rosiomoppubix B eXHHUY-
HoM Kpyre K, oTBeqalolMX YCIOBMAM:

f(0) = 05 (1)
imf(z)-imz >0 paa imz # 0 (2)
flzg) =2, 0<2zp<1, (3)
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knaceot T (2,) u T,, nonydaemvie 3amMenoif ycioBusa (3) na yciaosue

F(z) =1, 0<2 <1, (4)
WK
lim f(z) = 1, (5)
zsl-
a TakmKe uX noakiaccn S(z,), 8'(2,) n 8,, oOpa3oBalnbic H3 OTHOJMUCT-
HBIX (QyHKUUIA.

N3 wussectHoit ¢gopmyanl PobGeprcoHa BhlIBeIeHLI I1lapaMeTpHuecKue
NpencTaBlieHNA 3TUX KIAaccoB M, ONMMpasch HAa HUX, HailmeHa o6JacTb
2(z, z,) 3Havenuii f(z) c MocToAHHKIM 2z B Kpyre J 1 @yukuuun f Menniouieii-
cA B knacce T(2,). Halinena takie oGnactb 3naueHuil npou3BoxgHo# f’(z).
AHanornysoie pe3yibTaThl MoJydeHbl A KiaaccoB 17(9,) u T,. Ortciona
HalieHnl Tounknle oueHkH |f|, |f'| n [imf| B yka3aHHbIX Kinaccax. [Ipu atom
MOYTH BCe OLIEHKM B IMOJKJIACCAX OJHOJMCTHBIX ()YHKUMH TOYHBI.



