ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XVIII, 4	SECTIO A	1964

Z Zakładu Matematycznych Metod Fizyki Zespolowej Katedry Matematyki Wydziału Mat.-Fiz.-Chem. UMCS Kierownik Zakładu: doc. dr Zdzisław Lewandowski

ZDZISŁAW LEWANDOWSKI

Modular and Domain Majorants of Regular Functions

Majoranty modulowe i obszarowe funkcji holomorficznych

Мажоранты по модулю и области голоморфных функций

1. Introduction

Put $C_r = \{z: |z| < r\}$ for r > 0 and suppose f(z), F(z) are regular in C_1 and satisfy f(0) = F(0) = 0. We say that f(z) is subordinate to F(z) in C_r , $r \in (0, 1)$ and write (f, F, r) if there exists a function w(z) regular in C_r and such that w(0) = 0, |w(z)| < r, $f(z) \equiv F(w(z))$ in C_r . We also say that F is a domain majorant of f in C_r . On the other hand, if the inequality $|f(z)| \leq |F(z)|$ holds in C_r , we say that f is subordinate to F in modulus and write |f, F, r|. In this case we call F a modular majorant of f in C_r . Obviously (f, F, r) (resp. |f, F, r|) implies (f, F, r') (resp. |f, F, r'|) for any 0 < r' < r. According to the Schwarz lemma (f, F, r) is equivalent to |f, F, r| in case F(z) = z but this does not hold for arbitrary F. M. Biernacki initiated in 1935 the investigations concerning relations of the following form: (f, F, 1) implies |f, F, r|, under various assumptions on fand F, with $r \in (0, 1)$ depending only on classes in which f and F are admitted to vary.

In [1] the author initiated the converse problem and obtained an estimation for r_0 such that |f, F, 1| implies (f, F, r_0) with F being univalent.

Biernacki considered two cases. First he assumed that both f and F belong to the same class of functions and later on he put less restrictions on f, e.g. he supposed F to be univalent and f to be arbitrary.

The aim of this paper is to present a general method (Theorem 1) which enables us to tackle problems concerned with the converse problem of Biernacki for the different range of f and F. As an application of this method the Theorem 2 is given.

2. Notations and auxiliary lemmas.

Let S be the class of functions $F(z) = z + a_2 z^2 + \ldots$ regular and univalent in C_1 and let S_0 be the subclass of functions starshaped w.r.t. the origin. Let further N be the class of functions w(z) regular in C_1 and such that $|w(z)| \leq 1$ in C_1 .

If ∂C_r is the boundary of C_r , we call the Rogosinski domain an open and bounded set O_r^0 with the boundary consisting of the left half of ∂C_r and two circular arcs symmetric w.r.t. the real axis, passing through z = 1and touching ∂C_r at $z = \mp ir$. In [2] the following lemma was of basic importance.

Lemma 1. Suppose that z ranges over the closed disc $\overline{C_r}$, (0 < r < 1), and w(z) ranges over N so that $w'(0) \ge 0$. Then the set of all possible values of w(z) is identical with $\overline{O_r^0}$.

Let now O_r^n be the bounded domain with the boundary consisting of the left half of $|z| = r^{n+1}$ and two circular arcs symmetric w.r.t. the real axis, passing through $z = r^n$ and touching $\partial C_{r^{n+1}}$ at $z = \mp ir^{n+1}$, where n is a positive integer.

Lemma 2. Suppose that w(z) has a zero of order at least $n(n \ge 0)$ at the origin and $w^{(n)}(0) \ge 0$. Suppose moreover that the function w(z) ranges over N and z over $\overline{C_r}$. Then the set of all possible values w(z) is identical with $\overline{O_r^n}$.

Proof. The case n = 0 is included in Lemma 1. Suppose $n \ge 1$. The function $w_1(z) = z^{-n}w(z)$ is regular in C_1 and obviously belongs to N. In view of Lemma 1, applied to $w_1(z)$, we see that all possible values w(z) cover the set obtained from O_r^0 by a homothety with the ratio r^n , and this proves the lemma.

3. Main result

Suppose that K is a compact subclass of S and let D(K, r) denote the closed set of variability of the ratio $g(z_1)/g(z_2)$, where z_1, z_2 vary indepedently over ∂C_r and g ranges over the class K.

Theorem 1. Suppose that f(z) is regular in C_1 and satisfies $f(0) = f'(0) = \ldots = f^{(n-1)}(0) = 0$, $f^{(n)}(0) \ge 0$ $(n \ge 1)$. Then |f, F, 1| implies (f, F, r_0) for any f satisfying the above stated conditions and for any $F \in K$ if and only if for any $r \in (0, r_0)$ the sets $D(K, r), O_r^{n-1}$ are disjoint $(n \ge 2)$, resp. have z = 1 as their unique common point (n = 1).

Proof. Suppose on the contrary that |f, F, 1| and (f, F, r_0) with $0 < r_0 < 1$ hold, whereas $u \in D(K, r) \cap O_r^{n-1}$ with $0 < r < r_0$ $(u \neq 1)$. There exist $F \in K$ and $z_1, z_2, z_1 \neq z_2$ on ∂C_r such that $u = F(z_1)/F(z_2)$. Besides, $u \in O_r^{n-1}$.

Hence for a certain $w(z) \in N$ we have $w^{(n)}(0) \ge 0$, $w(z) \ne 1$, $w(z_2) = u = F(z_1)/F(z_2)$ in view of Lemma 2. Put $f_1(z) = w(z)F(z)$. The function $f_1(z)$ satisfies the assumptions of the Theorem 1. We have obviously $f_1(z_2) = F(z_1)$ and this contradicts the assumption (f_1, F, r_0) in view of Lindelöf's principle.

Suppose now, conversely, that the sets D(K, r), O_r^{n-1} are either disjoint for all $i \in (0, r_0)$, or have z = 1 as their only common point in case n = 1. Suppose, moreover, that there exist the functions f(z), F(z) satisfying the conditions of the Theorem 1 as well as |f, F, 1|, whereas (f, F, r_0) does not hold.

Hence, there exists $z_1 \in C_r$, $0 < r < r_0$, such that $f(z_1)$ lies outside $F(C_r)$. However, f(z) = w(z) F(z) with $w(z) \in N$ and $w^{(n)}(0) \ge 0$. Thus, we can find z_2 with $|z_2| = |z_1| = r_1 < r$ such that $F(z_1)w(z_1)/F(z_2) > 1$. This implies $w(z_1) = (1+\eta) F(z_2)/F(z_1), \eta > 0$. However, $D(K, r), \overline{O_r^{n-1}}$ are disjoint, hence $w(z_1) \in \overline{O_{r_1}^{n-1}}$ in view of the structure of O_r^{n-1} .

This contradicts Lemma 2 and our theorem is proved.

4. Applications.

Theorem 2. Suppose R_n , n = 1, 2, ... is the least positive root of the equation $x^n = (1-x)^2(1+x)^{-2}$. Suppose $F \in S_0$ and $f(z) = a_n z^n + ...$ with $a_n \ge 0$ is regular in C_1 . If |f, F, 1|, then (f, F, R_n) .

The number R_n cannot be replaced by any greater number in case $F(z) = z(1+z)^{-2} = F_1(z), f(z) = (-1)^{n+1} z^n F(z) = f_n(z).$

Proof. Put $D_0(r) = D(S_0, r)$ according to the notation of sections 2,3. In [2] we have proved that the set O_b^0 lies outside $D_0(r)$ and their closures have only two common points -b, 1, where $b = (1-r)^2(1+r)^{-2}$. Suppose $0 < r < R_n$. If $r^n < (1-r)^2(1+r)^{-2}$, then $\overline{O_r^{n-1}} \subset O_b^0$ and therefore $\overline{O_r^{n-1}} \cap D_0(r)$ is empty. Now Theorem 2 follows in view of Theorem 1.

On the other hand, taking $r \in (R_n, 1)$ we easily see that $f_n(-x) > F_1(x)$ for $R_n < x < r$. Since $F_1 \in S_0$, the domain $F_1(C_x)$ is starshaped w.r.t. the origin and therefore it does not contain the point $f_n(-x)$, resp. the domain $f_n(C_x)$. Hence (f_n, F_1, r) does not hold for $r > R_n$ and this proves that R_n cannot be replaced by any greater number. In case n = 1 Theorem 2 is identical with Theorem B which was the main result of [2].

REFERENCES

- [1] Lewandowski, Z., Sur les majorantes des fonctions holomorphes dans le cercle |z| < 1, Annales Universitatis Mariae Curie-Sklodowska, Sectio A, 15 (1961), p. 5-11.
- [2] Lewandowski, Z., Starlike Majorants and Subordination, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, 15 (1961), p. 79-84.

Streszczenie

Niech S oznacza klasę funkcji $f(z) = z + a_2 z^2 + \ldots$, holomorficznych i jednolistnych w kole |z| < 1, natomiast $K \subset S$ niech będzie klasą zwartą. W pracy tej podaję warunki konieczne i dostateczne na to by nierówność $|f(z)| \leq |F(z)|$ dla |z| < 1 pociągała za sobą relację podporządkowania $f(z) \prec F(z)$ dla $|z| < r_0$, gdzie $F \in K$, f jest funkcją holomorficzną dla |z| < 1, $f(0) = 0, f'(0) \ge 0$ i $r_0 \in (0, 1)$ jest stałą absolutną niezależną od szczególnego doboru funkcji f(z) i F(z) (twierdzenie 1). W twierdzeniu 2 podaję zastosowania powyższego twierdzenia.

Резюме

Пусть S будет классом голоморфных и однолистных функций $f(z) = z + a_2 z^2 + ...$ в круге |z| < 1, а K-какой-нибудь компактный подкласс S. В работе даны необходимые и достаточные условия для того, чтобы неравенство $|f(z)| \leq |F(z)|$ в целом единичном круге повлекло за собой $f(z) \prec F(z)$ в круге $|z| < r_0$ (где $r_0 \in (0, 1)$ – некоторая константа, зависимая только от класса K).