ANNALES

UNIVERSITATIS MAKIAECURIE-SK\&ODOWSKA I/ UTISIIN-POLONIA

Vol. XVIII, 4
SECTIO A
1984

Z. Zakladu Matematycznych Metod Fizyki Zespolowej Katedry Matematyki Wydzialu Mat.-Fiz.-Chem. UMCS Kierownik Zakladu: doc. dr Zdzislaw Lewandowski

ZIDZISEAW LEWANDOWSKI

Modular and Domain Majorants of Regular Functions

Majoranty modulowe i obszarowe funkcji holomorficznych
Мажорангы по модулю и области голоморфных функцнй

1. Introduction

Put $C_{r}=\{z:|z|<r\}$ for $r>0$ and suppose $f(z), F(z)$ are regular in C_{1}^{\prime} and satisfy $f(0)=F(0)=0$. We say that $f(z)$ is subordinate to $F^{\prime}(z)$ in $C_{r}, r \in(0,1)$ and write (f, F, r) if there exists a function $w(z)$ regular in C_{r} and such that $w(0)=0,|w(z)|<r, f(z) \equiv \boldsymbol{F}^{\prime}(w(z))$ in C_{r}. We also say that F is a domain majorant of f in C_{r}. On the other hand, if the inequality $|f(z)| \leqslant|F(z)|$ holds in C_{r}, we say that f is subordinate to F in modluus and write $|f, F, r|$. In this case we call F a modular majorant of f in C_{r}. Obviously (f, F^{\prime}, r) (resp. |f, $F, r \mid$) implies ($f, F^{\prime}, r^{\prime}$) (resp. |f, $F^{\prime}, r^{\prime} \mid$) for any $0<r^{\prime}<r$. According to the Schwarz lemma (f, F, r) is equivalent to $|f, F, r|$ in case $F(z)=z$ but this does not hold for arbitrary F. M. Biernacki initiated in 1935 the investigations concerning relations of the following form: $(f, F, 1)$ implies $|f, F, r|$, under various assumptions on f and F, with $r \in(0,1)$ depending only on classes in which f and F are admitted to vary.

In [1] the author initiated the converse problem and obtained an estimation for r_{0} such that $\left|f, F^{\prime}, 1\right| \operatorname{implies}\left(f, F, r_{0}\right)$ with F being univalent.

Biernacki considered two cases. First he assumed that both f and F belong to the same class of functions and later on he put less restrictions on f, e.g. he supposed F to be univalent and f to be arbitrary.

The aim of this paper is to present a general method (Theorem 1) which enables us to tackle problems concerned with the converse problem of Biernacki for the different range of f and F. As an application of this method the Theorem 2 is given.

2. Notations and auxiliary lemmas.

Let S be the class of functions $F^{\prime}(z)=z+a_{2} z^{2}+\ldots$ regular and univalent in C_{1} and let S_{0} be the subclass of functions starshaped w.r.t. the origin. Let further N be the class of functions $w(z)$ regular in C_{1} and such that $|w(z)| \leqslant 1$ in C_{1}.

If ∂C_{r} is the boundary of C_{r}, we call the Rogosinski domain an open and bounded set O_{r}^{0} with the boundary consisting of the left half of ∂C_{r} and two circular ares symmetric w.r.t. the real axis, passing through $z=1$ and touching ∂C_{r} at $z=\mp i r$. In [2] the following lemma was of basic importance.

Lemma 1. Suppose that z ranges over the closed dise $\overline{C_{r}},(0<r<1)$, and $w(z)$ ranges over N so that $w^{\prime}(0) \geqslant 0$. Then the set of all posible values of $w(z)$ is identical with $\overline{O_{r}^{0}}$.

Let now O_{r}^{n} be the bounded domain with the boundary consisting of the left half of $|z|=r^{n+1}$ and two circular ares symmetric w.r.t. the real axis, passing through $z=r^{n}$ and touching $\partial C_{r^{n+1}}$ at $z=\mp i r^{n+1}$, where n is a positive integer.

Lemma 2. Suppose that $w(z)$ has a zero of order at least $n(n \geqslant 0)$ at the origin and $w^{(n)}(0) \geqslant 0$. Suppose moreover that the function $w(z)$ ranges over N and z over $\overline{O_{r}}$. Then the set of all possible values $w(z)$ is identical with $\overline{\sigma_{r}^{\prime \prime}}$.

Proof. The case $n=0$ is included in Lemma 1 . Suppose $n \geqslant 1$. The function $w_{1}(z)=z^{-n} w(z)$ is regular in C_{1} and obviously belongs to N. In view of Lemma 1, applied to $w_{1}(z)$, we see that all possible values $w(z)$ cover the set obtained from O_{r}^{0} by a homothety with the ratio r^{n}, and this proves the lemma.

3. Main result

Suppose that K is a compact subelass of S and let $I(K, r)$ denote the closed set of variability of the ratio $g\left(z_{1}\right) / g\left(z_{2}\right)$, where z_{1}, z_{2} vary indepedently over ∂C_{r} and g ranges over the class K.

Theorem 1. Suppose that $f(z)$ is regular in C_{1} and satisfies $f(0)=f^{\prime}(0)$ $=\ldots=f^{(n-1)}(0)=0, f^{(n)}(0) \geqslant 0(n \geqslant 1)$. Then $\left|f, r^{1}, 1\right|$ implies $\left(f, r^{1}, r_{0}\right)$ for any f satisfying the above stated conditions and for any $F^{\prime} \in K$ if and only if for any $r \in\left(0, r_{0}>\right.$ the sets $D(K, r), \overline{O_{r}^{n-1}}$ are disjoint ($n \geqslant 2$), resp. have. $z=1$ as their unique common point $(n=1)$.

Proof. Suppose on the contrary that $\left|f, F^{\prime}, 1\right|$ and $\left(f, F, r_{0}\right)$ with $0<r_{0}$ <1 hold, whereas $u \in D(K, r) \cap O_{r}^{n-1}$ with $0<r<r_{0}(u \neq 1)$. There exist $F_{\epsilon} \in K$ and $z_{1}, z_{2}, z_{1} \neq z_{2}$ on ∂C_{r} such that $u=F^{\prime}\left(z_{1}\right) / \boldsymbol{F}^{\prime}\left(z_{2}\right)$. Besides, $u \in \Theta_{r}^{n-1}$.

Hence for a certain $w(z) \in N$ we have $w^{(u)}(0) \geqslant 0, w(z) \neq 1, w\left(z_{2}\right)=u$ $=\boldsymbol{F}^{\prime}\left(z_{1}\right) / \boldsymbol{F}^{\prime}\left(z_{2}\right)$ in view of Lemma 2. Put $f_{1}(z)=w(z) F^{\prime}(z)$. The function $f_{1}(z)$ satisfies the assumptions of the Theorem 1 . We have obviously $f_{1}\left(z_{2}\right)=F^{\prime}\left(z_{1}\right)$ and this contradicts the assumption $\left(f_{1}, F, r_{0}\right)$ in view of Lindelöf's principle.

Suppose now, conversely, that the sets $I)(K, r), \overline{O_{r}^{n-1}}$ are either disjoint for all,$\epsilon\left(0, r_{0}\right)$, or have $z=1$ as their only common point in case $n=1$. Suppose, moreover, that there exist the functions $f(z), F(z)$ satisfying the conditions of the Theorem 1. as well as $|f, F, 1|$, whereas $\left(f, F, r_{0}\right)$ does not hold.
Hence, there exists $z_{1} \in C_{r}, 0<r<r_{0}$, such that $f\left(z_{1}\right)$ lies outside $H^{\prime}\left(C_{r}\right)$. However, $f(z)=w(z) F(z)$ with $w(z) \in N$ and $w^{(n)}(0) \geqslant 0$. Thus, we can find z_{2} with $\left|z_{2}\right|=\left|z_{1}\right|=r_{1}<r$ such that $F^{\prime}\left(z_{1}\right) w\left(z_{1}\right) / F\left(z_{2}\right)>1$. This implies $w\left(z_{1}\right)=(1+\eta) \boldsymbol{F}\left(z_{2}\right) / \boldsymbol{F}\left(z_{1}\right), \eta>0$. However, $D(K, r), \overline{O_{r}^{n-1}}$ are disjoint, hence $w\left(z_{1}\right) \in \overline{O_{r_{1}}^{n-1}}$ in view of the structure of O_{r}^{n-1}.

This contradicts Lemma 2 and our theorem is proved.

4. Applications.

Theorem 2. Suppose $R_{n}, n=1,2, \ldots$ is the least positive root of the equation $x^{n}=(1-x)^{2}(1+x)^{-2}$. Suppose $F \in \mathbb{S}_{0}$ and $f(z)=a_{n} z^{n}+\ldots$ with $a_{n} \geqslant 0$ is regular in C_{1}. If $|f, F, 1|$, then $\left(f, F, R_{n}\right)$.

The number R_{n} cannot be replaced by any greater number in case $\boldsymbol{F}^{\prime}(z)=z(1+z)^{-2}=H_{1}(z), f(z)=(-1)^{n+1} z^{n} F(z)=f_{n}(z)$.

Proof. Put $I_{0}(r)=D\left(S_{0}, r\right)$ according to the notation of sections 2,3 . In [2] we have proved that the set 0_{b}^{0} lies outside $D_{0}(r)$ and their closures have only two common points $-b, 1$, where $b=(1-r)^{2}(1+r)^{-2}$. Suppose $0<r<R_{n}$. If $r^{n}<(1-r)^{2}(1+r)^{-2}$, then $\bar{O}_{r}^{n-1} \subset O_{b}^{0}$ and therefore $\overline{O_{r}^{n-1}} \cap D_{0}(r)$ is empty. Now Theorem 2 follows in view of Theorem 1.

On the other hand, taking $r \in\left(R_{n}, 1\right)$ we easily see that $f_{n}(-x)>F_{1}(x)$ for $R_{n}<x<r$. Since $F_{1} \in \mathbb{S}_{0}$, the domain $F_{1}\left(C_{x}\right)$ is starshaped w.r.t. the origin and therefore it does not contain the point $f_{n}(-x)$, resp. the domain $f_{n}\left(C_{x}\right)$. Hence $\left(f_{n}, F_{1}, r\right)$ does not hold for $r>R_{n}$ and this proves that R_{n} cannot be replaced by any greater number. In case $n=1$ Theorem 2 is identical with Theorem B which was the main result of [2].

REFERENCES

[1] Lewandowski, Z., Sur les majorantes des fonctions holomorphes dans le cercle $|z|<1$, Annales Universitatis Mariae Curie-Sklodowska, Sectio A, 15 (1961), p. 5-11.
[2] Lewandowski, Z., Starlike Majorants and Subordination, Annales Universitatis Mariae Curie-Sklodowska, Sectio A, 15 (1981), p. 79-84.

Streszczenie

Niech \mathbb{S} oznacza klasę funkcji $f(z)=z+a_{2} z^{2}+\ldots$, holomorficznych i jednolistnych w kole $|z|<1$, natomiast $K \subset S$ niech będzie klasą zwartą. W pracy tej podaję warunki konieczne i dostateczne na to by nierównośc $|f(z)| \leqslant\left|F^{\prime}(z)\right|$ dla $|z|<1$ pociagala za sobą relacje podporządkowania $f(z)$ 孔 $F^{\prime}(z)$ dla $|z|<r_{0}$, gdzie $F^{\prime} \in K, f$ jest funkeją holomorficzną dla $|z|<1$, $f(0)=0, f^{\prime}(0) \geqslant 0$ i $r_{0} \in(0,1)$ jest stałą absolutną niezależną od szezególnego doboru funkcji $f(z)$ i $F^{\prime}(z)$ (twierdzenie 1). W twierdzeniu 2 podaje zastosowania powyższego twierdzenia.

> Резюме

Нусть S будет классом голоморфных и однолистных функций $f(z)=z+a_{2} z^{2}+\ldots$ в круге $|z|<1$, а $К$-какой-нибудь комнактный подкласс S. В работе даны необходимые и достаточные условия для того, чтобы неравенство $|f(z)| \leqslant|F(z)|$ в целом единичном круге новлекло за собой $f(z) \zeta F(z)$ в круге $|z|<r_{0}$ (где $r_{0} \epsilon(0,1$) - некоторая константа, зависимая только от класса K).

