ANNALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN-POLONIA

VOL. XVII, 8
SECTIO A
1963

Z Zespolowej Katedry Matematyki Wydzialu Mat.-Fiz.-Chem. UMCS Kierownik: prof. dr Adam Bielecki

JAN KRZY\%

On the Region of Variability of the Ratio $f\left(z_{1}\right) / f\left(z_{2}\right)$ within the Class S of Univalent Functions

O obszarze zmienności stosunku $f\left(z_{1}\right) / f\left(z_{2}\right)$ w klasie \mathbb{S} funkcji jednolistnych О6 области всех возможных значений $f\left(z_{1}\right) / f\left(z_{2}\right)$ в классе \mathbb{S} однолистных функций

1. Notations. Statement of results

Let S be the class of functions $f(z)=z+a_{2} z^{2}+\ldots$ regular and univalent in the unit dise $K=\{z:|z|<1\}$.

The determination of the region $D\left(z_{1}, z_{2}\right)$ of variability of the ratio $f\left(z_{1}\right) / f\left(z_{2}\right)$, where z_{1}, z_{2} are fixed points of K different from 0 and from each other and f ranges over \mathbb{S}, is intimately connected with some other unsolved problems in the theory of functions, e.g. with the evaluation of precise bounds of $\arg F^{\prime}(z)$, where $F(z)$ is a univalent function with Montel's normalization: $F(0)=0, F\left(z_{1}\right)=1$.

Let $\lambda(\zeta)=k^{2}(\zeta)$ be the elliptic modular function (the Jacobian modulus) defined by the equation $\zeta=i K(1-\lambda) / K(\lambda)$, where $K(\lambda)=$ $\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-\lambda t^{2}\right)\right]^{-1 / 2} d t$ is real and positive for $0<\lambda<1$, cf. [1], [5].

Let $\varphi(z)$ be an arbitrary branch of $\left[z\left(z-z_{1}\right)\left(z-z_{2}\right) \times\left(1-\bar{z}_{1} z\right) \times\right.$ $\left.\times\left(1-\bar{z}_{2} z\right)\right]^{-1 / 2}$, defined inside the triangle $\left[z_{0} z_{1} z_{2}\right], z_{0}=0$, and put

$$
\begin{equation*}
\boldsymbol{G}_{k}=\int_{0}^{z_{k}} \varphi(\zeta) d \zeta, \quad H_{k}=\int_{0}^{z_{k}} \zeta \varphi(\zeta) d \zeta, \quad k=1,2, \tag{1.1}
\end{equation*}
$$

where the integrals are taken along the sides of the triangle.
In this paper we show that all the boundary points of $D\left(z_{1}, z_{2}\right)$ are situated on the analytic curve $\Gamma\left(z_{1}, z_{2}\right)$ which is the map under $\lambda(\zeta)$ of the circumference $\gamma\left(z_{1}, z_{2}\right)$:

$$
\begin{equation*}
\zeta=\zeta(\alpha)=1 \pm \frac{e^{i a} G_{2}-H_{2}}{e^{i a} G_{1}-H_{1}}, \quad 0 \leqslant \alpha \leqslant 2 \pi ; \tag{1.2}
\end{equation*}
$$

the sign in (1.2) has to be chosen so that $\gamma\left(z_{1}, z_{2}\right)$ should lie in the upper half-plane which is possible since the imaginary part of ($e^{i a} G_{2}-H_{2}$)/ $/\left(e^{i a}\left(G_{1}-H_{1}\right)\right.$ never vanishes.

The univalent functions corresponding to the points $\lambda(\zeta(a))$ of $\Gamma\left(z_{1}, z_{2}\right)$ have the form

$$
\begin{gather*}
f(z, \alpha)=C\left\{p\left[\int_{0}^{z} e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta+\frac{1}{2} \Omega_{1}(\alpha)+\frac{1}{2} \Omega_{2}(\alpha)\right]+\right. \tag{1.3}\\
\left.+e_{1}(\alpha)+e_{2}(\alpha)\right\}
\end{gather*}
$$

where C is a constant,

$$
\begin{equation*}
e_{k}(\alpha)=p\left(\frac{1}{2} \Omega_{k}(a)\right), \quad k=1,2 \tag{1.4}
\end{equation*}
$$

and \mathfrak{p} has primitive periods $\Omega_{k}(\alpha), k=1,2$, equal to those of the hyperelliptic integral $\int e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta$ for paths situated inside K.
2. The differential equation of extremal functions

In order to obtain the differential equation of functions corresponding to the boundary $\partial D\left(z_{1}, z_{2}\right)$ of $D\left(z_{1}, z_{2}\right)$, we apply Schiffer's variational method, cf. [2], p. 103, and the Lagrange multipliers.

Let $f \in S$ and put $F(z, \varrho)=f(z)+\varrho e^{i \varphi}[f(z)]^{2}[f(z)-f(u)]^{-1}$, where $\varrho>0, \varphi$ is real and $|u|<r<1$. If ϱ is small enough, $F(z, \varrho)$ maps the annulus $r<|z|<1$ conformally on a doubly connected domain which arises by removing from a simply connected domain B_{e} the interior of an analytic Jordan curve being the map of $|z|=r$ under $F(z, \varrho)$. The function $f^{*}(z)$ realizing the conformal mapping of K on B_{e} so that $f^{*}(0)=0$, has the following form

$$
\begin{align*}
f^{*}(z)= & f(z)\left\{1+\varrho e^{i_{\varphi}}\left[\frac{f(z)}{f(z)-f(u)}+\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(u)}{u f^{\prime}(u)}\right)^{2} \frac{u}{u-z}\right]+\right. \tag{2.1}\\
& \left.+\varrho e^{-i \varphi}\left[\frac{z f^{\prime}(z)}{f(z)} \overline{\left(\frac{f(u)}{u f^{\prime}(u)}\right)^{2}} \frac{z \bar{u}}{1-\bar{u} z}\right]\right\}+0\left(\varrho^{2}\right)
\end{align*}
$$

where the term $O\left(\varrho^{2}\right)$ has a uniform estimation on compact subsets of K. We have, moreover,
$\delta \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}=\log \frac{f^{*}\left(z_{1}\right)}{f^{*}\left(z_{2}\right)}-\log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}+O\left(\varrho^{2}\right)=\log \frac{f^{*}\left(z_{1}\right)}{f\left(z_{1}\right)}-\log \frac{f^{*}\left(z_{2}\right)}{f\left(z_{2}\right)}+O\left(\varrho^{2}\right)$.

Now, (2.1) yields

$$
\begin{align*}
& \log \frac{f^{*}(z)}{f(z)}=\varrho e^{i_{\varphi}}\left[\frac{f(z)}{f(z)-f(u)}+\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(u)}{u f^{\prime}(u)}\right)^{2} \frac{u}{u-z}\right]+ \tag{2.3}\\
& \quad+\varrho e^{-i_{\varphi}}\left[\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(u)}{u f^{\prime}(u)}\right)^{2} \frac{\bar{u} z}{1-\bar{u} z}\right]+O\left(\varrho^{2}\right)
\end{align*}
$$

Using (2.2) and (2.3) we obtain

$$
\begin{gather*}
\delta \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}=\varrho e^{i_{\varphi}}\left[\frac{f(u)}{u f^{\prime}(u)}\right]^{2}\left[\frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)} \frac{u}{u-z_{1}}-\frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)}+\right. \tag{2.4}\\
\left.+\frac{f\left(z_{1}\right)}{f\left(z_{1}\right)-f(u)}-\frac{f\left(z_{2}\right)}{f\left(z_{2}\right)-f(u)}\right]+\varrho e^{-i \varphi}\left[\frac{f(u)}{u f^{\prime}(u)}\right]^{2}\left[\frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)} \frac{\bar{u} z_{1}}{1-\bar{u} z_{1}}-\right. \\
\left.-\frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)} \frac{\bar{u} z_{2}}{1-\bar{u} z_{2}}\right]=\varrho e^{i \varphi} S_{1}\left(u, z_{1}, z_{2}\right)+\varrho e^{-i \varphi} S_{2}\left(u, z_{1}, z_{2}\right) .
\end{gather*}
$$

The boundary points of $D\left(z_{1}, z_{2}\right)$ correspond to those functions $f(z)$ which yield stationary values of $\log \left|f\left(z_{1}\right) / f\left(z_{2}\right)\right|$ for fixed $\arg f\left(z_{1}\right) / f\left(z_{2}\right)$. Using the Lagrange multipliers we see that for the case of a local maximum of $\left|f\left(z_{1}\right) / f\left(z_{2}\right)\right|$ under the restriction $\arg f\left(z_{1}\right) / f\left(z_{2}\right)=\beta=$ const., there exists a real number $\lambda=\lambda(\beta)$ such that

$$
\delta\left(\log \left|\frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}\right|+\lambda \arg \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}\right)=\delta\left\{\Re \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}+\lambda \Sigma \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}\right\} \leqslant 0
$$

i.e.

$$
\begin{equation*}
\mathscr{R}\left\{(1-i \lambda) \delta \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}\right\} \leqslant 0 \tag{2.5}
\end{equation*}
$$

Using the equality $R(a+\bar{b})=R(a+b)$, (2.4) and (2.5) we have $\mathscr{R}\left\{(1-i \lambda)\left[\varrho e^{i \varphi} S_{1}\left(u, u_{1}, z_{2}\right)+\varrho e^{-i \varphi} S_{2}\left(u, z_{1}, z_{2}\right)\right]\right\}=$ $=\mathscr{R}\left\{\varrho e^{i \varphi}\left[(1-i \lambda) S_{1}\left(u, z_{1}, z_{2}\right)+(1+i \lambda) \bar{S}_{2}\left(u, z_{1}, z_{2}\right)\right]\right\} \leqslant 0$ for any $\varrho>0$ and any real φ. This implies

$$
(1-i \lambda) S_{1}\left(u, z_{1}, z_{2}\right)+(1+i \lambda) \bar{S}_{2}\left(u, z_{1}, z_{2}\right)=0
$$

and putting z instead of u, we obtain

$$
\begin{equation*}
(1-i \lambda)\left\{\left[\frac{f(z)}{z f^{\prime}(z)}\right]^{2}\left[\frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)} \frac{z}{z-z_{1}}-\frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)} \frac{z}{z-z_{2}}\right]+\right. \tag{2.6}
\end{equation*}
$$

$$
\left.+\frac{f\left(z_{1}\right)}{f\left(z_{1}\right)-f(z)}-\frac{f\left(z_{2}\right)}{f\left(z_{2}\right)-f(z)}\right\}+(1+i \lambda)\left\{[\frac { f (z) } { z f ^ { \prime } (z) }] ^ { 2 } \left[\left(\frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}\right) \frac{z \bar{z}_{1}}{1-z \bar{z}_{1}}-\right.\right.
$$

$$
-\left(\overline{\left.\frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)}\right)} \frac{z \bar{z}_{2}}{1-z \bar{z}_{2}}\right]=0
$$

The same equation holds for local minima of $\left|f\left(z_{1}\right) / f\left(z_{2}\right)\right|$ under fixed $\arg \left\{f\left(z_{1}\right) / f\left(z_{2}\right)\right\}$. Put now

$$
\begin{gather*}
A=(1-i \lambda) \frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}, \quad B=(1-i \lambda) \frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)}, \tag{2.7}\\
w=f(z), w_{k}=f\left(z_{k}\right), k=1,2 . \tag{2.8}
\end{gather*}
$$

The equation (2.6) takes now the following form
$\left(\frac{w}{z} \frac{d z}{d w}\right)^{2}\left(\frac{A z}{z-z_{1}}-\frac{B z}{z-z_{2}}+\frac{\bar{A} z \bar{z}_{3}}{1-z \bar{z}_{1}}-\frac{\bar{B} z \bar{z}_{2}}{1-z \bar{z}_{2}}\right)+\frac{(1-i \lambda) w\left(w_{2}-w_{1}\right)}{\left(w_{1}-w\right)\left(w_{2}-w\right)}=0$, resp.

$$
\begin{equation*}
\frac{P(z)}{z}=\frac{(1-i \lambda)\left(w_{1}-w_{2}\right)}{w\left(w-w_{1}\right)\left(w-w_{2}\right)}\left(\frac{d w}{d z}\right)^{2}, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
P(z)=\frac{A}{z-z_{1}}+\frac{\bar{A} \bar{z}_{1}}{1-z \bar{z}_{1}}-\frac{B}{z-z_{2}}-\frac{\bar{B} \bar{z}_{2}}{1-z \bar{z}_{2}} . \tag{2.10}
\end{equation*}
$$

3. The form of $\boldsymbol{P}(z)$

Considering for small, real θ the function $f^{*}(z)=f\left(z e^{i \theta}\right)$, we obtain the formula

$$
\begin{equation*}
\log \frac{f^{*}(z)}{f(z)}=\frac{i z f^{\prime}(z)}{f(z)} \theta+O\left(\theta^{2}\right) . \tag{3.1}
\end{equation*}
$$

Using (2.2) and (3.1) we have

$$
\delta \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}=i \theta\left[\frac{z_{1} f^{\prime}\left(z_{1}\right)}{f\left(z_{1}\right)}-\frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)}\right] .
$$

Hence (2.5), in view of (2.7), takes the form

$$
\mathfrak{R}\{i \theta(A-B)\}=\{\{\theta(B-A)\} \leqslant 0
$$

for both positive and negative θ which implies

$$
\begin{equation*}
\mathscr{I} A= \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
A-\bar{A}=B-\bar{B} \tag{3.3}
\end{equation*}
$$

The same equation holds for local minima of $\left|f\left(z_{1}\right) / f\left(z_{2}\right)\right|$ under fixed $\arg \left\{f\left(z_{1}\right) / f\left(z_{2}\right)\right\}$.

We now prove that $z P(z)$ is real on $|z|=1$. The identity $\mathscr{I}(a+b)=$ $=.(a-\bar{b})$ implies

$$
\mathscr{I}\left\{\frac{A e^{i \theta}}{e^{i \theta}-z_{1}}+\frac{\bar{A} \bar{z}_{1} e^{i \theta}}{1-e^{i \theta} \bar{z}_{1}}\right\}=\mathscr{I}\left\{\frac{A}{1-z_{1} e^{-i \theta}}-\frac{A z_{1} e^{-i \theta}}{1-z_{1} e^{-i \theta}}\right\}=\mathscr{I}(A)
$$

and similarly

$$
\mathscr{I}\left\{\frac{B e^{i \theta}}{e^{i \theta}-z_{2}}+\frac{\bar{B} \bar{z}_{2} e^{i \theta}}{1-e^{i \theta} \bar{z}_{2}}\right\}=\mathscr{I}(B)
$$

and therefore, in view of (2.9) and (3.2), we have

$$
\left.I e^{i \theta} P\left(e^{i \theta}\right)\right\}=0 \text { for real } \theta
$$

Since

$$
P(z)=\frac{[(A-\bar{A})-(B-\bar{B})] \bar{z}_{1} \bar{z}_{2} z^{3}+(\text { lower powers of } z)}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right)}
$$

(3.3) implies that $P(z)$ has at most two finite roots. Besides, the principle of reflection implies $\overline{z P(z)} \equiv \bar{z}^{-1} P\left(\bar{z}^{-1}\right)$, hence both roots of $P(z)$ are symmetric w.r.t. $|z|=1$. Now, the r.h.s. of (2.9) does not vanish for any $z \in K$, so that $P(z) \neq 0$ for $z \in K$ and this means that both roots of $\mathrm{P}(z)$ necessarily lie on $|z|=1$.

We next prove that $z P(z)$ has a constant sign on $|z|=1$. Suppose that $\left|f\left(z_{1}\right) / f\left(z_{2}\right)\right|$ attains for a function $f \in \mathbb{S}$ a local maximum under the restriction that $\arg f\left(z_{1}\right) / f\left(z_{2}\right)$ is fixed and let Γ be the boundary of $f(K)$. In view of (2.9) Γ is a union of a finite number of analytic arcs. If $w \in \Gamma$ and $\zeta=\varphi(w) \epsilon \partial K$ correspond to each other, then the function f^{*} mapping K on a domain which arises by the displacement $\varrho p(w)$ of points w on Γ along the outward normal, satisfies according to G. Julia [3] the following equation

$$
\begin{equation*}
\log \frac{f^{*}(z)}{f^{\prime}(z)}=\frac{1}{2 \pi} \int_{F} \frac{z f^{\prime}(z)}{f(z)} \frac{\zeta+z}{\zeta-z}\left|\varphi^{\prime}(w)\right|^{2} \varrho p(w) d s_{w}+O\left(\varrho^{2}\right) \tag{3.4}
\end{equation*}
$$

where $p(w)$ is a real and continuous function of $w \in \Gamma$ which vanishes in the neighbourhood of points for which $\varphi(w)$ ceases to be analytic, and ϱ is a real parameter. In view of (2.2) and (3.4) we have

$$
\begin{equation*}
\delta \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}=\frac{1}{2 \pi} \int_{\Gamma}\left[\frac{z_{1} f^{\prime}\left(z_{1} \mid\right.}{f\left(z_{1}\right)} \frac{\zeta+z_{1}}{\zeta-z_{1}}-\frac{z_{2} f^{\prime}\left(z_{2}\right)}{f\left(z_{2}\right)} \frac{\zeta+z_{2}}{\zeta-z_{2}}\right]\left|\varphi^{\prime}(w)\right|^{2} \varrho p(w) d s_{, n} . \tag{3.5}
\end{equation*}
$$

Now, (2.5) and (3.5) imply

$$
\begin{gather*}
\mathfrak{R}\left\{(1-i \lambda) \delta \log \frac{f\left(z_{1}\right)}{f\left(z_{2}\right)}\right\}=\frac{1}{2 \pi} \int_{F} \Re\left(A \frac{\zeta+z_{1}}{\zeta-z_{1}}-B \frac{\zeta+z_{2}}{\zeta-z_{2}}\right) \times \tag{3.6}\\
\times\left|\varphi^{\prime}(w)\right|^{2} \varrho p(w) d s_{w} \leqslant 0
\end{gather*}
$$

for the case of a local maximum. This means that

$$
\begin{equation*}
\mathscr{R}\left\{A \frac{e^{i \theta}+z_{1}}{e^{i \theta}-z_{1}}-B \frac{e^{i \theta}+z_{2}}{e^{i \theta}-z_{2}}\right\} \geqslant 0 \tag{3.7}
\end{equation*}
$$

for any real θ. Suppose, on the contrary, that the l.h.s. in (3.7) is negative on an analytic are $\gamma_{0} \subset \Gamma$. Taking a continuous function $p(w)$ which is negative on the open arc γ_{0} and vanishes outside it on Γ, we obtain a positive variation in (2.5). At the same time this is an admissible variation of f since negative values of $p(w)$ involve a shrinking of $f(K)$. On the other hand (3.6) and (3.7) imply that the complementary set $\mathscr{C} f(K)$ has no interior points since otherwise a function $p(w)$ providing a positive variation in (3.6) could be constructed. Hence $f(K)$ is a slit domain. Now, we have for real θ

$$
\mathfrak{R}\left\{\frac{A e^{i \theta}}{e^{i \theta}-z_{1}}+\frac{\bar{A} \bar{z} z_{1} e^{i \theta}}{1-\bar{z}_{1} e^{i \theta}}\right\}=\mathfrak{R}\left\{A \frac{e^{i \theta}+z_{1}}{e^{i \theta}-z_{1}}\right\}
$$

and in view of (2.10) and (3.7) we see that $\mathscr{R}\left\{e^{i \theta} P\left(e^{i \theta}\right)\right\} \geqslant 0$ in the case of a local maximum. Similarly $\mathfrak{R}\left\{e^{i \theta} P\left(e^{i \theta}\right)\right\} \leqslant 0$ for those $f(z)$ which correspond to local minima. Thus we have proved that $z P(z)$ is real and of constant sign on $|z|=1$. This implies that both roots of $z P(z)$ situated on $|z|=1$ coincide and $P(z)$ has the form

$$
\begin{equation*}
P(z)=\frac{\sigma^{-1} \bar{\eta}(z-\eta)^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right)} \tag{3.8}
\end{equation*}
$$

where C is real and $|\eta|=1$.
Using (2.9) and (3.8) we obtain the differential equation (3.9) of functions which correspond to the boundary points of $D\left(z_{1}, z_{2}\right)$:

$$
\begin{equation*}
\frac{e^{-i a}\left(z-e^{-i a}\right)^{2}}{z\left(z-z_{1}\right)\left(z-z_{2}\right)\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right)}=\frac{C(1-i \lambda)\left(w_{1}-w_{2}\right)}{w\left(w-w_{1}\right)\left(w-w_{2}\right)}\left(\frac{d w}{d z}\right)^{2}, \tag{3.9}
\end{equation*}
$$

(α, C, λ are real constants, $e^{i \alpha}=\eta$).

4. Solution of the equation (3.9)

The equation (3.9) is formally identical with the equation (3.1), [4], and we can adopt the argument used in [4] in order to solve (3.9).

With any real α we can associate the rational function

$$
\begin{equation*}
Q(z, a)=\frac{e^{-i a}\left(z-e^{i a}\right)^{2}}{z\left(z-z_{1}\right)\left(z-z_{2}\right)\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right)} \tag{4.1}
\end{equation*}
$$

as well as three complex numbers

$$
\begin{equation*}
A_{k}=A_{k}(\alpha)=\int_{\lambda_{k}} e^{-i \alpha / 2}\left(\zeta-e^{i \alpha}\right) \varphi(\zeta) d \zeta, \quad k=0,1,2, \tag{4.2}
\end{equation*}
$$

where $\varphi(z)$ is the branch of $\left[z\left(z-z_{1}\right)\left(z-z_{2}\right)\left(1-\bar{z}_{1} z\left(1-\bar{z}_{2} z\right)\right]^{-1 / 2}\right.$ chosen so that $e^{-t a / 2}\left(\zeta-e^{i \alpha}\right) \varphi(\zeta) d \zeta>0$ on $|\xi|=1$ for $\arg \zeta$ increasing in the interval $(\alpha, a+2 \pi)$. Besides, λ_{k} denotes here a loop joining η to $z_{k}(k=0,1,2$; $z_{0}=0$), i.e. a cycle consisting of a small circle $C\left(z_{k}, \varepsilon\right)$ centre at z_{k} described in the positive direction and of a rectilinear segment described twice and joining $C\left(z_{k}, \varepsilon\right)$ to η whose prolongation contains z_{k}. The radius ε is chosen so that the only critical point of the integrand inside $C\left(z_{k}, \varepsilon\right)$ is the centre. If the open segment (η, z_{k}) contains critical point of the integrand, we replace suitable parts of (η, z_{k}) by small semicircles so as to leave critical points on the left side, when passing from η to z_{k}. We put next

$$
\begin{equation*}
\Omega_{k}=\Omega_{k}(\alpha)=A_{k}-A_{0}, k=1,2, \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\vartheta=\vartheta(\alpha)=e^{i \beta} \tag{4.4}
\end{equation*}
$$

where $\beta=\beta(a)$ is defined by the equation

$$
\begin{align*}
& \int_{\alpha}^{\beta} \sin \frac{1}{2}(\theta-\alpha)\left|e^{i \theta}-z_{1}\right|^{-1}\left|e^{i \theta}-z_{2}\right|^{-1} d \theta= \tag{4.5}\\
& =\int_{\beta}^{\alpha+2 \pi} \sin \frac{1}{2}(\theta-\alpha)\left|e^{i \theta}-z_{1}\right|^{-1}\left|e^{i \theta}-z_{2}\right|^{-1} d \theta .
\end{align*}
$$

We have proved in [4] that $\left\{\left\{\Omega_{2}(\alpha) / \Omega_{1}(\alpha)\right\} \neq 0\right.$. Therefore we may define the function

$$
\begin{equation*}
\tau(\alpha)= \pm \Omega_{2}(\alpha) / \Omega_{1}(\alpha), 0 \leqslant \alpha<2 \pi, \tag{4.6}
\end{equation*}
$$

where the sign is chosen so that $\tau(\alpha)>0$.

Besides, we have also proved that the functions

$$
\begin{equation*}
F(z, \alpha)=\mathfrak{p}\left|\int_{\theta(a)}^{z} \sqrt{Q(\zeta, \alpha)} d \xi\right| \Omega_{1}(\alpha), \Omega_{2}(\alpha) \mid \tag{4.7}
\end{equation*}
$$

are single-valued and univalent in the unit disc K for any real α and any path of integration situated inside K.

Putting

$$
\begin{gather*}
v(z)=\int_{(a)}^{z} \sqrt{Q(\zeta, a)} d \varsigma \tag{4.8}\\
w=4 C(1-i \lambda)\left(w_{1}-w_{2}\right) W+\frac{1}{3}\left(w_{1}+w_{2}\right) \tag{4.9}
\end{gather*}
$$

we see that the equation (3.9) may be brought to the form $(d W / d v)^{2}=$ $=4 W^{3}-g_{2} W-g_{3}$, where g_{2}, g_{3} are constant and $w=W=\infty$ for $v=0$. Hence $W=W(z)=\mathfrak{p}\left[v(z) \mid \omega^{\prime}, \omega^{\prime \prime}\right]$. It follows from the discussion of sections 2 and 3 in [4] that $W(z)$ represents a univalent and single-valued slit mapping if and only, if the lattices $m_{1} \omega^{\prime}+m_{2} \omega^{\prime \prime}, m_{1} \Omega_{1}+m_{2} \Omega_{2}$ are identical. This means that $W(z)=F(z, \alpha)$, where $F(z, \alpha)$ is defined by (4.7). In view of (4.9) we see that

$$
\begin{equation*}
w=C_{1} F(z, \alpha)+C_{2}=C_{1}\left\{F^{\prime}(z, \alpha)+e_{1}(\alpha)+e_{2}(\alpha)\right\} \tag{4.10}
\end{equation*}
$$

where C_{1}, C_{2} are constant and

$$
\begin{equation*}
e_{k}(\alpha)=\mathfrak{p}\left[\frac{1}{2} \Omega_{k}(\alpha)\right], \quad k=1,2 \tag{4.11}
\end{equation*}
$$

If $f(z)$ is the function corresponding to a boundary point of $D\left(z_{1}, z_{2}\right)$. then the same consideration as that used in sect. 3, [4], yields

$$
\begin{equation*}
f\left(z_{1}\right) / f\left(z_{2}\right)=\lambda[\tau(\alpha)+1] \tag{4.12}
\end{equation*}
$$

where $\lambda(\tau)$ is the Jacobian modular function and $\tau(\alpha)$ is defined by (4.6),

5. The proof of the main result

Theorem. If $G_{k}, H_{k}(k=1,2)$ are defined by (1.1), then both circles defined by (1.2) have no points in common with the real axis $\mathscr{I} \xi=0$. If $\gamma\left(z_{1}, z_{2}\right)$ is this circle which is situated in the upper half-plane $\{\xi>0$, then all the boundary points of the region of variability of the ratio, $\left\{f\left(z_{1}\right) / f\left(z_{2}\right)\right\}$ have the form $\lambda(\xi(\alpha))$, where $\zeta(\alpha) \in \gamma\left(z_{1}, z_{2}\right)$ and $\lambda(\varsigma)=k^{2}(\varsigma)$ is the Jacobian modular function.

Proof. Suppose first that the points $z_{k}, k=0,1,2$, are not collinear. Let $(0 k), k=1,2$, be the loop joining z_{0} to z_{k}, i.e. a cycle consisting of two circles $C\left(z_{0}, \delta\right), C\left(z_{k}, \delta\right)$ of small radius δ and centres at z_{0}, z_{k},
both described in the positive direction and of a rectilinear segment described twice and joining both circles so that its prolongation contains z_{0} and z_{k}. The radius δ is so small that the circles $C\left(z_{k}, \delta\right), k=$ $=0,1,2$, have no points in common and are all contained in the unit disc. In view of (4.12) it is sufficient to prove that

$$
\begin{equation*}
\lambda[1+\tau(\alpha)]=\lambda[\zeta(\alpha)] \tag{5.1}
\end{equation*}
$$

with $\zeta(a)$ defined by (1.2) after a suitable choice of sign. The prolongations of the segments $\left[z_{k}, z_{j}\right], j, k=0,1,2$, divide the unit circle $|z|=1$ into six arcs. For $\eta=e^{i a}$ situated on four of them both loops ($0 k$) are homotopic to the system of two loops λ_{0}, λ_{k} (defined in sect. 4) w.r.t. K punctured at $z_{j}(j \neq 0, k)$. We have therefore $\int_{(0 k)} \equiv \int_{(0 k)} e^{-i a / 2}\left(\zeta-e^{i a}\right) \times$ $\times \varphi(\xi) d \xi=A_{k}-A_{0}=\Omega_{k}$ since after describing the loop λ_{k} the integrand changes the sign. Hence

$$
\begin{aligned}
& 1+\tau(\alpha)=1 \pm \Omega \Omega_{2}(\alpha) / \Omega_{1}(\alpha) \\
= & 1 \mp \int_{(02)} \left\lvert\, \int_{(01)}=1 \mp \frac{e^{i a} \int_{(02)} \varphi(\xi) d \xi-\int_{(02)} \varsigma \varphi(\varsigma) d \varsigma}{e^{i a} \int_{(01)} \varphi(\xi) d \xi-\int_{(01)} \xi \varphi(\xi) d \xi}=1 \mp \frac{e^{i a} G_{2}-H_{2}}{e^{i a} G_{1}-H_{1}}=\varsigma(\alpha)\right.
\end{aligned}
$$

and (5.1) is proved in this case.
If $\eta=e^{i \alpha}$ is situated on the arc of $|z|=1$ whose end points are determined by the rays $\left[z_{0}, z_{1}\right],\left[z_{2}, z_{1}\right]$, then the loop (01) is homotopic to the cycle $\lambda_{0}+\lambda_{1}$, hence $\int_{(01)}=\mathrm{A}_{1}-A_{0}=\Omega_{1}$. On the other hand the loop (02) is homotopic to the cycle $\lambda_{0}+\lambda_{1}+\lambda_{2}-\lambda_{1}$ w.r.t. K punctured at z_{1}. This implies $\varsigma(\alpha)=1 \mp \int_{(02)} \mid \int_{(01)}=1 \pm\left(A_{0}-2 A_{1}+A_{2}\right) /\left(A_{1}-A_{0}\right)$ $=\left(1 \pm \Omega_{2}(\alpha) / \Omega_{1}(\alpha)\right) 2 \pm=[1+\tau(\alpha)] \pm 2$. Since $\lambda(\tau)$ has the period 2 , (5.1) holds also in this case.

Finally, on the sixth arc the loop (02) is homotopic to the cycle $\lambda_{0}+\lambda_{2}$ w.r.t. K punctured at z_{1}, whereas the loop (01) is homotopic to the cycle $\lambda_{0}+\lambda_{2}+\lambda_{1}-\lambda_{2}$ w.r.t. K punctured at z_{2} so that

$$
\int_{(02)}=A_{2}-A_{0}=\Omega_{2}, \quad \int_{(01)}=A_{0}-2 A_{2}+A_{1}=\Omega_{1}-2 \Omega_{2} .
$$

We have

$$
\begin{equation*}
\xi(\alpha)=1 \pm \iint_{(02)} / \int_{(01)}=1 \pm \frac{\Omega_{2} / \Omega_{1}}{1-2 \Omega_{2} / \Omega_{1}} . \tag{5.2}
\end{equation*}
$$

If $\mathscr{\eta}\left\{\Omega_{2} / \Omega_{1}\right\}>0$, then $\tau=\Omega_{2} / \Omega_{1}$, and (5.2) takes the form $\xi(\alpha)=1+$ $+\tau /(1-2 \tau)=(1-\tau) /(1-2 \tau)$. Putting $1+\tau=v$, we have $\xi(\alpha)=(v-$ $-2) /(2 v-3)=(a v+b) /(e v+d)$, where $a \equiv d \equiv 1(\bmod 2), b \equiv c \equiv 0$
(mod 2), $a d-b c=1$, which amens that $(a v+b) /(c v+d)$ is a modular transformation. The automorphic property of λ implies $\lambda\left(\frac{v-2}{2 v-3}\right)=\lambda(v)$ and (5.1) follows.

If $I\left\{\Omega_{2} / \Omega_{1}\right\}<0$, then $\tau=-\Omega_{2} / \Omega_{1}$. We have in this case from (5.2): $\varsigma(\alpha)=1 \pm \tau /(1+2 \tau)=1+\tau /(1+2 \tau)$. Putting $1+\tau=v$, we obtain $1+$ $+\tau /(1+2 \tau)=(3 v-2) / 2 v-1)$ which is another modular transformation. Hence $\lambda(v)=\lambda\left(\frac{3 v-2}{2 v-1}\right)$ and (5.1) follows again. The one-sided continuity proves our theorem in the case of z_{k} and η situated on one straight line. Since the automorphic transformations preserve the real axis, we have always $\mathscr{S}(\alpha) \neq 0$ for otherwise we would also have $\mathscr{S}(\alpha)=0$ which is impossible as shown in [4].

REFERENCES

[1] Appell, P., Lacour, E., Principes de la théorie des fonctions elliptiques et applications, Paris 1922.
[2] Golusin, G. M., Geometrische Funktionentheorie, Berlin 1957.
[3] Julia, G., Sur une équation aux dérivées fonctionnelles liée à la représentation conforme, Ann. Scient. Ecole Norm. Sup., 39 (1922), p. 1-28.
[4] Krzyż, J., Some remarks on my paper: On univalent functions with two preassigned values, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 16 (1962), p. 00 -- 00.
[5] Nehari, Z., Conformal mapping, New York-Toronto-London 1952.

Streszczenie

Niech \mathbb{S} będzie klasa funkcji $f(z)=z+a_{2} z^{2}+\ldots$ regularnych i jednolistnych W kole jednostkowym i niech $0, z_{1}, z_{2}$ będa trzema różnymi punktami tego koła. W pracy tej dowodzę metodami wariacyjnymi, że wszystkie punkty brzegowe obszaru zmienności $D\left(z_{1}, z_{2}\right)$ stosunku $f\left(z_{1}\right) /$ $\mid f\left(z_{2}\right)$ przy f zmieniajaccych się w klasie S leżą na krzywej analitycznej $\Gamma\left(z_{1}, z_{2}\right)$ będącej obrazem okręgu o równaniu (1.2), leźącego w górnej półpłaszczyżnie, poprzez funkcje modułowa.

Резюме

Пусть S будет классом функций $f(z)=z+a_{2} z^{2}+\ldots$ регулярных и однолистных в единичном круге и пусть $0, z_{1}, z_{2}$ будут три разные точки этого круга. В этой работе доказывается, что все граничные точки области $D\left(z_{1}, z_{2}\right)$ всех возможных значений отношения $f\left(z_{1}\right) / f\left(z_{2}\right)$, если z_{1}, z_{2} фиксированы, а f изменяется в классе \mathcal{S}, лежат на аналитической кривой $\Gamma\left(z_{1}, z_{2}\right)$, которая является образом круга (1.2) верхней полуплоскости при преобразовании модулярной функции Якоби.

