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1. Introduction, notations

A migtake committed in the formula (4.14) of [2], where the factor
#y—2; should be taken with the opposite sign, vitiates the argument
of sect. 5 leading to the evaluation of a because the quadratic equation
for 4 = ¢'* analogous to (5.3), [2], reduces to the identity 0 = 0. Besides,
the discussion concerning the single-valuedness of the extremal function,
as well as its dependence on the homotopy classes of curves determining
the periods 2, was incomplete, so that some supplementary remarks seem
to be necessary. These drawbacks do not, however, affect those state-
ments of [2] where the results of sect. 5 are not used and even the form
(2.5), [2], of the univalent function maximizing the ratio |F(z,)/F(z;)|
remains true after replacing a by the right value @ which can be found
a8 follows.

With any real ae[0,2n] we can associate the function

2(2—2)) (2 — 29) (1 —2,2) (1 —2,2)

(1.1) Q(z, a) =
as well as three complex numbers

(1.2) Ay = Ay(a) = [eP(C—e)p(0)a, k=0,1,2,
*

where ¢(z) is the branch of [z(z—z,)(2—2y)(1—%,2)(1—Z242)]"'" Qhosen
80 that e *?(f—e'")p(l)dl >0 on |{| =1, for argl increasing in the
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interval (a, a + 2x). Here 4, denotes a loop joining 4 = €“to z, k = 0,1, 2,
which are three different points of the unit disc, 2z, = 0. We call a loop
joining 7 to 2z, a cycle A, consisting of a small circle C(z, ¢) centre at z;
described in the positive direction and of a rectilinear segment described
twice and joining C(z;, £) to 4 whose prolongation contains z,. The radius
¢ is chosen 8o that the only critical point of the integrand inside C(z;, ¢)
is the centre. 1f the segment (7, z.) contains critical points of the in-
tegrand, we replace suitable parts of (7,z;) by small semicircles so
as to leave critical points on the left side, when passing from 5 to z.
We put next

(1.3) Q= Qa) = A,—4,, k=1,2,
and
(1.4) & = #(a) = €,

where g8 = f(a) is defined by the equation
i 1
(1.5) fsin5(0—a)|e‘°—z,|"-|e‘°—zzl“’d0 .

a+2n

1

= | sing 0= a)le—5|~" 16"~z 0.

Hence 7 = ¢ and # = ¢ divide the circumference |z| =1 into two
arcs with common end points and of the same length I(a) in the metric
1Q (2, )| |dal. If

(1.6) T = 7(a) = F £4(a)/2y(a),

where the sign is chosen so that J(r) > 0, then the right value a maxi-
nizes the expression |A(z(a)+1)|; A(r) denotes here the elliptic modular
function (the Jacobian modulus) defined by equations:

T =tK(1—2)/K(A),
1
K1) = f [(1—)(1—A®)] at,
0
where K (4) is real and positive for 0 < 4 < 1, e¢f. [3], p. 318.

If p(v] 2,, 2,) is the Weierstrass’s ¢ function with periods £2,,
{2, then the functions

(1.7) F(zya) = p| [VQ(z, a)dl | 2i(a), 2s(a)]

(a)
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are single-valued and univalent in the unit circle K for any real a and any
path of integration situated inside K. The extremal function yiclding
-the maximum k(z,, z;) of the ratio |F(z,)/F(z,)| within the family of func-
tions F(z) regular and univalent in K and vanishing at the origin, has
the form

(1.8) f(z) = C,F(z,a)+C; =

= C,lp[ f.l/dewL%-Ql(&H-

1 = = -
+ 3 .Q,(a)] +e1(a)+e,(a)}

where
(1.9) ec(a) = (% Qy(a ))r k=1,2,

f has periods Q,(a), 24(a) and C,, C, are constant. The periods 2,(a),
Q4(a) may be replaced by another pair of primitive periods w,(a),
wq(a), with w,;(a) real and positive.

Besides, the map of K under f(z) is a slit domain with the slit arising
by a homothety from the map of a segment [0,l(a)] of the real axis
under (x| ,, wg), where w, is real. Finally

(1.10) k(zy, 23) = |A(z(a)+1)].

2. The properties of the integral f VQ(Z, a)dt

6(a)

We first prove that r(a) as defined by (1.6) cannot be real for any
ae[0, 2x).
Similarly as in [4], p. 321, we see that the values I = I(I') of the
Abelian integral [e~/*(¢—¢*)gp()dl taken along a closed curve I' start-
i

ing at » = €' and situated inside K, have the form

2

k=0

where u, are integers which can assume arbitrary values for I' suitably
chosen and A, are defined by (1.2). There are two possible cases: either
all 4, are collinear (in this casc all the values I lie on a straight line
through the origin), or there exists a ,lattice” of parallelograms cover-
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ing all the plane such that to each corner point w there corresponds
a curve I' with w = I(I'). On the other hand we have also (ef. [4], p. 323)

(2.2) I = edy+ m Q2+ myQ,,

where ¢ = 0,1 and m,, m, are integers. Hence, if £,, 2, are collinear,
the values I necessarily lie on a straight line through the origin and this
means that also 4,, £2,, 2, are collinear. Now, the circumference |2| = 1
may be deformed continuously into a system of three loops .. After
running around 2, on A, we come back to 5 with the opposite sign of
@(2), hence 2l(a) = A;—Ay+A; = (4;—A;)— (Ap—Ao)+ (41— Ag)+4,.
Here and in what follows j, k, ! are supposed to be three integers different
from each other and taking the values 0, 1, 2; 2z, = 0. Therefore

(2.3) 2l(a) = Ay F O, F 2, >0,

where the signs depend on the relative position of 7 and z,. This implies
that all the numbers 4, £2,, £2,, when collinear, must be real. In absence
of poles of order higher than 1, after removing from the unit disc K the
trajectories of the quadratic differential Q(z, a)d* emanating from poles
and zeros, we obtain a ring domain. Thus there exists a trajectory I
of Q(z, a)d?’ joining 7 to z. and also a trajectory I'; joining 2, to z. The
orthogonal trajectory Iy of Q(z, a)dz® starting at 2z; attains oK v I
and for a cycle which can be shrinked continuously into I, plus a sui-

1
table arc of 0K « I, emanating from 7, we have E|SI (I')] >0 since

this gives the length of I} in the metric |Q(z, a)|'*|dz|. Hence £,(a),
2,(a) cannot be both real and this proves that Jz(a) # 0 for any real a.
Let now I,(z), zeK, be the valuc of fe ***({—e™)p(l)d¢ taken along
the segment [, 2] with the points 2z, possibly omitted along small semi-
circles. For any path joining 7 to 2z and situated in K we have either

(2.4) [ e’ (L —e)p(£)a = Iy(2)+my @y + myQy,
or '
(2.5) [ e (e~ e)p(C)dt = Ag—TIy(2)+my Qi+ ma 0

8 2
where m,, m, are integers, cf. [4], p. 324. Now, [ = l(a)+6'. and using
n
this, (2.3), (2.4) and (2.5) we see that

26) [P ep(0)de = F [Ha)—Lo(e)]+my @+ mey,

0(a)

where J(02,/92,) # 0.
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This implies that the functions F(z, a) as defined by (1.7) are single-
-valued and regular in K for any real a.

We now prove that the periods ,(a), 2,(a) may be replaced by
another pair o,(a), w,(a) of primitive periods with w,(a) real.

There are two possible cases.

(i) A trajectory y separating 0K « I, from the trajectory I7j; joining
2. to 2; can be deformed in a continuous manner into a system of two
loops 4;, 4 joining 5 to 2; and 2; resp. Since ¢(2) changes the sign after
running around z;,, we have

@7 [VQE, @d =F (4,—4) = F (4—4)— (4i—4)
' = a real number

and this means that one of the numbers £2,—Q, (k =0), 2, (j =1,
l =0),2,(j =0,1 =1)is real. In the first case we may put w, = 2, —0,,
w, = 2, and s0 we obtain the same lattice of periods with one real
period.

(ii) If the trajectory y cannot be continuously deformed into a system
of loops 4., 4;, we have

(2.8) [VQ(t, 0z = 4;—24,+ 4,
’ = (Aj—Ag)+ (A1 —Ag)—2(4x—4,)
= a real number

This means that one of the following numbers is real: 2,4, (k = 0),
20,—Q, (k =1), 20,— R, (k =2). Putting o, = 2,+92;, w3 = —Qy;
w, =20,—Q,, 0y = 2y; 0, =202,—2,, v, = —2, wo obtain in each
case the same lattice of periods with w, real. We may suppose that the
real primitive period , is positive and then it represents according to
(2.7) and (2.8) the length of y in the metric |Q(z, a)|'?|dz|.

In all cases considered there exists another primitive period w, of

2
the form w, = £;,j =1, 2, and 3 |39, is the length of arcs of orthogonal

trajectories joining I; to 0K v I.

We now prove that the functions F(z, a) defined by (1.7) are single
valued and univalent in the unit circle.

We find on trajectories separating I from 0K w I'; points whose
distance from the orthogonal trajectory starting at & and attaining I'y

1
measured in the metric |Q(z, a)|'*|dz| along trajectories is equal 3 @1

We obtain in this way an orthogonal trajectory I', emanating from z.
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Now, open arcs of trajectories sweep out the domain K —(I'y « Iy v fk)

s
and each arc is mapped under v(z) = f VQ(Z, @)d; on an open straight
L

. ;K . i¥ly
line segment || <Ew" Qv = const in a biunivoque manner.

Thus the mapping v(2) = [ VQ(Z, a)dl carries 1:1 the unit dise with
1]

removed closed arcs Iy, I, I.’k into the rectangle
1 1 1
(2.9) —?w1<mv<;w,, 0<3‘D<;w,,

where w, is real and positive and the lattices m w, + mymg, m,2,+ m;2,
are identical. Since (v | ®,, w,) i8 an even elliptic function of order 2,
it is univalent in the rectangle (2.9). This and the formula (2.6) imply
that F(z,a ) are functions regular and univalent in the unit circle for
any real a. Besides, the map of K under F(z, a) is a slit domain because
¢ takes in the closure of the rectangle (2.9) every value. For 2¢0K, v(2)

is real, hence the slit is the image of [0, l(a)] under F(z, a).

3. Determination of a

As shown in [2], the univalent function w = f(z) for which [f(z,)/f(z,)]
= sup | F(2,)/F(z,)|,the least upper bound being taken with respect to
functions F(z) regular and univalent in the unit circle and vanishing
at the origin, satisfies the differential equation

C (w,— w,) I:iﬂ\!’
(w0, —0) (w0, —w) \dz ]’

(3.1) Q(z,a) = —

where C is a real and positive constant, a is real, w; = f(z), k =1, 2,
and Q(z, a) is defined by (1.1). Besides, f(z) maps K on the w-plane slit
along an analytic arc joining f(7) to f(#) = oco. Putting

(3.2) o(z) = [VQ(¢, a)de,
(a)
(3.3) w = 40 (10, — 0y W+ 5 (w4 0),

we see that (3.1) is equivalent to (dW/dv)? = 4W?—g,W —g,, where
ga, g; are constant. Since W = oo for v = 0, resp. z = {#(a), we have
neeesserily W(z) = p(v(2) | o', ). It follows from the discussion of
roct. 2 that W (z) represents a univalent and single-valued slit mapping
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if and only, if the lattices m,m’ 4 myw’, m,Q2,+m,Q, are identical. This
means that W(z) = F(z, a), and hence f(z) = C,F(z, a)+C, where C,,
C, are constant. Putting 2 = 2, in (2.6) and using the equality A, = 2I,(2),
we obtain for ¥ = 0,1, 2

b3

(3.4) [ Vet o = % [ua)——;;m] i D a2

(a)
In view of (2.3) we see that

—_ 1
(3.5) [ Ve @t = 5 (F 4F Q)+ mu+may,
#(a)

1
or 0 =f(0) =0C,p [";{Qri‘gz)] +Cy = C,¢4(a)+C,, where

1
(3.6) e3(a) = p[g(gl(a)‘*‘gs(a»] = —e,(a)—éey(a).
Thus f(2) hag the form
(3.7) f(2) = C,{F (2, a)—e;(a)} = C,{F (2, a)+e€,(a)+ es(a)}
where « is a real and C, a complex constant. From (3.7), (_1.7) and (3.4)

1
we have for k 1, k,1=1,2: f(z) = 0,{p[t(a)—;AkJ—ea(a)} and
using (2.3) we obtain f(z;) = Cl{g)[(l(a)—_l—,fiaj —%(Ak—fio)]—ea} =

> Cl{p[%(:*: O, F 2,)— %Qk] —'ea(a)= s 01{5’3[‘; -Q!] — f'a(“)} = C,[ea(a)—
—es(a)]. Hence

(3.8) f(21)[f(2) = [es(a) —es(a)]/[e1(a) —es(a)].

It is well known, cf. e. g. [1], p. 178, that the expression (e;— e;)/(é; — €a),
where ¢, are defined by (1.9) (with a instead of a) and (3.6) is equal to
the Jacobian modulus A(t), r being defined by (1.6). Hence (3.8) takes
the form f(z,)/f(zs) = A(r)/[A(r)—1]. Putting o, = £, 0, = 2+
we obtain another pair of primitive periods with w/o, =147,

1 ,
It B, = P(% wk), k=1,2, B, = @[E(wﬁwa)], then A(1+7) = (E,—

—E,)[(E,—E,) = (63— ¢€3)/e1—€5)- )
In view of (3.8) we see that |f(z))/f(2))| = [A{t(a)+1)] a.n(?. h.ence. a
must be chosen so s to maximize the latter expression. This implies
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(1.10) and the form
(3.8) f(2) = C\[F (2, a)+e1(a)+€3(a)]

of the extremal function. We can eliminate #(a) from (3.8) deforming
the path of mtegratlon so that it passes through the origin. We have

(1]
f = f 4 f and in view of (3.5) we obtain the second form of the
0@ 0@ ©
extremal function as given in (1.8).
We have R{z'(a)A’(r+1)/A(r+1)} =0 in the extremal case, and
using this and the identity

1(r+1) _ —16q ”(1+qzn)s(1_qzn_1)-a’
Nl

where ¢ = ¢™, cf. [3], p. 319, we can easily obtain a transcendental
equation for a.
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Streszczenie

W pracy tej dokonano modyfikacji niektérych wynikéw pracy po-
przedniej [2], bedacych konsekwencjami réwnania (5.3). Rownanie to
zostalo wyprowadzone ze wzoru (4.14) w pracy [2] ,w ktérym czynnik
2, —z, zostal omylkowo wziety ze znakiem przeciwnym.

Pe3oMe

B aroit pa6Gore pmaercs MoauMuKalMA HEKOTOPHIX Ppe3yjabTaToB pa-
6oThl [2] GyAaywmmMx ciieXCTBMAMH ypaBHeHus (5. 3), KOTopoe 110Jy4YHI0oCh
n3 gopmyant (4.14) B paGote [2], rae YMHOIKMTeIb 2,—2, OKaaalCA
omnGoyIo B3ATHIE ¢ 0GpAaTHHIM 3HAKOM.



