LUBLIN - POLONIA

VOL. XVI, 11

SECTIO A
1962

Z Zakładu Funkcji Analitycznych na Wydziale Mat. Fiz. Chem. UMCS
Kierownik: doc. dr Jan Krzyz

JAN KRZYZ
Some Remarks Concerning My Paper: On Univalent Functions with Two Preassigned Values
Pewne uwagi o mojej pracy: O funkcjach jednolistnych z dwiema zadanymi wartościami

Заметка о моей работе: Об однолнстных функциях с двумя заданвыми значениямя

1. Introduction, notations

A mistake committed in the formula (4.14) of [2], where the factor $z_{1}-z_{2}$ should be taken with the opposite sign, vitiates the argument of sect. 5 leading to the evaluation of a because the quadratic equation for $\eta=e^{i \alpha}$ analogous to (5.3), [2], reduces to the identity $0=0$. Besides, the discussion concerning the single-valuedness of the extremal function, as well as its dependence on the homotopy classes of curves determining the periods Ω_{k} was incomplete, so that some supplementary remarks seem to be necessary. These drawbacks do not, however, affect those statements of [2] where the results of sect. 5 are not used and even the form (2.5), [2], of the univalent function maximizing the ratio $\left|F\left(z_{1}\right) / F\left(z_{2}\right)\right|$ remains true after replacing a by the right value \tilde{a} which can be found as follows.

With any real $a \in[0,2 \pi]$ we can associate the function

$$
\begin{equation*}
Q(z, a)=\frac{e^{-i a}\left(z-e^{i a}\right)^{2}}{z\left(z-z_{1}\right)\left(z-z_{\mathrm{a}}\right)\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{\mathrm{a}} z\right)}, \tag{1.1}
\end{equation*}
$$

as well as three complex numbers

$$
\begin{equation*}
A_{k}=A_{k}(\alpha)=\int_{\lambda_{k}} e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta, \quad k=0,1,2, \tag{1.2}
\end{equation*}
$$

Where $\varphi(z)$ is the branch of $\left[z\left(z-z_{1}\right)\left(z-z_{2}\right)\left(1-\bar{z}_{1} z\right)\left(1-\bar{z}_{2} z\right)\right]^{-1 / 2}$ chosen so that $e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta>0$ on $|\zeta|=1$, for $\arg \zeta$ increasing in the
interval ($\alpha, a+2 \pi$). Here λ_{k} denotes a loop joining $\eta=e^{i a}$ to $z_{k}, k=0,1,2$, which are three different points of the unit dise, $z_{0}=0$. We call a loop joining η to z_{k} a cycle λ_{k} consisting of a small circle $C\left(z_{k}, \varepsilon\right)$ centre at z_{k} described in the positive direction and of a rectilinear segment described twice and joining $C\left(z_{k}, \varepsilon\right)$ to η whose prolongation contains z_{k}. The radius ε is chosen so that the ouly critical point of the integrand inside $C\left(z_{k}, \varepsilon\right)$ is the centre. If the segment (η, z_{k}) contains critical points of the integrand, we replace suitable parts of $\left(\eta, z_{k}\right)$ by small semicircles so as to leave critical points on the left side, when passing from η to z_{k}.

We put next

$$
\begin{equation*}
\Omega_{k}=\Omega_{k}(\alpha)=A_{k}-A_{0}, \quad k=1,2, \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\vartheta=\vartheta(\alpha)=e^{i \beta}, \tag{1.4}
\end{equation*}
$$

where $\beta=\beta(\alpha)$ is defined by the equation

$$
\begin{align*}
\left.\int_{a}^{b} \sin \frac{1}{2}(\theta-a) \right\rvert\, e^{i \theta} & -\left.z_{1}\right|^{-1} \cdot\left|e^{i \theta}-z_{2}\right|^{-1} d \theta= \tag{1.5}\\
& =\int_{\theta}^{a+2 \pi} \sin \frac{1}{2}(\theta-\alpha)\left|e^{i \theta}-z_{1}\right|^{-1} \cdot\left|e^{i \theta}-z_{2}\right|^{-1} d \theta .
\end{align*}
$$

Hence $\eta=e^{i \alpha}$ and $\vartheta=e^{i \beta}$ divide the circumference $|z|=1$ into two ares with common end points and of the same length $l(\alpha)$ in the metric $|Q(z, a)|^{1 / 2} \cdot|d z|$. If

$$
\begin{equation*}
\tau=\tau(\alpha)=\mp \Omega_{2}(\alpha) / \Omega_{1}(\alpha), \tag{1.6}
\end{equation*}
$$

where the sign is chosen so that $\mathfrak{I}(\tau)>0$, then the right value $\tilde{\alpha}$ maximizes the expression $|\lambda(\tau(a)+1)| ; \lambda(\tau)$ denotes here the elliptic modular function (the Jacobian modulus) defined by equations:

$$
\begin{gathered}
\tau=i K(1-\lambda) / K(\lambda), \\
K(\lambda)=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-\lambda t^{2}\right)\right]^{-1 / 2} d t,
\end{gathered}
$$

where $K(\lambda)$ is real and positive for $0<\lambda<1$, cf. [3], p. 318.
If $\wp\left(v \mid \Omega_{1}, \Omega_{2}\right)$ is the Weierstrass's \wp function with periods Ω_{1}, Ω_{2} then the functions

$$
\begin{equation*}
\left.F(z, a)=\wp\left|\int_{\theta(a)}^{\delta} \sqrt{Q(z, a)} d \zeta\right| \Omega_{1}(\alpha), \Omega_{2}(\alpha)\right] \tag{1.7}
\end{equation*}
$$

are single-valued and univalent in the unit circle K for any real α and any path of integration situated inside K. The extremal function yiclding - the maximum $k\left(z_{1}, z_{2}\right)$ of the ratio $\left|F\left(z_{1}\right) / F\left(z_{2}\right)\right|$ within the family of functions $F(z)$ regular and univalent in K and vanishing at the origin, has the form

$$
\begin{align*}
& f(z)=C_{1} F(z, \tilde{\alpha})+C_{2}= \tag{1.8}\\
& =C_{1}\left\{\delta \left[\int_{0}^{a} \sqrt{Q(\zeta, \tilde{\alpha})} d \zeta+\frac{1}{2} \Omega_{1}(\tilde{\alpha})+\right.\right. \\
& \\
& \left.\left.+\frac{1}{2} \Omega_{2}(\tilde{a})\right]+e_{1}(\tilde{\alpha})+e_{2}(\tilde{a})\right\}
\end{align*}
$$

where

$$
\begin{equation*}
e_{k}(\tilde{a})=\wp\left(\frac{1}{2} \Omega_{k}(\tilde{a})\right), \quad k=1,2 \tag{1.9}
\end{equation*}
$$

\wp has periods $\Omega_{1}(\tilde{\alpha}), \Omega_{2}(\tilde{\alpha})$ and C_{1}, C_{2} are constant. The periods $\Omega_{1}(\tilde{\alpha})$, $\Omega_{2}(\tilde{\alpha})$ may be replaced by another pair of primitive periods $\omega_{1}(\tilde{\alpha})$, $\omega_{2}(\tilde{a})$, with $\omega_{1}(\tilde{a})$ real and positive.

Besides, the map of K under $f(z)$ is a slit domain with the slit arising by a homothety from the map of a segment $[0, l(\tilde{\alpha})]$ of the real axis under $\wp\left(x \mid \omega_{1}, \omega_{2}\right)$, where ω_{1} is real. Finally

$$
\begin{equation*}
k\left(z_{1}, z_{9}\right)=|\lambda(\tau(\tilde{a})+1)| . \tag{1.10}
\end{equation*}
$$

2. The properties of the integral $\int_{\theta(a)}^{E} \sqrt{Q(\zeta, a)} d \zeta$

We first prove that $\tau(a)$ as defined by (1.6) cannot be real for any $\alpha \in[0,2 \pi)$.

Similarly as in [4], p.321, we see that the values $I=I(\Gamma)$ of the Abelian integral $\int_{\Gamma} e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta$ taken along a closed curve Γ starting at $\eta=e^{i a}$ and situated inside K, have the form

$$
\begin{equation*}
I=I(\Gamma)=\sum_{k=0}^{2} \mu_{k} A_{k} \tag{2.1}
\end{equation*}
$$

where μ_{k} are integers which can assume arbitrary values for Γ suitably chosen and A_{k} are defined by (1.2). There are two possible cases: either all A_{k} are collinear (in this case all the values I lie on a straight line through the origin), or there exists a "lattice" of parallelograms cover-
ing all the plane such that to each corner point wo there corresponds a curve Γ with $w=I(\Gamma)$. On the other hand we have also (cf. [4], p. 323)

$$
\begin{equation*}
I=\varepsilon A_{0}+m_{1} \Omega_{1}+m_{2} \Omega_{2}, \tag{2.2}
\end{equation*}
$$

where $\varepsilon=0,1$ and m_{1}, m_{2} are integers. Hence, if Ω_{1}, Ω_{2} are collinear, the values I necessarily lie on a straight line through the origin and this means that also $A_{0}, \Omega_{1}, \Omega_{2}$ are collinear. Now, the circumference $|z|=1$ may be deformed continuously into a system of three loops λ_{r}. After running around z_{r} on λ_{r} we come back to η with the opposite sign of $\varphi(z)$, hence $2 l(\alpha)=A_{j}-A_{k}+A_{l}=\left(A_{j}-A_{0}\right)-\left(A_{k}-A_{0}\right)+\left(A_{l}-A_{0}\right)+A_{0}$. Here and in what follows j, k, l are supposed to be three integers different from each other and taking the values $0,1,2 ; z_{0}=0$. Therefore

$$
\begin{equation*}
2 l(a)=A_{0} \mp \Omega_{1} \mp \Omega_{2}>0, \tag{2.3}
\end{equation*}
$$

where the signs depend on the relative position of η and z_{k}. This implies that all the numbers $A_{0}, \Omega_{1}, \Omega_{2}$, when collinear, must be real. In absence of poles of order higher than 1, after removing from the unit disc K the trajectories of the quadratic differential $Q(z, a) d z^{2}$ emanating from poles and zeros, we obtain a ring domain. Thus there exists a trajectory Γ_{k} of $Q(z, a) d z^{2}$ joining η to z_{k} and also a trajectory $\Gamma_{j l}$ joining z_{j} to z_{l}. The orthogonal trajectory $\tilde{\Gamma}_{l}$ of $Q(z, a) d z^{2}$ starting at z_{l} attains $\partial K \cup \Gamma_{k}$ and for a cycle which can be shrinked continuously into $\tilde{\Gamma}_{l}$ plus a suitable are of $\partial K \cup \Gamma_{k}$ emanating from η, we have $\frac{1}{2}|\Im I(\Gamma)|>0$ since this gives the length of $\tilde{\Gamma}_{l}$ in the metric $|Q(z, \alpha)|^{1 / 2}|d z|$. Hence $\Omega_{1}(a)$, $\Omega_{2}(\alpha)$ cannot be both real and this proves that $\Im_{\tau}(a) \neq 0$ for any real α.

Let now $I_{0}(z), z \in K$, be the value of $\int e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta$ taken along the segment $[\eta, z]$ with the points z_{k} possibly omitted along small semicircles. For any path joining η to z and situated in K we have either

$$
\begin{equation*}
\int_{\eta}^{s} e^{-i \alpha / 2}\left(\zeta-e^{i \alpha}\right) \varphi(\zeta) d \zeta=I_{0}(z)+m_{1} \Omega_{1}+m_{2} \Omega_{2} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\eta}^{\infty} e^{-i a / 2}\left(\zeta-e^{i \alpha}\right) \varphi(\zeta) d \zeta=A_{0}-I_{0}(z)+m_{1} \Omega_{1}+m_{2} \Omega_{2} \tag{2.5}
\end{equation*}
$$

where m_{1}, m_{2} are integers, cf. [4], p. 324. Now, $\int_{\eta}^{8}=l(\alpha)+\int_{0}^{8}$ and using this, (2.3), (2.4) and (2.5) we see that

$$
\begin{equation*}
\int_{\theta(a)}^{\pi} e^{-i a / 2}\left(\zeta-e^{i a}\right) \varphi(\zeta) d \zeta=\mp\left[l(a)-I_{0}(z)\right]+m_{1} \Omega_{1}+m_{2} \Omega_{2}, \tag{2.6}
\end{equation*}
$$

where $\mathfrak{I}\left(\Omega_{2} / \Omega_{1}\right) \neq 0$.

This implies that the functions $F^{\prime}(z, a)$ as defined by (1.7) are single--valued and regular in K for any real a.

We now prove that the periods $\Omega_{1}(\alpha), \Omega_{2}(\alpha)$ may be replaced by another pair $\omega_{1}(\alpha), \omega_{2}(\alpha)$ of primitive periods with $\omega_{1}(\alpha)$ real.

There are two possible cases.
(i) A trajectory γ soparating $\partial K \cup I_{k}^{\gamma}$ from the trajectory $l_{j l}^{\gamma}$ joining z_{k} to z_{l} can be deformed in a continuous manner into a system of two loops λ_{l}, λ_{l} joining η to z_{j} and z_{l} resp. Since $\varphi(z)$ changes the sign after running around z_{l}, we have

$$
\begin{gather*}
\int_{\gamma} \sqrt{Q(\zeta, a)} d \zeta=\mp \tag{2.7}\\
\left(A_{1}-A_{l}\right)=\mp\left(A_{1}-A_{0}\right)-\left(A_{l}-A_{0}\right) \\
=\text { a real number }
\end{gather*}
$$

and this means that one of the numbers $\Omega_{1}-\Omega_{2}(k=0), \Omega_{1}(j=1$, $l=0), \Omega_{2}(j=0, l=1)$ is real. In the first case we may put $\omega_{1}=\Omega_{1}-\Omega_{2}$, $\omega_{2}=\Omega_{2}$ and so we obtain the same lattice of periods with one real period.
(ii) If the trajectory γ cannot be continuously deformed into a system of loops λ_{k}, λ_{l}, we have

$$
\begin{align*}
\int_{\gamma} \sqrt{Q(\zeta, a)} d \zeta & =A_{1}-2 A_{k}+A_{l} \tag{2.8}\\
& =\left(A_{1}-A_{0}\right)+\left(A_{l}-A_{0}\right)-2\left(A_{k}-A_{0}\right) \\
& =\text { a real number }
\end{align*}
$$

This means that one of the following numbers is real: $\Omega_{1}+\Omega_{2}(k=0)$, $2 \Omega_{1}-\Omega_{2}(k=1), 2 \Omega_{2}-\Omega_{1}(k=2)$. Putting $\omega_{1}=\Omega_{1}+\Omega_{2}, \omega_{2}=-\Omega_{1} ;$ $\omega_{1}=2 \Omega_{1}-\Omega_{2}, \quad \omega_{2}=\Omega_{1} ; \omega_{1}=2 \Omega_{2}-\Omega_{1}, \omega_{2}=-\Omega_{2}$ wo obtain in each case the same lattice of periods with ω_{1} real. We may suppose that the real primitive period ω_{1} is positive and then it represents according to (2.7) and (2.8) the length of γ in the metric $|Q(z, \alpha)|^{1 / 2}|d z|$.

In all cases considered there exists another primitive period ω_{2} of the form $\omega_{2}=\Omega_{j}, j=1,2$, and $\frac{1}{2}\left|\Im \Omega_{j}\right|$ is the length of ares of orthogonal trajectories joining $\Gamma_{j l}$ to $\partial K \cup \Gamma_{k}$.

We now prove that the functions $F(z, a)$ defined by (1.7) are single valued and univalent in the unit circle.

We find on trajectories separating $\Gamma_{j l}$ from $\partial K \cup I_{k}$ points whose distance from the orthogonal trajectory starting at ϑ and attaining $\Gamma_{i l}$ measured in the metric $|Q(z, \alpha)|^{1 / 2}|d z|$ along trajectories is equal $\frac{1}{2} \omega_{1}$. We obtain in this way an orthogonal trajectory $\tilde{l}_{k}^{\tilde{v}}$ omanating from z_{k}.

Now, open ares of trajectories sweep out the domain $K-\left(\Gamma_{k} \cup \Gamma_{j l} \cup \tilde{\Gamma}_{k}\right)$ and each are is mapped under $v(z)=\int_{0}^{\pi} \sqrt{Q(\zeta, a)} d \zeta$ on an open straight line segment $\left|\mathcal{R}_{v}\right|<\frac{1}{2} \omega_{1}, \Im_{v}=$ const in a biunivoque manner.

Thus the mapping $v(z)=\int_{\theta}^{\infty} \sqrt{Q(\zeta, a)} d \zeta$ carries $1: 1$ the unit dise with removed closed arcs $\Gamma_{k}, \Gamma_{j l}, \tilde{\Gamma}_{k}$ into the rectangle

$$
\begin{equation*}
-\frac{1}{2} \omega_{1}<\mathscr{R}_{v}<\frac{1}{2} \omega_{1}, \quad 0<\Im v<\frac{1}{2} \omega_{2} \tag{2.9}
\end{equation*}
$$

where ω_{1} is real and positive and the lattices $m_{1} \omega_{1}+m_{2} \omega_{2}, m_{1} \Omega_{1}+m_{2} \Omega_{2}$ are identical. Since $\wp\left(v \mid \omega_{1}, \omega_{2}\right)$ is an even elliptic function of order 2, it is univalent in the rectangle (2.9). This and the formula (2.6) imply that $F(z, \alpha)$ are functions regular and univalent in the unit circle for any real α. Besides, the map of K under $F(z, a)$ is a slit domain because \wp takes in the closure of the rectangle (2.9) every value. For $z \epsilon \partial K, v(z)$ is real, hence the slit is the image of $[0, l(a)]$ under $F(z, a)$.

3. Determination of \tilde{a}

As shown in [2], the univalent function $w=f(z)$ for which $\left|f\left(z_{2}\right) / f\left(z_{2}\right)\right|$ $=\sup \left|F\left(z_{1}\right) / F\left(z_{2}\right)\right|$,the least upper bound being taken with respect to functions $F(z)$ regular and univalent in the unit circle and vanishing at the origin, satisfies the differential equation

$$
\begin{equation*}
Q(z, a)=\frac{C\left(w_{2}-w_{1}\right)}{w\left(w_{1}-w\right)\left(w_{2}-w\right)}\left(\frac{d w}{d z}\right)^{2}, \tag{3.1}
\end{equation*}
$$

where C is a real and positive constant, a is real, $w_{k}=f\left(z_{k}\right), k=1,2$, and $Q(z, a)$ is defined by (1.1). Besides, $f(z)$ maps K on the w-plane slit along an analytic are joining $f(\eta)$ to $f(\vartheta)=\infty$. Putting

$$
\begin{equation*}
v(z)=\int_{\theta(a)}^{z} \sqrt{Q(\zeta, a)} d \zeta \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
w=4 C\left(w_{2}-w_{1}\right) W+\frac{1}{3}\left(w_{1}+w_{2}\right), \tag{3.3}
\end{equation*}
$$

we see that (3.1) is equivalent to $(d W / d v)^{2}=4 W^{2}-g_{2} W-g_{3}$, where g_{2}, g_{3} are constant. Since $W=\infty$ for $v=0$, resp. $z=\boldsymbol{\vartheta}(\alpha)$, we have necessarily $W(z)=\delta\left(v(z) \mid \omega^{\prime}, \omega^{\prime \prime}\right)$. It follows from the discussion of soct. 2 that $W(z)$ represents a univalent and single-valued slit mapping
if and only, if the lattices $m_{1} \omega^{\prime}+m_{2} \omega^{\prime \prime}, m_{1} \Omega_{1}+m_{2} \Omega_{2}$ are identical. This means that $W(z)=F(z, \alpha)$, and hence $f(z)=C_{1} F(z, \alpha)+C_{2}$ where C_{1}, C_{2} are constant. Putting $z=z_{k}$ in (2.6) and using the equality $A_{k}=2 I_{0}\left(z_{k}\right)$, we obtain for $k=0,1,2$

$$
\begin{equation*}
\int_{\theta(a)}^{z_{k}} \sqrt{Q(\zeta, a) d \zeta}=\mp\left[l(\alpha)-\frac{1}{2} A_{k}\right]+m_{1} \Omega_{1}+m_{2} \Omega_{2} . \tag{3.4}
\end{equation*}
$$

In view of (2.3) we see that

$$
\begin{equation*}
\int_{o(a)}^{0} \sqrt{Q(\zeta, a)} d \zeta=\frac{1}{2}\left(\mp \Omega_{1} \mp \Omega_{2}\right)+m_{1} \Omega_{1}+m_{2} \Omega_{2}, \tag{3.5}
\end{equation*}
$$

or $0=f(0)=C_{1} \wp\left[\frac{1}{2}\left(\Omega_{1}+\Omega_{2}\right)\right]+C_{2}=C_{1} e_{3}(\alpha)+C_{2}$, where

$$
\begin{equation*}
e_{3}(\alpha)=\wp\left[\frac{1}{2}\left(\Omega_{1}(\alpha)+\Omega_{2}(\alpha)\right)\right]=-e_{1}(\alpha)-e_{2}(\alpha) . \tag{3.6}
\end{equation*}
$$

Thus $f(z)$ has the form

$$
\begin{equation*}
f(z)=C_{1}\left\{F(z, \alpha)-e_{3}(\alpha)\right\}=C_{1}\left\{F^{\prime}(z, \alpha)+e_{1}(\alpha)+e_{2}(\alpha)\right\} \tag{3.7}
\end{equation*}
$$

where α is a real and C_{1} a complex constant. From (3.7), (1.7) and (3.4) we have for $k \neq l, k, l=1,2: f\left(z_{k}\right)=C_{1}\left\{\wp\left[l(\alpha)-\frac{1}{2} A_{k}\right]-e_{3}(\alpha)\right\}$ and using (2.3) we obtain $f\left(z_{k}\right)=C_{1}\left\{\wp\left[\left(l(\alpha)-\frac{1}{2} A_{0}\right)-\frac{1}{2}\left(A_{k}-A_{0}\right)\right]-e_{3}\right\}=$ $=C_{1}\left\{\wp\left[\frac{1}{2}\left(\mp \Omega_{1} \mp \Omega_{2}\right)-\frac{1}{2} \Omega_{k}\right]-e_{3}(\alpha)\right\}=C_{1}\left\{\wp\left[\frac{1}{2} \Omega_{l}\right]-e_{3}(\alpha)\right\}=C_{1}\left[e_{l}(\alpha)-\right.$ $\left.-e_{3}(a)\right]$. Hence

$$
\begin{equation*}
f\left(z_{1}\right) / f\left(z_{2}\right)=\left[e_{2}(\alpha)-e_{3}(\alpha)\right] /\left[e_{1}(\alpha)-e_{3}(\alpha)\right] . \tag{3.8}
\end{equation*}
$$

It is well known, cf. e. g. [1], p. 178, that the expression $\left(e_{3}-e_{2}\right) /\left(e_{1}-e_{2}\right)$, where e_{k} are defined by (1.9) (with α instead of $\tilde{\alpha}$) and (3.6) is equal to the Jacobian modulus $\lambda(\tau), \tau$ being defined by (1.6). Hence (3.8) takes the form $f\left(z_{1}\right) / f\left(z_{2}\right)=\lambda(\tau) /[\lambda(\tau)-1]$. Putting $\omega_{1}=\Omega_{1}, \omega_{2}=\Omega_{1}+\Omega_{2}$ we obtain another pair of primitive periods with $\omega_{2} / \omega_{1}=1+\tau$. If $\boldsymbol{E}_{k}=\wp\left(\frac{1}{2} \omega_{k}\right), k=1,2, E_{3}=\wp\left[\frac{1}{2}\left(\omega_{1}+\omega_{2}\right)\right]$, then $\lambda(1+\tau)=\left(E_{3}-\right.$ $\left.\left.-\boldsymbol{E}_{2}\right) /\left(E_{1}^{\prime}-E_{2}\right)=\left(e_{2}-e_{3}\right) / e_{1}-e_{3}\right)$.

In view of (3.8) we see that $\left|f\left(z_{1}\right) / f\left(z_{2}\right)\right|=|\lambda(\tau(\alpha)+1)|$ and hence α must be chosen so as to maximize the latter expression. This implies
(1.10) and the form

$$
\begin{equation*}
f(z)=C_{1}\left[F^{\prime}(z, \tilde{\alpha})+e_{1}(\tilde{\alpha})+e_{2}(\tilde{\alpha})\right] \tag{3.8}
\end{equation*}
$$

of the extremal function. We can eliminate $\vartheta(\tilde{\alpha})$ from (3.8) deforming the path of integration so that it passes through the origin. We have $\int_{\theta(a)}^{8}=\int_{\theta(a)}^{0}+\int_{0}^{8}$ and in view of (3.5) we obtain the second form of the extremal function as given in (1.8).

We have $\mathscr{R}\left\{\tau^{\prime}(a) \lambda^{\prime}(\tau+1) / \lambda(\tau+1)\right\}=0$ in the extremal case, and using this and the identity

$$
\lambda(\tau+1)=-16 q \prod_{n=1}^{\infty}\left(1+q^{2 n}\right)^{8}\left(1-q^{2 n-1}\right)^{-8}
$$

where $q=e^{\text {rir }}$, cf. [3], p.319, we can easily obtain a transcendental equation for $\tilde{\alpha}$.

REFERENCES

[1] Hille, E., Analytic Function Theory, vol. II, Boston 1962.
[2] Krzyì, J., On univalent functions with two preassigned values, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 15, 5 (1961), p. 57-77.
[3] Nehari, Z., Conformal Mapping, New York-Toronto-London 1952.
[4] Stoilow, S., Стоилов, С., Теорил Функчий Комплексного Переменного (in Russian), vol. I, Москва 1962.

Streszczenie

W pracy tej dokonano modyfikacji niektórych wyników pracy poprzedniej [2], bęaacych konsekwencjami równania (5.3). Równanie to zostało wyprowadzone ze wzoru (4.14) w pracy [2],w którym czynnik $z_{1}-z_{2}$ zostal omyłkowo wzięty ze znakiem przeciwnym.

Резюме

В этоł работе дается модификация некоторых результатов работы [2] будущих следствиями уравнения (5.3), которое нолучилось из формулы (4.14) в работс [2], где умножитель $z_{1}-z_{2}$ оказался ошибочно взятый с обратным знаком.

