ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XVI, 11	SECTIO A	1962

Z Zakładu Funkcji Analitycznych na Wydziale Mat. Fiz. Chem. UMCS Kierownik: doc. dr Jan Krzyż

JAN KRZYŻ

Some Remarks Concerning My Paper: On Univalent Functions with Two Preassigned Values

Pewne uwagi o mojej pracy: O funkcjach jednolistnych z dwiema zadanymi wartościami

Заметка о моей работе: Об однолнстных функциях с двумя заданными значениями

1. Introduction, notations

A mistake committed in the formula (4.14) of [2], where the factor $z_1 - z_2$ should be taken with the opposite sign, vitiates the argument of sect. 5 leading to the evaluation of a because the quadratic equation for $\eta = e^{i\alpha}$ analogous to (5.3), [2], reduces to the identity 0 = 0. Besides, the discussion concerning the single-valuedness of the extremal function, as well as its dependence on the homotopy classes of curves determining the periods Ω_k was incomplete, so that some supplementary remarks seem to be necessary. These drawbacks do not, however, affect those statements of [2] where the results of sect. 5 are not used and even the form (2.5), [2], of the univalent function maximizing the ratio $|F(z_1)/F(z_2)|$ remains true after replacing a by the right value \bar{a} which can be found as follows.

With any real $a \in [0, 2\pi]$ we can associate the function

(1.1)
$$Q(z, a) = \frac{e^{-ia}(z-e^{ia})^{a}}{z(z-z_{1})(z-z_{2})(1-\overline{z}_{1}z)(1-\overline{z}_{2}z)}$$

as well as three complex numbers

(1.2)
$$A_k = A_k(a) = \int_{A_k} e^{-ia/2} (\zeta - e^{ia}) \varphi(\zeta) d\zeta, \quad k = 0, 1, 2,$$

where $\varphi(z)$ is the branch of $[z(z-z_1)(z-z_2)(1-\overline{z}_1z)(1-\overline{z}_2z)]^{-1/2}$ chosen so that $e^{-ia/2}(\zeta - e^{ia})\varphi(\zeta)d\zeta > 0$ on $|\zeta| = 1$, for arg ζ increasing in the Annales t. XVI, 1362 interval $(a, a + 2\pi)$. Here λ_k denotes a loop joining $\eta = e^{ia}$ to z_k , k = 0, 1, 2, which are three different points of the unit disc, $z_0 = 0$. We call a loop joining η to z_k a cycle λ_k consisting of a small circle $C(z_k, \varepsilon)$ centre at z_k described in the positive direction and of a rectilinear segment described twice and joining $C(z_k, \varepsilon)$ to η whose prolongation contains z_k . The radius ε is chosen so that the only critical point of the integrand inside $C(z_k, \varepsilon)$ is the centre. If the segment (η, z_k) contains critical points of the integrand, we replace suitable parts of (η, z_k) by small semicircles so as to leave critical points on the left side, when passing from η to z_k .

We put next

(1.3)
$$\Omega_k = \Omega_k(a) = A_k - A_0, \quad k = 1, 2,$$

(1.4)
$$\vartheta = \vartheta(a) = e^{i\beta},$$

where $\beta = \beta(a)$ is defined by the equation

(1.5)
$$\int_{a}^{p} \sin \frac{1}{2} (\theta - a) |e^{i\theta} - z_{1}|^{-1} \cdot |e^{i\theta} - z_{2}|^{-1} d\theta =$$
$$= \int_{\beta}^{a+2\pi} \sin \frac{1}{2} (\theta - a) |e^{i\theta} - z_{1}|^{-1} \cdot |e^{i\theta} - z_{2}|^{-1} d\theta.$$

Hence $\eta = e^{ia}$ and $\vartheta = e^{i\beta}$ divide the circumference |z| = 1 into two arcs with common end points and of the same length l(a) in the metric $|Q(z, a)|^{1/2} \cdot |dz|$. If

(1.6)
$$\tau = \tau(a) = \pm \Omega_2(a)/\Omega_1(a),$$

where the sign is chosen so that $\Im(\tau) > 0$, then the right value a maximizes the expression $|\lambda(\tau(a)+1)|$; $\lambda(\tau)$ denotes here the elliptic modular function (the Jacobian modulus) defined by equations:

$$egin{aligned} & au &= iK(1-\lambda)/K(\lambda)\,, \ & K(\lambda) &= \int\limits_0^1 [(1-t^2)(1-\lambda t^2)]^{-1/2}dt\,, \end{aligned}$$

Sec. Calific and

where $K(\lambda)$ is real and positive for $0 < \lambda < 1$, cf. [3], p. 318.

If $\wp(v \mid \Omega_1, \Omega_2)$ is the Weierstrass's \wp function with periods Ω_1 , Ω_2 then the functions

(1.7)
$$F(z, a) = \wp \left[\int_{\theta(a)}^{s} \sqrt{Q(z, a)} d\zeta \mid \Omega_1(a), \Omega_2(a) \right]$$

are single-valued and univalent in the unit circle K for any real a and any path of integration situated inside K. The extremal function yielding the maximum $k(z_1, z_2)$ of the ratio $|F(z_1)/F(z_2)|$ within the family of functions F(z) regular and univalent in K and vanishing at the origin, has the form

(1.8)
$$f(z) = C_1 F(z, \tilde{a}) + C_2 =$$

$$= C_1 \left\{ \wp \left[\int_0^{\tilde{z}} \sqrt{Q(\zeta, \tilde{a})} d\zeta + \frac{1}{2} \Omega_1(\tilde{a}) + \frac{1}{2} \Omega_2(\tilde{a}) \right] + e_1(\tilde{a}) + e_2(\tilde{a}) \right\}$$

where

$$(1.9) e_k(\tilde{a}) = \wp\left(\frac{1}{2}\,\varOmega_k(\tilde{a})\right), \quad k = 1\,,2\,,$$

 \wp has periods $\Omega_1(\tilde{a})$, $\Omega_2(\tilde{a})$ and C_1 , C_2 are constant. The periods $\Omega_1(\tilde{a})$, $\Omega_2(\tilde{a})$ may be replaced by another pair of primitive periods $\omega_1(\tilde{a})$, $\omega_2(\tilde{a})$, with $\omega_1(\tilde{a})$ real and positive.

Besides, the map of K under f(z) is a slit domain with the slit arising by a homothety from the map of a segment $[0, l(\bar{a})]$ of the real axis under $\wp(x \mid \omega_1, \omega_2)$, where ω_1 is real. Finally

$$(1.10) k(z_1, z_2) = |\lambda(\tau(\tilde{a})+1)|.$$

2. The properties of the integral
$$\int_{\theta(a)} \sqrt{Q(\zeta, a)} d\zeta$$

We first prove that $\tau(a)$ as defined by (1.6) cannot be real for any $a \in [0, 2\pi)$.

Similarly as in [4], p. 321, we see that the values $I = I(\Gamma)$ of the Abelian integral $\int_{\Gamma} e^{-ia/2}(\zeta - e^{ia})\varphi(\zeta)d\zeta$ taken along a closed curve Γ starting at $\eta = e^{ia}$ and situated inside K, have the form

(2.1)
$$I = I(\Gamma) = \sum_{k=0}^{n} \mu_k A_k$$

where μ_k are integers which can assume arbitrary values for Γ suitably chosen and A_k are defined by (1.2). There are two possible cases: either all A_k are collinear (in this case all the values I lie on a straight line through the origin), or there exists a "lattice" of parallelograms covering all the plane such that to each corner point w there corresponds a curve Γ with $w = I(\Gamma)$. On the other hand we have also (cf. [4], p. 323)

$$(2.2) I = \varepsilon A_0 + m_1 \Omega_1 + m_2 \Omega_2,$$

where $\varepsilon = 0,1$ and m_1 , m_2 are integers. Hence, if Ω_1 , Ω_2 are collinear, the values I necessarily lie on a straight line through the origin and this means that also A_0 , Ω_1 , Ω_2 are collinear. Now, the circumference |z| = 1may be deformed continuously into a system of three loops λ_r . After running around z_r on λ_r we come back to η with the opposite sign of $\varphi(z)$, hence $2l(a) = A_j - A_k + A_l = (A_j - A_0) - (A_k - A_0) + (A_l - A_0) + A_0$. Here and in what follows j, k, l are supposed to be three integers different from each other and taking the values 0, 1, 2; $z_0 = 0$. Therefore

(2.3)
$$2l(a) = A_0 \mp \Omega_1 \mp \Omega_2 > 0,$$

where the signs depend on the relative position of η and z_k . This implies that all the numbers A_0 , Ω_1 , Ω_2 , when collinear, must be real. In absence of poles of order higher than 1, after removing from the unit disc K the trajectories of the quadratic differential $Q(z, a)dz^2$ emanating from poles and zeros, we obtain a ring domain. Thus there exists a trajectory Γ_k of $Q(z, a)dz^2$ joining η to z_k and also a trajectory Γ_{j_l} joining z_j to z_l . The orthogonal trajectory $\tilde{\Gamma}_l$ of $Q(z, a)dz^2$ starting at z_l attains $\partial K \cup \Gamma_k$ and for a cycle which can be shrinked continuously into $\tilde{\Gamma}_l$ plus a suitable arc of $\partial K \cup \Gamma_k$ emanating from η , we have $\frac{1}{2}|\Im I(\Gamma)| > 0$ since this gives the length of $\tilde{\Gamma}_l$ in the metric $|Q(z, a)|^{1/2}|dz|$. Hence $\Omega_1(a)$, $\Omega_2(a)$ cannot be both real and this proves that $\Im \tau(a) \neq 0$ for any real a.

Let now $I_0(z)$, $z \in K$, be the value of $\int e^{-ia/2} (\zeta - e^{ia}) \varphi(\zeta) d\zeta$ taken along the segment $[\eta, z]$ with the points z_k possibly omitted along small semicircles. For any path joining η to z and situated in K we have either

(2.4)
$$\int e^{-i\alpha/2}(\zeta - e^{i\alpha})\varphi(\zeta)d\zeta = I_0(z) + m_1\Omega_1 + m_2\Omega_2,$$

01

(2.5)
$$\int_{\eta} e^{-ia/2} (\zeta - e^{ia}) \varphi(\zeta) d\zeta = A_0 - I_0(z) + m_1 \Omega_1 + m_2 \Omega_2$$

where m_1 , m_2 are integers, cf. [4], p. 324. Now, $\int_{\eta}^{\sigma} = l(\alpha) + \int_{\theta}^{\sigma}$ and using this, (2.3), (2.4) and (2.5) we see that

(2.6)
$$\int_{\theta(a)} e^{-ia/2} (\zeta - e^{ia}) \varphi(\zeta) d\zeta = \mp [l(a) - I_0(z)] + m_1 \Omega_1 + m_2 \Omega_2,$$

where $\Im(\Omega_2/\Omega_1) \neq 0$.

This implies that the functions F(z, a) as defined by (1.7) are singlevalued and regular in K for any real a.

We now prove that the periods $\Omega_1(a)$, $\Omega_2(a)$ may be replaced by another pair $\omega_1(a)$, $\omega_2(a)$ of primitive periods with $\omega_1(a)$ real.

There are two possible cases.

(i) A trajectory γ separating $\partial K \cup \Gamma_k$ from the trajectory Γ_{jl} joining z_k to z_l can be deformed in a continuous manner into a system of two loops λ_j , λ_l joining η to z_j and z_l resp. Since $\varphi(z)$ changes the sign after running around z_l , we have

(2.7)
$$\int_{\gamma} \sqrt{Q(\zeta, a)} d\zeta = \mp (A_j - A_l) = \mp (A_j - A_0) - (A_l - A_0)$$
$$= \text{a real number}$$

and this means that one of the numbers $\Omega_1 - \Omega_2$ (k = 0), Ω_1 (j = 1, l = 0), $\Omega_2(j = 0, l = 1)$ is real. In the first case we may put $\omega_1 = \Omega_1 - \Omega_2$, $\omega_2 = \Omega_2$ and so we obtain the same lattice of periods with one real period.

(ii) If the trajectory γ cannot be continuously deformed into a system of loops λ_k , λ_l , we have

(2.8)
$$\int_{\gamma} \sqrt{Q(\zeta, a)} d\zeta = A_j - 2A_k + A_l$$
$$= (A_j - A_0) + (A_l - A_0) - 2(A_k - A_0)$$

= a real number

This means that one of the following numbers is real: $\Omega_1 + \Omega_2$ (k = 0), $2\Omega_1 - \Omega_2$ (k = 1), $2\Omega_2 - \Omega_1$ (k = 2). Putting $\omega_1 = \Omega_1 + \Omega_2$, $\omega_2 = -\Omega_1$; $\omega_1 = 2\Omega_1 - \Omega_2$, $\omega_2 = \Omega_1$; $\omega_1 = 2\Omega_2 - \Omega_1$, $\omega_2 = -\Omega_2$ we obtain in each case the same lattice of periods with ω_1 real. We may suppose that the real primitive period ω_1 is positive and then it represents according to (2.7) and (2.8) the length of γ in the metric $|Q(z, a)|^{1/2} |dz|$.

In all cases considered there exists another primitive period ω_2 of the form $\omega_2 = \Omega_j$, j = 1, 2, and $\frac{1}{2} |\Im \Omega_j|$ is the length of arcs of orthogonal trajectories joining Γ_{i1} to $\partial K \cup \Gamma_k$.

We now prove that the functions F(z, a) defined by (1.7) are single valued and univalent in the unit circle.

We find on trajectories separating Γ_{fl} from $\partial K \cup \Gamma_k$ points whose distance from the orthogonal trajectory starting at ϑ and attaining Γ_{fl} measured in the metric $|Q(z, a)|^{1/2} |dz|$ along trajectories is equal $\frac{1}{2} \omega_1$. We obtain in this way an orthogonal trajectory Γ_k emanating from z_k . Now, open arcs of trajectories sweep out the domain $K - (\Gamma_k \cup \Gamma_{jl} \cup \tilde{\Gamma}_k)$ and each arc is mapped under $v(z) = \int_{\theta}^{z} \sqrt{Q(\zeta, a)} d\zeta$ on an open straight line segment $|\Re v| < \frac{1}{2} \omega_1$, $\Im v = \text{const}$ in a biunivoque manner.

Thus the mapping $v(z) = \int_{\delta} \sqrt{Q(\zeta, a)} d\zeta$ carries 1:1 the unit disc with removed closed arcs Γ_k , Γ_{jl} , $\tilde{\Gamma}_k$ into the rectangle

(2.9)
$$-\frac{1}{2}\omega_1 < \Re v < \frac{1}{2}\omega_1, \quad 0 < \Im v < \frac{1}{2}\omega_2,$$

where ω_1 is real and positive and the lattices $m_1\omega_1 + m_2\omega_2$, $m_1\Omega_1 + m_2\Omega_2$ are identical. Since $\wp(v \mid \omega_1, \omega_2)$ is an even elliptic function of order 2, it is univalent in the rectangle (2.9). This and the formula (2.6) imply that $F(z, \alpha)$ are functions regular and univalent in the unit circle for any real α . Besides, the map of K under $F(z, \alpha)$ is a slit domain because \wp takes in the closure of the rectangle (2.9) every value. For $z \in \partial K$, v(z)is real, hence the slit is the image of $[0, l(\alpha)]$ under $F(z, \alpha)$.

3. Determination of \tilde{a}

As shown in [2], the univalent function w = f(z) for which $|f(z_1)/f(z_2)| = \sup |F(z_1)/F(z_2)|$, the least upper bound being taken with respect to functions F(z) regular and univalent in the unit circle and vanishing at the origin, satisfies the differential equation

(3.1)
$$Q(z, a) = \frac{C(w_2 - w_1)}{w(w_1 - w)(w_2 - w)} \left(\frac{dw}{dz}\right)^2,$$

where C is a real and positive constant, a is real, $w_k = f(z_k)$, k = 1, 2, and Q(z, a) is defined by (1.1). Besides, f(z) maps K on the w-plane slit along an analytic arc joining $f(\eta)$ to $f(\vartheta) = \infty$. Putting

(3.2)
$$v(z) = \int_{\vartheta(a)}^{\infty} \sqrt{Q(\zeta, a)} d\zeta,$$

(3.3)
$$w = 4C(w_2 - w_1)W + \frac{1}{3}(w_1 + w_2)$$

we see that (3.1) is equivalent to $(dW/dv)^2 = 4W^2 - g_2W - g_3$, where g_2, g_3 are constant. Since $W = \infty$ for v = 0, resp. $z = \vartheta(a)$, we have necessarily $W(z) = \wp(v(z) | \omega', \omega'')$. It follows from the discussion of soct. 2 that W(z) represents a univalent and single-valued slit mapping

if and only, if the lattices $m_1\omega' + m_2\omega''$, $m_1\Omega_1 + m_2\Omega_2$ are identical. This means that W(z) = F(z, a), and hence $f(z) = C_1F(z, a) + C_2$ where C_1 , C_2 are constant. Putting $z = z_k$ in (2.6) and using the equality $A_k = 2I_0(z_k)$, we obtain for k = 0, 1, 2

(3.4)
$$\int_{\vartheta(a)}^{s_k} \sqrt[p]{Q(\zeta, a)} d\zeta = \mp \left[l(a) - \frac{1}{2} A_k \right] + m_1 \Omega_1 + m_2 \Omega_2.$$

In view of (2.3) we see that

(3.5)
$$\int_{\theta(a)}^{0} \sqrt{Q(\zeta, a)} d\zeta = \frac{1}{2} (\mp \Omega_1 \mp \Omega_2) + m_1 \Omega_1 + m_2 \Omega_2,$$

or $0 = f(0) = C_1 \wp \left[\frac{1}{2} (\Omega_1 + \Omega_2) \right] + C_2 = C_1 e_3(a) + C_2$, where

(3.6)
$$e_3(a) = \wp \left[\frac{1}{2} \left(\Omega_1(a) + \Omega_2(a) \right) \right] = -e_1(a) - e_2(a).$$

Thus f(z) has the form

$$(3.7) f(z) = C_1\{F(z, a) - e_3(a)\} = C_1\{F(z, a) + e_1(a) + e_2(a)\}$$

where a is a real and C_1 a complex constant. From (3.7), (1.7) and (3.4) we have for $k \neq l$, k, l = 1, 2: $f(z_k) = C_1 \left\{ \wp \left[l(a) - \frac{1}{2} A_k \right] - e_3(a) \right\}$ and

using (2.3) we obtain
$$f(z_k) = C_1 \left\{ \wp \left[\left(l(a) - \frac{1}{2} A_0 \right) - \frac{1}{2} (A_k - A_0) \right] - e_3 \right\} =$$

= $C_1 \left\{ \wp \left[\frac{1}{2} (\mp \Omega_1 \mp \Omega_2) - \frac{1}{2} \Omega_k \right] - e_3(a) \right\} = C_1 \left\{ \wp \left[\frac{1}{2} \Omega_l \right] - e_3(a) \right\} = C_1 [e_l(a) - e_3(a)].$ Hence

(3.8)
$$f(z_1)/f(z_2) = [e_2(a) - e_3(a)]/[e_1(a) - e_3(a)].$$

It is well known, cf. e. g. [1], p. 178, that the expression $(e_3 - e_2)/(e_1 - e_2)$, where e_k are defined by (1.9) (with a instead of \tilde{a}) and (3.6) is equal to the Jacobian modulus $\lambda(\tau)$, τ being defined by (1.6). Hence (3.8) takes the form $f(z_1)/f(z_2) = \lambda(\tau)/[\lambda(\tau) - 1]$. Putting $\omega_1 = \Omega_1$, $\omega_2 = \Omega_1 + \Omega_2$ we obtain another pair of primitive periods with $\omega_2/\omega_1 = 1 + \tau$. If $E_k = \wp \left(\frac{1}{2}\omega_k\right)$, k = 1, 2, $E_3 = \wp \left[\frac{1}{2}(\omega_1 + \omega_2)\right]$, then $\lambda(1 + \tau) = (E_3 - -E_2)/(E_1 - E_3) = (e_2 - e_3)/e_1 - e_3)$.

In view of (3.8) we see that $|f(z_1)/f(z_2)| = |\lambda(\tau(\alpha) + 1)|$ and hence α must be chosen so as to maximize the latter expression. This implies

(1.10) and the form

(3.8)
$$f(z) = C_1[F(z, a) + e_1(a) + e_2(a)]$$

of the extremal function. We can eliminate $\vartheta(\tilde{a})$ from (3.8) deforming the path of integration so that it passes through the origin. We have $\int_{\vartheta(\tilde{a})}^{z} = \int_{\vartheta(\tilde{a})}^{0} + \int_{0}^{z}$ and in view of (3.5) we obtain the second form of the

extremal function as given in (1.8).

We have $\Re\{\tau'(a)\lambda'(\tau+1)/\lambda(\tau+1)\}=0$ in the extremal case, and using this and the identity

$$\lambda(\tau+1) = -16q \prod_{n=1}^{\infty} (1+q^{2n})^8 (1-q^{2n-1})^{-8},$$

where $q = e^{\pi i \tau}$, cf. [3], p. 319, we can easily obtain a transcendental equation for \tilde{a} .

REFERENCES

- [1] Hille, E., Analytic Function Theory, vol. II, Boston 1962.
- [2] Krzyż, J., On univalent functions with two preassigned values, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 15, 5 (1961), p. 57-77.
- [3] Nehari, Z., Conformal Mapping, New York-Toronto-London 1952.
- [4] Stoilow, S., Стоилов, С., Теория Функций Комплексного Переменного (in Russian), vol. I, Москва 1962.

Streszczenie

W pracy tej dokonano modyfikacji niektórych wyników pracy poprzedniej [2], będących konsekwencjami równania (5.3). Równanie to zostało wyprowadzone ze wzoru (4.14) w pracy [2], w którym czynnik z_1-z_2 został omyłkowo wzięty ze znakiem przeciwnym.

Резюме

В этой работе дается модификация некоторых результатов работы [2] будущих следствиями уравнения (5.3), которое получилось из формулы (4.14) в работе [2], где умножитель $z_1 - z_2$ оказался ошибочно взятый с обратным знаком.