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Mixed Models IxJ and Ix2 with Interaction in the Case of Non-
Orthogonal Data (!)

Mieszane modele Ix.J i Ix2 z interakcjy w przypadku danych nicortogonalnych

Cmewamnie motean Ix.J u I X2 ¢ BIaKMO;ieiiCTBHEM B CAYYAe HEOPTOrOHAMoRbLIX JAHHBIX

1. Review of literature

a. This is a short review of literature concerning the two-way classi-
fication 4 x B in the case of unequal subelass numbers.

The general form of the mathematical model in which we are inte-
rested is as follows:

V) oy =t a+B+yyten; =1,2,..,1;5=1,2,...,J;
I =1, 2,090y

Where y,, is the I'" observation in the (i, j) cell, u is the general constant,
¢n — random errors which are normally distributed i.e. N (0, a;), and
%, fis and y;8 can be random or fixed effects; o, is the effect of the
ith 4 class, 8, is the effect of the j*" B class and y,, is the interaction effect of
the (i,j) Cell.

When all the effects on the right hand of (1) except for e; and »
are fixed then (1) is the fized model. In the case when ais, and f;s and Vis8
re random we have the random model. If one of the effects a;s and B8
I8 random then y, is random and the model is called mized. .

The case when the numbers of observations in each cell are proportio-
nal (ny; = p,s;) or the same (ny — k = constant; k >1) is known as
the orthogonal case.

'(1) This work was carried out while at Statistical Laboratory, Iowa State Uni-
versity, Ames, Iowa, USA, under a Rockefeller Foundation fellowship.
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b. Fixed model. The literature in the case of non-orthogonal data
(ny are not constant) is extensive, but there are many problems still
unsolved. The method of fitting constants devised by R. A. Fisher [9],
a special case of which was discussed by A. E. Brandt [2] has been de-
veloped and perfected by F. Yates [39]. This method based on the theory
of least squares can be applied to the solution of tables of two-way clas-
sification corresponding to the model (1). It provides the test of signi-
ficance for interaction when some of n;; can be equal to zero. F. Yates
[40] has presented the theory of the two-way classification under the
assumption that the interaction is not existent, and the test of signifi-
cance for interaction for the case of fixed a's and 8's. Moreover, the same
author, had suggested the method of weighted squares of means [39, 40]
when the interaction is present and when we assume that the population
has equal subclass numbers. He has presented estimates of the main effects
only. The effect of the interaction was given for the I x2 classification.
The test of significance for interaction in this case is identical with that
given by the method of fitting constants. In the same papers F. Yates
has presented the approximate method of unweighted means. The second
approximate method called the method of expected subclass numbers
has been suggested by G. W. Snedecor and G. M. Cox [30]. One can use
it under the assumption that the population has proportional subclass
numbers and under the condition that all n;; > 1. The analysis of variance
is simple since it is based on a standard procedure used in the orthogonal
case. Both approximate methods present estimates of interactions and
test of significance of interactions. R. E. Patterson [23] is the author
of another approximate method called method of adjusting factors.
C. Y. Kramer [18] has presented an approximate method for fixed model
in the case of no interaction.

W. L. Stevens [32] has given an arithmetic method useful in working
out non-orthogonal data. Other papers by R. O. Johnson and J. Neyman
[15], K. R. Nair [21], 8. S. Wilks [38], F. Tsao [33, 34], are connected
with the problems of working out non-orthogonal data. The problems
are discussed in the text-books by G. W. Snedecor [31], O. Kempthorne
[16], R. L. Anderson and T. A. Baneroft [1], M. G. Kendall [17].

A general case of weighted restrictions has been presented by J. Nor-
ton [22] but his notes were not published. He had used the weights of
the form

[p (/)T :
W; = [Z — ,  where gp(j/i) = 1.

n,-,

The special case of the weights when p(j/i) = w; has been suggested
by H. Scheffé [26] in his book. In the article by W. R. Harvey [10]
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several numerical examples are presented on the use of least squares
analysis of data for the case of both factors fixed.

¢. Random model. S. L. Crump [6] har given the expected mean
squares for the method of expected subclass numbers, while W. T. Fe-
derer [8] has presented the expected mean squares for the method of
woighted squares of means. C. R. Henderson [11] and W. T. Federer [8]
have given them for the method of fitting constants. Moreover, S. L.
Crump has developed the sampling variances of the estimates for method
of expected subclass numbers and for the method of unweighted squares
of means. 8. L. Crump [7] states that the method of unweighted squares
of means is the simplest computationally.

In the case of uncorrelated and normally distributed random variables
S. R. Searle [27] has used IHenderson’s [13] method 1 to estimate the
variance components a, oj, a5, and o;. The nature of this method is to
equate observed and expected mean squares. Both Henderson’s methods
2 and 3 are based on least-squares principles. The variances of estimates

of variance components from non-orthogonal data are unknown.

The problem of the estimation of variance components under the
method of fitting constants has been discussed by H. L. Lucas [19] and
C. R. Henderson [12]. A. Wald [36] has proved that exact confidence
limits for the ratio of any variance component to the error component
may be obtained in two-way classification with equal numbers. Under
sufficiently large number of degrees of freedom it is possible to present
approximate confidence limits of any covariance component, I. Bross [3].

Random models in the case of non-orthogonal data are described
by O. Kempthorne [16] in his textbook.

H. F. Smith [28] has discussed the random model in the case of pro-
portional numbers of observations in the sub-classes.

Numerical data of examples of random models and corresponding
analyses of variance are presented by W. R. Harvey [10].

d. Mixed model. A xpecial type of mixed model with fixed effects
4;, f; and random interaction y;; in orthogonal case (n;; = constant)
was discussed by S. L. Crump [7]. N. L. Johnson [14] has presented
the tests of significance for mixed model when #ny; = k. Bancroft and
Anderson [1] describe a mixed model when j3; and y; are random. The
mixed model under general assumptions in the orthogonal case is parti-
cularly considered by H. Scheffé in his book [26].

The problem of estimation of variance components is presented and
illustrated by C. R. Henderson [13]. Henderson’s method 3 yields un-
biased estimates of variance components in the case of non-orthogonal
data. Henderson’s method 1 leads to biased estimates in the case of mixed
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model. He suggests to use method 2 for mixed models when effects are
uncorrelated or correlated.

W. R. Harvey [10] states that there is test of significance for the
fixed main effects in the mixed model when interaction is significant
in the case of non-orthogonal data. The author by using least squares
analysis presents expectations of mean squares under standard assumptions.
No proofs are given.

e. The three types of the above mentioned models: fixed, random
and mixed are special cases of the model suggested by M. B. Wilk and
0. Kempthorne [37]. The authors have introduced the concept of expe-
rimental unit and that of true response as well as the use of randomization
in the design; they have also developed the methods of finite model ana-
lysis given by O. Kempthorne [16] for orthogonal data.

2, Notation

The symbols used in the text are as follows:
1. Yin= ptat+phtyy +em; £=1,2,...,1;
l_m_!
i=1L2,...,J; 1=1,2,...,ny; fixed model

2. Yin = B+ a;+bj+cyt+eq ; random model
[ |
random
3. Yo = p+a;+ bytcy+epn 3  mixed model
— =t "}
random

4. vy, wy, P(j/t) — weights

J b g
w? -1 3 ‘UE -1

5. Wi = L~ y Vf — Z —

=t ™ =™~

J 1 J I

T
6. ng = Znﬁ, Ny = Znﬁ, n = Z Nj = Z’ni.
j=1 =1 7=1 =1

iy
7. Y, = Z?/ijl = Ny; Yij-

l=1

. g
8. Y, = b Yy =n 9.
=
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@;, B; estimates under the fixed model without interaction

(Yin = p+ wi+ B+ eip)

)
Niz + Ny

—

(model I x2)

Zi = Y, Y.

I
N Mg S :
rﬁ';zl E i =142,..,d;
1=1
J
n{;n‘;
Wi =
I=1
& = ng—Tyy M= Ny — Ui
J
d; = ngnyyy; G, 1=1,2,...,1
=]
I, 1
- _
Va,r( ‘a:,.) = ﬂVa,r(:v,-)-i-z Z Cov(w;, ;) =
‘inl ! i=1 {(u
1,i=12,....1
1
-
= Y Var@)+ Y Cov(am, z)
i=1l 1%l
1=, I
J
0; = Wis. (Table 3)
by S BVar (o)
2 . GVar(e(v)
L = — \ LVar(e;(o)) — = ———_\
| Phan (e:(0) 1

2 3 LbCov(ei(v), cx(v))

ik
2l
i

— ik=13,..1 (Table 3)

I
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3. Outline of cases considered

H. Scheffé has presented in detail the mixed model with interaction
in the case of orthogonal data: n; = £ = constant. The assumptions
concerning the model are moderately general.

The purpose of this note is to consider the mixed model with inter-
action in the case of non-orthogonal data following Scheffé’s assumptions
[26]. We are cspecially interested in the case when interaction is signifi-
cant, so we want to introduce a general form of weights w;, v; and discuss
the generalization of the method of weighted squares of means. In this
case the definitions of the main effects depend on the system of weights.
In the case of fixed model under non-orthogonal data the method of
weighted squares of means does not give o test or an estimate of inter-
actions except for the case I X2, o wo consider especially the case I x2
(Table 3).

Particular cases are written down at the bottom of Table 1. They
are defined by:

1. the weights w; and v;,
2. assumptions concerning the numbers of observations, »;,
3. assumption about correlation among random interactions.

We include Tables 2 and 4 for the cases I x.J and I X2 respectively
when the interaction is insignificant.

The general procedure is to use the analysis of variance for fixed
model to obtain expectation of mean squares for both effects 4 and B
and for interaction AB. We would like to see if comparisons of mean
squares are fair. Distributional properties of ratios of mean squares were
not yet considered.

In order to calculate B (M S p) in general case [ xJ we have calculated
E(Q%)) and E(Q Q) for j #k; j, k —=1,2,...,.J.

4. Assumption under mixed model

We consider the model (1) where the {b;}, {cy}, {e;j} are jointly
normal, the {e;;} arc independently N (0, ¢7) and independent of the {b;}
and {c;}, which have means E(b;) = 0, F(¢;;) = 0 for all ¢ =1,2,...,T
and the following variances and covariances: Cov (by, b;.), Cov(ey, ¢iy)
and Cov(b;, 0;;). In the case j # j' these variances and covariances are
equal to zero, but when j = j° they are assumed to be non-zero. They
can be defined in terns of an I X1 covariance matrix X,, with elements
{oii.}, where y;;; = my;+ ey The J vector random variables (my;, ..., my;)
are independently N (u, X,), where u = (u,, ..., u;) and are independent
of the {e;}.
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The unknown parameters are: o;, the elements {a;;.} of the covariance
matrix X,,, and the means {u;}, which are written {u+ a;} (cf. Scheffé’s
book [26]).

5. Definitions of main effects and interactions effects based
on weights v,

We consider the population presented by the A classification and
a random variable v with the population distribution P,. Let m(i, )
be the ,,truc” value of the individual labelod v on ith level of the A clas-
sification. It is necessary to note that ¢ corresponds to a definite and fixed
level of A classification in the experiment. We want to generalize Scheffé’s
definitions of main effects and of interactions effects by using weights »;.

A vector random variable m = m(v) has the I components {m(z, v)}.
We can represent it as follows:

m = m(v) = (m(1,v), m(2,v),...,m(I,v))
Def. 1. The ,,true’” mean for the ith level of classification A is
ui = m(i,) = E[m(i, v))

where a dot signifies the expected value of m (i, v) has been taken with
respect to P,.
Def. 2. The general mean is defined as

1 I
\ 1 L 1
p=p = F}{ v;pu; = m(.,.) where l{ % =1.

Def. 3. Tho main effect of the ith level of the classification A is
defined as
a; = pi—p, =m(i,.)—m(,.)

Def. 4. The ,,true” mean for the individual labeled » is

I
m(., 1) = ‘2 vym (i, v)

te=l
Def. 5. The main effect of the individual labeled » in the population is
b(v) = m(., v)—m(.,.).

Def. 6. The main effect of the individual labeled v, specific to the
ith level of A, is defined as

m(s, v)—m(¢,.).
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Deof. 7. The interaction of the ith level of 4 and the individual la-
beled v in the population is

¢(v) = m(i, v)—m(s,.)—m(., v)+m(.,.).

Thus we have m(¢, v) = u+ a;+ b(v)+ 0;(v).

6. Restrictions

From these definitions it follows that the main effects and inter-
actions in the population satisfy the following weighted restrictions:

I I
Zvia, =0, thc‘(v) =0 for all v,
{=1 i=1

E[b(v)] =0, Eleiv)]=0 for all 7.

Particular cases of weights and restrictions are given at the bottom of
Table 1.

?. Relations between Var[b(v)], Cov[b(v),¢,(v)], Cov[c,(v),c.(v)],
Var[¢,(v)] and o,

Wo can express Var[b(v)], Cov[b(v),e:(v)], Cov[e;(v),e; (v)], Var[e;(v)];
1<t;8,¢=1,2,..., I; in terms of oy = Cov[m(i, v), m(¢', v)];
t,4' =1,2,...,1; as follows:

1
Var[b(v)] = ;”3011'1'2 th‘ V04 Oy

= 3 N |

i
Cov[b(v), e(v)] = ' v,0,—Var[b(o)],

Fel

1
Cov[e(v), ¢ (v)] = gy — Zvr(aﬁ+ or)+Var[b(v)]
Pm]
I

where Zm =1
{=1]

1
Var[e;(v)] = oy —2 2 v, 0+ Var[b(v)].

fm]


ViVi.au

62 Wiktor Oktaba

8. Sums of squares under fixed models and expectations
of mean squares under mixed models. Tests

Let us examine Tables 1 and 3. Expectations of mean squares for A

and B have been obtained under the assumption that interaction is
J

1
significant. Usnally we put ¥, = Yw,; = 1. In the case of insignificant
: ~

Tl
interaction expectations of mean squares are given in Tables 2 and 4
for the classifications I xJ and I X2 respectively.

From Table 3 it is clear that comparison of expectations of mean squa-
res given in Table 3 leads to the tests written down at the bottom of this
Table.

In the orthogonal case ny =— k = constant we obtain as a parti-
cular case the results presented by J. W. Tukey [35], O. Kempthorne [16],
M. B. Wilk and O. Kempthorne [37], J. Cornfield and J. W. Tukey [4]
and H. Scheffé [24, 25].

Now, let us consider Table 1. In Table 1, sum of squares for interaction,
8845, i8 given by least squax::as analysis. In order to calculate E(MS4p)

it is necessary to calculate EZ('?,'Q., or E(Q%) and E(Q,Q,);i, k=1,2,...
f=1

...yJ which is explained in sections 9 and 10.

From the Table 1 it is seen that by using the ratio F = M8,/ MS.
we can test the null hypothesis Hp that Var[b(v)] = 0.

In the general case the expectation of M8, p is not yet given expli-
citly. It is done in the I X2 case, 80 we can compare it whith the (M8 ,)
given in Tables 1 and 2, and suggest a test for A.

Table 4 contains tests for interaction and for effects A and B in the
case of mixed model I X2 when interaction is insignificant. We can use
any restrictions: weighted or unweighted.

From Table 2 (the case I XJ) we can suggest the test F' = MSp/ M8,
under the hypothesis Hp: Var[b(v)] = 0.

Particular cases. We can choose the weights in different ways;
this depends on the formm of the population.
I. Disproportional frequencies: n; # p;8; 7 constant.

I 1
1. w; = nyny v = ng [n, Yn;a = Jngeyg=0 for all j; E[b(v)] =
1 J
= Efo;(v)] = 0 for all 5 Yo, = Yw; = 1.
1 I

2. wy=1/J, v;=1/I, Ya,= Je; = 0forallj; E[b(v)] = E[e;(v)] =0
for all §; 3'v; = Y'w; = 1 (Method of weighted squares of means). Assump-
tion: equal subelass numbers in the classes of the population.
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II. Proportionate frequencies: n; = pls,
I
1. w; = /8., v, = p¢[p., Y Pia; = 0, Zp‘c” =0 for all j; E[b(v)] =
= FEfe;(v)] = 0; (weighted restrictions); W; =8 p;; V, = 8;p; n;, = p;8,,
Ny =P8, n=Dp3.

1 J 1 J

Under fixed model (JXpia;= 8= dpiyy= D8y;=0 and ey
are normally and independently distributed, all with mean value 0 and
the same unknown variance o) we have the following sums of squares:

I
884 =8 X oW~ 9% =p. Y 45,5,
? i

8845 = ;Pﬁ;@u. ~¥1..~ Vs, ‘+"§...)2| 88, = Z (?Im—gu.)’,
; il
where

k=Y., 9. = Yy p:8, ¥, = Y D8, ¥; = Y;[p38;
a =G~ b =79;—9 =y —¥.—V;+7

For mixed model we obtain:

s} !
E(MS8,)= +TZ-T[ Zmanh : Z;o.-Var[of(v)]]

(it does not depend on Cov(e, ¢;.) because of the restrictions),

2
E(MSg) = 0'¢+J 1 (8 %‘i)Var[b(fv)],

B(MS.n) = o+ =5 - 1)2"'( -———)Var[o(m)],

E(MS,) = d,.

Approximate test. When the hypothesis H,: all «; = 0 is true we
have E(MS,) # E(MS8,p) a8 it is in the case I x2. Then both expres-
sions E(MS,) and E(MS,y) though not the same, depend on o; and
Var[¢;(v)]. Therefore we can use the Satterthwaite’s method (1946)
to test the hypothesis H 4.

2. wy=1/J,v,=1]/I, Zu, = Eo,-j = 0 forallj; E[b(v)] = E[e;()] = 0
I

for all ¢ (the unweighted restrictions)

I
e ($2) m-r( S
“" prJ el '"I } s’f pr
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The method of weighted squares of means does not produce the same
results as the standard method given in II. 1. But it is interesting that
under the fixed model we can reparametrize the model with weighted
rostrictions into the model with unweighted restrictions (¢f. II. B. Mann
[20]). Then using normal equations we obtain the same sums of squares
a8 in IL.1. Thus in application it is advisable to use the standard method.

III. Orthogonal case: n; =k = constant; w; =1/J, v = 1/I,
1 1

Wi=kJ, V;=kI; Ya,= 3o; =0 for all j; E[b(v)] = E[c;(v)] =0
for all i.
We obtain:

I 1
- Ry 1{ e e
B(MS.) = di+ 3 ‘LJZ 24k .2. 3 u.r[r,v(-v}}l,

f=l

1
E(MSg) = o*+kIVar[b(v)] and E(MS.z) = o+ J—[f—IZVa,r [e/(v)]
iml

as it should be (cf. [26], p. 269, Table 8.8.1).

IV. Cov[e;(v), ¢:(v)] = 0, Var[e;(v)] = o%5 = constant for all i =
=1,2,...,I; Cov[e;(v), ¢;(v)] = 0. We can consider all particular cases
given above in I, IT and III.

Remark. In the case of fixed model (non-orthogonal data) the method
of weighted squares of means does not give a test or an estimate of inter-
action except for the case I x2 (cf. G. W. Snedecor and G. M. Cox [30]).

9. Calculation of E(Q,Q.),j+# kij,k=1,2,...,J in the case
of mixed model IxJ with interaction in the case of non-ortho-
gonal data

From Table 1 it is evident that in order to find E(MS 4p) it is necessary
1 J .
to calculate E(}aQ;) and E(3Y;Q,), where 3Q; = Y@, =0. The a;’s
i=1 =1 i 7

and the ﬁ,’s are estimates under the model without interaction:
Yin = p+ ait+ Bi+ ey

J .
In order to calculate E(}f;Q,) we can calculate E(Q%) and E(Q;Q,),
=1 |
j #kj,k=1,2,...,J, because we can express f; as function of @,
I -
Q. and ¥;;. Then because of @, = ¥ ;— X' n;¥y; we can express > 5@
7

in terms of y;; and then as a function of x4, a;, b;, ¢;;, and .
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Under the assumptions: Ya;= Ye¢; =0 for all j=1,2,...,J;
i i
E(b;) = E[e;(v)] = 0 and Zb, £ 0, Zc;; # 0 we obtain:
I ﬂnu "Ubf\ I anfcl/\ J

Q; = (".;‘bi— 2 ) e Z Ny \cu— + ("’je 2’”«1’/0&._)

and the following expressions:

I Mg )1?f-”b; J
p lied Yng Nngb
TS ] LS, Y s | N )
a, (nJ S n by i g
J
= \_‘r rru—A(n g+ ng)r | Var[b(v)].
2, (gt ng) [b(v)]
=1
j L] 2 niyby 2 Ny Cij
- TR - b("_jbj )[2‘ N (c.k - )]
1 1
\ Y i M )
= =y DI Cov b(o), cio)]—rix D mkCovIb(o), ei(0)] +
[ i=1
d d
+ ) Covib(o), exfm)]—% Y V1
£t n 4=
3. a3=2FE (n 20k v ik 2, S:‘—mibf) [ ,\1 nij (c,, Zn,,c,,)]
' ﬂl =] nl,

I
= s 3" Cov [b(v), ei(0)]— Y misCovb(v), e(0)]+

= o T

+ 3 (covibion e, {v)] e ¥ mal).
YI‘ Yn,lc,, Snggey
. o=1F [¢-| i (0:;—“ - ][Q "“‘( ’ n, )I n
3
\1 jln,,ﬂu[ A ,,Ij_,,fk]}\far[a;(w)]nL
4~ | n;. Ny,

+ 2{"v"w+"w"wd g T (g + i) My i (g4 man))

B4r=" F
l(" n; ng ny, Ny, l
$,i'=1,2,,

x Cov [y(v), ¢ (v)]-
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L. \ §
‘4}1 nﬁe;._, ('ll';‘-e';-' — “)_: 'I'I..-kf‘-") = —azr,,‘.
6. E(QQ.1) = Cov(Q;,Qr) = a,+a;+ az+a,+ag;
j#*k i, k=1,2,...,J.
7. For fixed model, i.e. when Cov[e;(v),c4(v)] =0
= Var[e,(0)] we obtain E(Q,Q) = Cov(QQ) = —oi-ry, as it

should be (ef. [21]).
ny = k = constant the a, =0, a; =0

8. In the orthogonal case: n;
I
and a, = 0 because of the restrictions Y¢; = 0 for all j =1
=1

5. a; = E(ﬂ.JeJ_—

= Var[b(v)] =

J. @ ; depends only on b; and e;;:

2b;

el g e

under the restrictions Ma; = }Ye; = 0 for all j
1 i

Then
12k2 1k
Var[b(v)]— " o-.

E(Q1Q.) = Cov(Q;, Q)

Let us calculate E(Q%).
10. The calculation of E(Q%);j=1,2,...,J

E"ub;)

17y
1. a —Va.r(rer,— ) :
|,-l ng

J
= (n_’,— 20 7+ Zr},) Var[b(v)].
=1

/ I I \-4

(| WRLTPALTLT
2. ap = Var {Z NijCij— 2{ ——"l———- -
- i= .

=l
ziznf,-

=1 n, ny,
Zm;nw
Ny &1 Niey i

+ v [nun‘.; (1— —
— ng, Ny, n; Ny,

a

)Var[e.-(vn»a-

) Cov[e(v), ¢ (v)]] .
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I ny S‘"tlbi \11 l ’N{;z Ni; Cip
3- anl - 2COV (n_/bj— § —'; ) : nuc“ ,- S ‘) -
» f=l 0

I

2[n; N nyCovivio), am—n, ¥ ,\’ "Oov[b (0), ,(0)]
L _

T=1 1—1

' I
2 vl B \! ’if_"t_f L .
r 3 myCovib(o), ex(0)]+ N 3= Qi CovIb (), ei(0)]|.

’ ’
) S RTTT {  e~

I
Ol "
T Var(voJe_,'— 2‘ Ny, ) = opf;.
t=]

e

St
.

E(@,) = 0.
6. E(Q.:f) ="Var(Q;) = a;+a;; +a +ayy.

7. For fixed model we have Cov[e;(v), ¢;(v)] = 0 = Var[e;(v)] =

— Var[b(v)] and we obtain E(Q}) = o*¢, — (nj— \! "‘f) as it should

—
be (cf. [21]).
8. In the orthogonal case: n; = k = constant the a;; = 0 and the

1

@y = 0 because of the restrictions that Y'e; = 0 for all j =1,2,...,d.
t=1

' (J—-1)I* Ik(J—1) |
Then E(Q%) = Var(Q,) = a, +apy = ———l—~ V r(b(v)]+ (_J T,
ag it should be.

Acknowledgement

The author is indebted to Professor O. Kempthorne for his advice
and suggestions.

The author is grateful to Professor T. A. Bancroft, Director and Head
of Statistical Laboratory and Department of Statistics, Iowa State Uni-
versity, Ames, Iowa, for making it possible to carry out the present
research at his Statistical Laboratory, under a Rockefeller Foundation
fellowship.

REFERENCES

[1] Anderson, R. L., and Bancroft, T. A., Statistical theory in research, McGraw-
-Hill, New York, 1952.

[2] Brandt, A. E., The analysis of variance in 2 X s table with disproportionate fre-
quencies, J. Amer. Statist. Assoc., 28 (1933), p. 164.



74 Wiktor Oktaba

[3] Bross, I., Fiducial intervals for variance components, Biometrics, 6 (1950),
p. 136-144.

[4]1 Cornfield, J. and Tukey, J. W., Averages values of mean squares in factorials,
AMS, 27 (1956), p. 907-949.

[5] Crump, S.L., The estimation of variance components in analysis of variance,
Biometrics, 2 (1946), p. 7-11.

[6] Crump, S.L., The estimation of components of variance tn multiple classifica-
tions, Unpublished ’h. D. Thesis, Ames, [owa State College, 1947.

[7] Crump, 8. L., The present status of variance component analysis, Biometrics,
7 (1851), p. 1-16.

[8] Federer, W.T., Evaluation of variance components from a group of erperiments
with multiple classification, Unpublished Ph. D. Thesis, Iowa State College
Library, Ames, Iowa, 1948.

[9] Fisher, R. A., Statistical methods for research workers, Oliver and Boyd, Edin-
burgh; Fourth edition, 1932.

[10] Harvey, W. R., Least-Squares analysis of data with unequal subclass numbers,
ARS-20-8, July 1960, Agric. Res. Service, U. 8. Dep. of Agric.

[11] Henderson, C. R., Estimation of general, specific and maternal combining
abilities in qrosses among inbred lines of swine, Unpublished Thesis, Iowa State
College, Ames, Iowa, 1948.

[12] Henderson, C. R., Estimation of genetic parameters, Abstract. Ann. Math.
Stat., 21 (1950), p. 308.

[13] Henderson, C. R., Estimation of variance and covariance components, Bio-
metrics, 9 (1933), p. 226-252.

[14] Johnson, N. L., Alternative systems in the analysis of variance, Biometrika,
35 (1948), p. 80-87.

[15] Johnson, P. 0., and Neyman, J., Tests of certain linear hypotheses and their
application to some educational problems, Stat. Res. Memoirs, 1 (1936), p. 57-93.

[16] Kempthorne, O., The design and analysis of experiments, John Wiley, New
York, 1952.

[17] Kendall, M. G., The advanced theory of statistics, Charles Griffin, L.ondon,
19486.

[18] Kramer, C. Y., On the analysis of variance of a two-way classification with un-
equal subclass numbers, Biometrics (1955), p. 441-452.

[19] Lucas, H. L., A method of estimation components of variance in disproportionate
numbers, Abstract. Ann. Math. Stat., 21 (1950), p. 302.

[20] Mann, H. B., Analysis and design of experiments, Dover Public. New York,
1949, p. 134-135.

[21] Nair, K. R., A note on the method of fitting constants for analysis of non-ortho-
gonal data arranged in a double classification, Sankhya, 5 (1940-41), p. 317-328.

[22] Norton, J., Notes to accompany influence of weighting choices on tests of main
effects and interactions, Purdue University, presented at Annual Meeting of
American Statistical Association, Chicago, Dec. 27, 1958.

[23] Patterson, R. E., The use of adjusting factors in the analysis of dala with dis-
proportionate subclass numbers, Jour. Amer. Stat. Apgsoc., 41 (1948), p. 334-3486.

[24] Scheffé, H., A mized model for the analysis of variance, AMS 27 (1956), p. 251 - 271.

[25] Scheffé, H., Alternative models for the analysis of variance, AMS, 27 (1956),
p. 251-271.

[26] Scheffé, H., The analysis of variance, John Wiley, New York, 1959.



Mixed models I xJ and I x2 75

[27] Searle, 8. R., Sampling variances of estimates of components of variance, AMS,
29 (1958), p. 167-178.

[28] Smith, H.F., Analysis of variance with unequal bul proportionate numbers of
observations in the subclasses of a two-way classification, Biometrics, 7 (1951),
p. 70-74.

[29] Snedecor, G. W., The method of expected numbers for tables of multiple classi-
fication with disproportionate subclass numbers, JASA, 29 (1934), p. 389-393.

[30] Snedecor, G. W., and Cox, G. M., Disproportionate subclass numbers in lables
of multiple classification, Res. Bulletin No. 180, 1935, Ames, Iowa, p. 272.

[31] Snedecor, G.W., Statistical methods, The Iowa State College Press, Ames,
Towa, 5th edition, 1956.

[32] Stevens, W. L., Statistical analysis of a non-orthogonal tr.-factorial experiment.
Biometrika, 35 (1948), p. 346-347.

[33] Tsao, F., Tests of statistical hypotheses in the case of unequal or disproportionate
numbers of observations in the subclasses, ’sychometrika, 7 (1942), p. 195-212.

[34] Tsao, F., General solution of the analysis of variance and covariance in the case
of unequal or disproportionate numbers of observaltions in the subclasses, Psycho-
metrika, 11 (1946), p. 107-128.

[35] Tukey, J. W., Finite sampling simplified, Memorandum report 45 of the Sta-
tistical Research Group, Princeton University, 1950.

[36] Wald, A., On the analysis of variance in case of multiple classifications with
unequal class frequencies, AMS 12 (1941), p. 346-349.

[37] Wilk, M. B,, and Kempthorne, O., Fired, mized and random models, JASA
50, 272 (1955), p. 1144-1167.

[38] Wilks, 8. 8., The analysis of variance and covariance in non-orthogonal data,
Metron, 13, 2 (1938), p. 141-154.

[39] Yates, F., The principles of orthogonality and confounding in replicated experi-
ments, Jour. of Agr. Sci., 23 (1933), p. 108.

[40] Yates, F., The analysis of mulliple classifications with unequal numbers in the
different classes, JASA, 29 (1934), p. 51.

Streszezenie

Celem niniejszej pracy jest rozpatrzenie modeli mieszanych I xJ
i I'x2 z interakeja w przypadku danych nieortogonalnych (por. 3 po-
zycja § 2) przy zalozeniach H. Scheffé’'go [26] dla danych ortogonal-
nych. Przedstawiono zaréwno definicje gléwnych efektow i interakeyj-
nych, korzystajac z ogdlnej formy wag ®, jak i odpowiednie re-
strykcje wazone. W tablicach 1, 2, 3 i 4 podano sumy kwadratéw dla
efektow gléwnych, interakeyjnych i dla bledu przy modelu ze statymi
parametrami (fixed model) oraz wartoéci oczekiwane odpowiednich
rednich kwadratéw dla rozwazanego mieszanego modelu. Znaleziono
wyrazna postaé wartoéei oczekiwanej $redniego kwadratu dla interakeji
AB w przypadku Ix2 (Tablica 3). Odpowiednia wartosé w przypadku
ogbélnym I xJ (Tablica 1) nie zostala explicite obliczona. W tablicach 2
i 4 przedstawiono wymienione sumy kwadratéw i wartosci oczekiwane
w przypadku nieistotnej interakeji.
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Dla ortogonalnych danych n; = constans = k otrzymano jako szcze-
gllny przypadek analizowanego modelu wyniki znane w literaturze (J.W.
Tukey, O. Kempthorne, H. Scheffé).

W celu obliczenia wartoéci oczekiwanej sredniego kwadratu dla interakeji
w przypadku ogolnym I xJ obliczono E(Q%) i E(Q,;Q.4);j, k=1,2,...,d.

Wartosei oczekiwane w Tablicach 1, 2, 3 i 4 sugerujg testy nie-
przypadkowosei I' dla zweryfikowania hipotez odnosnie efektéow glow-
nych i interakeyjnych.

Na str. 62, 63 i 70 rozpatrzono szezegdlne przypadki modeli okreflone
badZ rodzajem wag w; i v;, badz zaloZeniami dotyczgcymi liczby obser-
wacji n;;, badz tez zalozeniami o korelacjach miedzy losowymi inter-
akejami.

PeswnMme

Llenblo aToil pPaGoThl AB.SIETCA PUACCMOTPEHHUC CMEWAHHbIX Mojge:reii
Ix.JJ nw Ix2 c B3auMOJCI{CTBHEM B C.Iy4ac HEOPTOTOMAIBHBIX AIHLIX
(cp. 3 moa. 2) npn npepmoskennax X. llledde [26] naa opToronambimix
nanHbpix. [Ipencras:eno ompenenenust raasubix 3PpdextoB 1 3pdexton
B3auMofeifcTBH, UCII0JIb3Y ol1Lee 1(PC/ICTaB.IeHNe BECOB w; KK ¥;, 4 TaKie
COOTBCTCTBYIOLIE B3BClIeHHbIE orpamnuenns. B rtabuamuax 1, 2, 3 n ¢
TaHo, 1PH MOJE:IN C TMOCTOHHILIMI 1apamerpaMi (fixed model), cymmu
KBagpaToB s TiiaBHBIX dddeKrron, opdexToB B3anMONEIHCTBUH 1t IS
ownbKM, a B ciiyyae cCMeLIaHHOIT MOJEIif I[PeCTaBIeHO MaTeMaTHYecKoe
O’KHJIaHHie COOTBETCTBYIOIIMX CpexHuX kBajapaTtos. HaitmeHo uweTkwuit
BMJl MaTeMaTM4YecKoro OMHMIAHMUA cpellero Ksajgparta IUIA B3aHMOJeii-
ctBua AB B ciyvae Ix2 (Tabimua 3). CooTBeTcTBYiOllee 3HaueHMe
B oGiem ciyuae I xJ (Ta6mmua 1) ie BLIYMCIEHO B sIBHOM Bue. 13 Tabau-
nax 2 ¥ 4 nupenacraBiieHO YKa3aHHble CYMMbl KBapaTOB M MaTeMaTHYeCKHe
OMUTAHUA B CiIyuae HeCyIlUeCTBEHHOro B3auMOJeHCcTBMA.

JInA opToroHadbHHIX MAHHBIX 7,; = constans = Kk 1I0JIy4eHO Kak
YacTHHIL Ciyvait paccMaTpuBaeMOl MOReNIH M3BecTHLIE B JIMTepaType
peayabratl (M. B. Tykeu, O. Hemnrropu, X. Iledde).

Ileqblo BBLIYMCIIEHMA MaTeMaTHYECKOro OKMIAHMA cpejiiero KBaapaTta
IIA  B3auMofeiictBuA B o0mem ciayyae Ix.J Buuuciaeno E(Q%)
n E(Q;Q4; i, k=1,2,...,J.

MaremaTHyecKkoe o:kuMaaHue B Tabiamuax 1, 2, 3 u 4 BHYWAWT KpH-
Tepun 3nauMMocTH F 1A IIPOBEPKH THIOTE3 OTHOCHTENbHO J(PexTon
rmnaBHbIX M 3PderToB BlauMomelcTBHA.

Ha ctp. 62, 63, 1 70 paccMOTpeHO YaCTiible Cllyyal Mojlelreit olrpepue-
JIEHHBIX JINGO POJIOM BECOB 0; U Ty, NGO 1(PEXII0II0HKEHUAMU OTHOCHTEILHO
uncsa HabmoRenuit n;;, TU60 IPLIMOTOKEHUAMI O KOPPEIAIMAX MEHTY
cl1y4YallHBIMM B3aMMOXEUCTBHAMMU.



