LUBLIN-POLONIA

Lnstytut Masematylo
Uniwersytet Marii Curio-Sldodowsláej

A. M.ZAPALA

Brownian Sheets with Values in a Banach Space

Powierzchnie brownowside o wartościach w przestrzeni Banacha

1. Introduction. Let ($B,\|\cdot\|$) be a real separable infinite dimensional Banach space and let p_{t} be the Wiener measure with mean zero and variance parameter $t \geq 0$ defined on the Borel - field 8 of subsets of B. In other words, we assume that there exists a real separable infinite dimensional Filbert space $\boldsymbol{B} \subset B$ with' a centered at zero cylindrical Gauss measure μ_{c} having variance parameter ℓ, such that $\|\cdot\|$ is a μ_{t}-measurable norm on \boldsymbol{H}, B is the completion of H with respect to $\|\cdot\|$ and p_{t} is the unique σ-additive extension of a measure $\tilde{\mu}_{s}$ associated with μ_{8} by equality on cylinders in B and \boldsymbol{H}. This is possible because any seminorm in \boldsymbol{B} is always measurable or not with respect to all μ_{l} simultaneonsly, furthermore \boldsymbol{B} is determined aniquely by B and p_{t} for a fixed $\ell>0$. It is well known that an arbitrary real separable Banach space B can be used in the described above context, and since a measurable norm is weaker than the original norm $|\cdot|=\sqrt{\{\cdot \cdot \cdot \mid}$ generated by the inner product of $H,(B,\|\cdot\|)$ is not complete unless it is finite dimensional. Construction and further properties of the Wiener measure in a Benach space were given by Gross [9] (cf. also Koo [15]).

Let p_{0} denote the measure assigning the unit mass to the origin $0 \in B$. Then the family of measures $\left\{p_{t}, t \geq 0\right\}$ forms a strongly continuous contraction semigroup acting in the Banach space of bounded uniformly continuons (real or complex valued) functions on B, in particular $p_{t} * p_{t}=p_{t+0}$ for $t, \theta \geq 0$, where *epotes the convolution. Consequently a one parameter B-valued Wiener process $\left\{\xi_{t}, t \geq 0\right\}$ with independent p_{t-0}-distributed increments $\xi_{t}-\xi_{t}, t>0 \geq 0$ and continuous paths can be constructed (see Gross $[8,9]$ and $\mathrm{Ku} \circ[15]$). In the presented article we describe a simple construction and basic properties of a multiparameter Wiener process called Brownian sheet with values in a real separable infinite dimensional Banach space B.

The notion of a Banach space valued Brownian sheet is not entirely new, becanse such a process was introduced e.g. by Morrow [16] for the purpose of approximation of rectangular sums of B-valued random elements. Moreover, by analogy to the fact observed by $\mathrm{K} \pi$ el bs [i4] for real Brownian sheets we may define B-valued Brownian sheet on the cube $\left\langle 0, \ell_{0}\right\rangle^{\gamma}, r \geq 2$, identifying it with $\left\{\xi_{t}, t \in\left\langle 0, t_{0}\right\rangle\right\}$, where the last Wiener process takes values in the Banach space $C\left(\left\langle 0, t_{0}\right\rangle^{r-1}, B\right)$ of continuous
functions from $\left\langle 0, t_{0}\right\rangle^{r-1}$ into B. We do not want to display these considerations, but we will present here some other method based on random series in tensor products of Banach spaces leading quickly to the same reaults.

Throughout the paper B° denotes the topological dual of B (\boldsymbol{B}^{\bullet} resp. for \boldsymbol{B}) and the bracket (\cdot, \cdot) means the natural pairing between B° and B. Since the norm $\|\cdot\|$ is weaker than $|\cdot|$, the restriction of any $y^{\circ} \in B^{\bullet}$ to \boldsymbol{Z} is a continuous linear functional on H, so that $B^{\circ} \subset B^{*}$. In view of the Riesz representation theorem B^{*} is isometrically isomorphic to \boldsymbol{B}. Denote by * the following isomorphism: $0^{\circ} \rightarrow 0$ and if $0^{\circ} \neq y^{0} \in B^{*}$, let $\hat{y}=y_{1}\left(y^{*}, y_{1}\right)$, where $y_{1} \in E$ is the unique vector characterized by the properties: $y_{1} \in\left\{x:\left(y^{\bullet}, x\right)=0\right\}^{\perp},\left|y_{1}\right|=1$ and $\left(y^{\bullet}, y_{1}\right)>0$. Thus we have defined an embedding $B^{\circ} \subset B^{*} \xrightarrow{\rightarrow} \boldsymbol{H} \subset B$, so that for $y^{\circ} \in B^{*}$ and $x \in B$, the scalar product (\hat{y}, x) is well-defined and $(\hat{y}, x)=\left(y^{*}, x\right)$.
2. Construction of the process. Let $T=\left\{\ell=\left(\ell_{1}, \ldots, t_{r}\right) \in R^{r}: \ell_{i} \in R_{+}=\right.$ $=\{0, \infty), 1 \leq i \leq r\}$ and $\partial T=\left\{t \in T: t_{i}=0\right.$ for some $\left.i=1,2, \ldots, r\right\}$. In the sequel for $a, t \in T$ we will use the notation: $\bullet \wedge t=\left(\min \left(\theta_{1}, t_{1}\right), \ldots, \min \left(\theta_{r}, t_{r}\right)\right)$ and by analogy o $V t$ with max, furthermore $\bullet \pm t=\left(o_{1} \pm t_{1}, \ldots, \theta_{r} \pm t_{r}\right)$ and $|t|=\prod_{i=1}^{r} t_{i}$. Let $O(T, B)$ denote the space of continuous functions $x: T \rightarrow B$ such that $\left.x\right|_{0 T}=0$. We shall prove that there exist a probability apace (Ω, \mathcal{F}, P) and a stochastic process $X=\{X(t), \ell \in T\}$ defined on it with values in B, satisfying the following conditions:
(2.1) for an arbitrary $t \in T, \quad X(t): \Omega \rightarrow B$ is a random element in (B, B), the process X has independent increments

$$
\Delta X(V)=\sum_{\left\{1 \leq i \leq r: t_{i}=a_{i} \vee t_{i}=b_{i}\right\}}(-1)^{j=1} X\left(t_{1}, h_{2}, \ldots, t_{r}\right)
$$

on disjoint rectangles $V=\{a, b)=\left\{t \in T: a_{i} \leq q_{i}<b_{i}, i \leq r\right\}$,
(2.3) $\Delta X(V)$ has distribution prol V for $V=\langle a, b| \subset T$, where vol $V=|b-a|$;
hence $X(t)=0$ with probability 1 iff $t \in \partial T$ and $X(t)$ is $p|q|$ - distributed whenever $t \in T$.

Moreover,

(24) realirations of the process X are as continuous, i.e belong to $C(T, B)$.

We are going now to deacribe briefly construction of X. Let $T_{m}=\{\ell \in T$: $\left.0 \leq h_{i} \leq m_{i}, 1 \leq i \leq r\right\}$, where $m_{i} \in N=\{1,2, \ldots\}$. Suppose $\left\{y_{n}, n \geq 1\right\}$ is a CONS in H and $\left\{f_{j}, j \geq 1\right\}$ is a CONS in $C^{\prime}\left(T_{m}\right)$, where $C^{\prime}\left(T_{m}\right)$ is the Hilbert space generating Wiener measure in $C\left(T_{m}\right)$ - the space of continnous functions from T_{m} into R vanishing on $\delta T \cap T_{m}$. It is easy to see that for any sequence of i.j.d. standard normal random variables $\left\{g_{n}\right\}$, defined on the same probability space, $\sum_{n} g_{n} y_{n}$ converges 2s. in $(B,\|\cdot\|)$, and similady $\sum_{j} g_{j} f_{j}$ is convergent with probability 1 in the usual sup narm in $C\left(T_{m}\right)$. Hence if gnj are independent standard normal random variables defined on a common probability space, ca acoount of the result given by

Chevet [3],

$$
\begin{equation*}
\sum_{j, n} g_{n j} f_{j} \otimes y_{n} \tag{2.5}
\end{equation*}
$$

converges as. in $C\left(T_{m}\right) \otimes_{s} B$, where s is the least reasonable cros-norm. It is very well known that the space $C\left(T_{m}\right) \otimes_{8} B$ is equivalent to $C\left(T_{m}, B\right)$ - the real separable Banach space of continuous functions $x: T_{m} \rightarrow B$ with norm $\|x\|_{m}=\sup _{l \in T_{m}}\|x(l)\|$ such that $\left.x\right|_{o r}=0$. Thus if we identify the tensor product \otimes with multiplication, the above series (2.5) defines a stochastic process $X_{m}=\left\{X_{m}(t), t \in T_{m}\right\}$ with realizations in $C\left(T_{m}, B\right)$.

Let W_{m} be the distribation of X_{m} in $\left(C\left(T_{m}, B\right), B\left(C\left(T_{m}, B\right)\right)\right)$ and let $\chi_{m}=C^{\prime}\left(T_{m}\right) \otimes_{2} H$. Then $\left\{f_{j} y_{n}, j, n \geq 1\right\}$ is a CONS in X_{m}, which implies that X_{m} is the Hilbert space generating Wiener measure W_{m} in $C\left(T_{m}, B\right)$.

All what we have to prove is that X_{m} satisfies (2.1) (2.3). Consider the probar bility space $\left(C\left(T_{m}, B\right), B\left(C\left(T_{m}, B\right)\right), W_{m}\right)$. Obviously $X_{m}(t), t \in T_{m}$, are random elements with values in B. Observe now that the functional $G_{y^{*}, y} \in C^{\circ}\left(T_{m}, B\right)$ given by $G_{y^{*}, V}(x)=\left\{y^{\circ}, \Delta x(V)\right)$ after embedding into X_{m} is equal to $\Delta|\ell \wedge \cdot|\left(V^{\circ}\right) \hat{y}$. Indeed. for each f_{j} and y_{n} we have $\left.\langle\Delta| t \wedge \cdot\left|(V) \hat{y}, f_{f} y_{n}\right\rangle x_{m}=\langle\Delta| t \wedge \cdot \mid(V), f_{j}\right)_{C^{\prime}\left(T_{m}\right)}\left(\hat{y}, y_{n}\right\rangle=$ $=\Delta f_{j}(V)\left(y^{\circ}, y_{n}\right)=\left(y^{\bullet}, \Delta\left(f_{j} y_{n}\right)(V)\right)$, so $\hat{\xi}_{y^{*}, V}=\Delta|\ell \wedge \cdot|(V) \dot{y}$. It follows that $\Delta X_{m}(V)$ has distribation p ol V, because for each $y^{\circ} \in B^{\bullet},\left(y^{\circ}, \Delta X_{m}(V)\right)$ is distributed normally with mean zero and variance vol $V \cdot|\dot{y}|^{2}$ (ci. Kuo [15] p. i8).

Furthermore, since W_{m} is generated by the cylindrical Gauss measure in X_{m}, if $F \perp G, F, G \in X_{m}$, then $\left\langle F, X_{m}\right\rangle_{x_{m}}$ and $\left\langle G, X_{m}\right\rangle_{x_{m}}$ are independent. Suppose $V_{1}, V_{2} \subset T_{m}$ are disjoint rectangles. Let $\varepsilon_{1}^{*}, \ldots, s_{k}^{*}, z_{1}^{*}, \ldots, z_{n}^{*} \in B^{*}$. Without loss of generality we assume that is, are orthogonal in E and similarly \dot{z}, (for we can always form a basis in $\operatorname{Lin}\left(\varepsilon_{1}^{p}, \ldots, \varepsilon_{h}^{*}\right)$ consisted of orthogonal vectors). However $\hat{G}_{u i}, V_{1}$ and $\hat{G}_{z_{j}, V_{2}}$ are then all mmtuaily orthogonal in \mathcal{K}_{m}, so that joint distribution of the random vector
$\left\{\left(\varepsilon_{1}^{*}, \Delta X_{m}\left(V_{1}\right)\right), \ldots,\left(z_{k}^{i}, \Delta X_{m}\left(V_{1}\right)\right),\left(z_{i}^{*}, \Delta X_{m}\left(V_{2}\right)\right), \ldots,\left(z_{n}^{*}, \Delta X_{m}\left(V_{2}\right)\right)\right\}$
is Gaussian and random vectors $\left\{\left(\varepsilon_{1}^{\circ}, \Delta X_{m}\left(V_{1}\right)\right) \ldots .\left(\varepsilon_{k}^{\circ}, \Delta X_{m}\left(V_{1}\right)\right)\right\}$ and $\left.\left(z_{1}^{*}, \Delta X_{m}\left(V_{2}\right)\right), \ldots,\left(z_{n}^{*}, \Delta X_{m}\left(V_{2}\right)\right)\right\}$ are independent. Consequently $\Delta X_{m}\left(V_{1}\right)$ and $\Delta X_{m}\left(V_{2}\right)$ are independent random elements in B.

Finally X_{m} is the process with continuous reaiizations on T_{m} satisfying (2.1)(2.3). Note also that the measure W_{m} does not depend on the choice of f_{j} in $C^{\prime}\left(T_{m}\right)$ and y_{n} in \boldsymbol{H} - any other CONS in $C^{\prime}\left(T_{m}\right)$ as well as in \boldsymbol{E} will lead to the same distribution W_{m}.

Let $C(T, B)$ be viewed with a family of seminorms $\left\|_{i} \cdot\right\|_{m}, m \in N^{r}$. Theu $C(T, B)$ is a real separable B_{0}-space. Denote by $\pi_{m}: C(T, B) \rightarrow C\left(T_{m}, B\right)$ prajections obtained by restriction of the domain of functions $x \in C(T, B)$ to T_{m} and set $U_{m}=\pi_{m}{ }^{-1}\left(B\left(C\left(T_{m}, B\right)\right)\right)$, and $W(U)=W_{m}(A)$ provided $A \in B\left(C\left(T_{m}, B\right)\right)$ and $U=\pi_{m}^{-1}(A)$. Then W is well-defined and is a cylindrical measure on the field $U U_{m}$ in $C(T, B)$, thas W is countably additive (see e.g. Daleckii and $m \in N^{r}$
Fomin [4], Th. 1.3 p. 25, where $K=\bigcup_{m \in N^{r}} K_{m}, K_{m}=\pi_{m}^{-1}\left(M_{m}\right)$ and M_{m} is, for example, the class of compact sets in $\left.C\left(T_{m}, B\right)\right)$. Moreover, the o-field generated
by $U U_{m}$ is equal to $B(C(T, B)$), therefore W has the unique σ-additive ex$m \in N^{r}$
tension to $B(C(T, B))$ denoted still by W. Defining X an $(C(T, B), B(C(T, B)), W)$ by

$$
X(t, x)=x(t), \quad x \in C(T, B),
$$

we see that X is the process satisfying (2.1)-(2.4). To check these conditions it suffices to restrict ourselves to T_{m}, X_{m} and W_{m} with an appropriately chosen $m \in N^{\top}$.

Let $\Omega=B^{T}$ and let $\sigma C\left(B^{T}\right)$ denote the σ-field of subsets of B^{T} induced by the mappings $x \rightarrow x(t), t \in T$. Then $\sigma C\left(B^{T}\right) \cap C(T, B)=B(C(T, B))$, so that we can define a measure P on $\sigma C\left(B^{T}\right)$ by the formola $P[A]=W[A \cap C(T, B) j$ for $A \in \sigma C\left(B^{T}\right)$. Assume now that Y is a stochastic process on ($\Omega, \sigma C\left(B^{T}\right)$) satisfying (2.1)-(2.3) obtained on the basis of Kolmogorov's extension thearem. Since F on cy'indrical sets coincides with finite dimensional distribations of Y, P is precisely the same probability measure as that being the listribution of Y on $\left(\Omega, \sigma C\left(B^{T}\right)\right)$ in Kolmogorov's representation. Denoting by \bar{F} the completion of $\sigma C\left(B^{T}\right)$ under P we see that the process Y considered on (Ω, \mathcal{F}, P) possesses the continuous modification X, hence separable. However the exsistence oif a separable modification for Y does not ioliow from a generai version of Doob's theorem because infinite dimensional separable Banach space is neither compact nor locally compact (compare Gihman and Skorohod [7], Ch. III). Though Y' need not be continuous or separable, it is stochastically continuons (and also in $L^{p}, 0<p<\infty$, uniformly on each set T_{m}) because X is so. Stochastic continnity of X implies in turn that an arbitrary dense subset of T may serve as a set oi separability for X (see Gihman and Skorohod [1]).

Conditions (2.1)-(2.4) imply the following properties:

$$
\begin{equation*}
\bigwedge_{y^{\bullet} \in B^{\bullet}} \bigwedge_{t \in T} E\left(y^{\bullet}, X(t)\right)=\int_{B}\left(y^{\bullet}, X(t)\right) d P=\int_{B}\left(y^{*}, x\right) d p_{|l|}(x)=0 \tag{2.6}
\end{equation*}
$$

and
$\bigwedge_{y^{*}, z^{*} \in B^{*}} \bigwedge_{l, 0 \in T} E\left(y^{*}, X(t)\right)\left(z^{*}, X(o)\right)=\int_{\Omega}\left(y^{*}, X(t)\right)\left(z^{*}, X(o)\right) d P=\langle\hat{y}, \bar{z}||\ell \wedge 0|$.
The first formula follows easily from the above construction and arguments. We shall prove (2.7). Since increments of X on disjoint rectangles are independent, we have

$$
E\left(y^{*}, X(t)\right)\left(z^{*}, X(t)\right)=E\left(y^{*}, X(t \wedge s)\right)\left(z^{*}, X(l \wedge t)\right) .
$$

If $\boldsymbol{y}^{*}=0^{\circ}$, then (2.7) is obvions. Suppose $\boldsymbol{y}^{\circ} \neq 0^{*}$. Then $\hat{z}=\langle\hat{y} /| \hat{y}|, \hat{z}\rangle, \hat{y} /|\hat{y}|+\hat{v}$, where $\langle\hat{v}, \hat{y})=0$. Hence infer that $\langle\hat{y}, \mathcal{X}(t \wedge \theta)\rangle$ and $\langle\hat{v}, \hat{X}(t \wedge \theta)\rangle$ are independent random variabies with distributions $N\left(0,|\hat{y}|^{2} \mid 6 \wedge, i\right)$ and $N\left(0,|\hat{\theta}|^{2}|t \wedge \theta|\right)$, thas

$$
\begin{aligned}
E\left(y^{\bullet}, X(t \wedge s)\right)\left(z^{*}, X(t \wedge t)\right) & \left.=E(\hat{y}, \hat{z}\rangle\langle\hat{y}, X(t \wedge s)\rangle^{2}|\hat{y}|^{-2}+E \dot{\hat{j}}, X(t \wedge 0)\right)\langle\hat{0}, X(t \wedge \cdot)\rangle= \\
& =(\hat{y} \cdot \hat{z})|\ell \wedge \cdot| .
\end{aligned}
$$

3. Strong Merkov property. Let $Z=\{Z(\ell), \ell \in T\}$ be a stochastic process iefined on a probability space (Ω, \mathcal{J}, P) iaking values in a Hanscioff topological groap
E with its Baire σ-field c. We say that Z is right continnous, if for each $\ell \in T$ and $\omega \in \Omega$,

$$
Z(o, w) \longrightarrow Z(t, w) \quad \text { as } \cdot \geq b, \bullet \rightarrow \text {. }
$$

Lét $\mathcal{J}_{i}=\sigma(Z(0), \in \in(0, t))$ and let $B(S)$ denote the Borel σ-field of subsets $A \subseteq S \subseteq T$. It can be easily seen that under our assumptions the process Z is progressively measurable. For the proof of this fact it suffices to consider a sequence

$$
Z_{n}(0)=\sum_{k \in N^{*}} Z\left((k-1) 2^{-n}\right) x_{\left((k-1) 2^{-n}, k 2^{-n}\right)}(0)
$$

convergent in E to $Z(0)$ for all $\bullet \in T$ and $\omega \in \Omega$, and observe that the mapping $(\rho, \omega) \rightarrow Z_{n}(\rho, \omega)$ of $\langle 0, t\rangle \times \Omega$ into (E, s) is $B(\langle 0, t\rangle) \times \mathcal{J}_{8}$ - measurable for a fixed b $\in T$.

As an obvious corollary we condude that the Brownian sheet X in a Banach space is progressively messurable, and consequently measurable.

Let $\boldsymbol{g}:(\Omega, \mathcal{F}, P) \rightarrow(T, B(T))$ be a stopping time. Then it ann be noted that $Z(6+r)$ is a random element with values in E. Recall that a random vector τ is called a stopping time with respect to the filtration $\left\{\mathcal{J}_{l}, \ell \in T\right\}$ if for every $t \in T,\{r \leq t\} \in \mathcal{F}_{s}$. Let $\mathcal{F}_{r}=\left\{D \in \mathcal{F}: D \cap\{r \leq t\} \in \mathcal{F}_{i}\right.$ for each $\left.t \in T\right\}$ and $g_{r}=\{D \in \mathcal{F}: D \cap\{r \leq t\} \in \sigma(Z(t), \quad, \in T \backslash(t, \infty))$ for each $t \in T\}$. Note that \mathcal{F}_{r} and g_{T} are σ-fields and $\xi_{T} \subseteq y_{T}$ 。

We are now in a poaition to establish a loind of the atrong Marbov property for Brownian sheets in B. We are able to prove even a somewhat stronger result that implies easily strong Mardov property for X.

Proposition 3.1. Let Z be a right continuous process with stationary independens increments vanishing at the boundary $\left.Z\right|_{0 r}=0$ taking values in a (Hausdorff) Abelian topological group E such that operations,+- are $(\epsilon \times s, s)$ - measurable and let r be a stopping time with respoct to the fititation $\left\{\mathcal{F}_{1}, \in \in T\right\}$. Denote $Z_{0}(l)=\Delta Z((r, r+t)), t \in T$. Then the processes Z and Z_{0} are stochastically equivalers in the uside sense and the -field $\sigma\left(Z_{0}(\ell), t \in T\right)$ is independent of G_{T} (and ξ_{r}).

Proof. The proof can be obtrined by a modification of Breimarr's [2] argumente, bat details will be given elsewhere.

Corollery 3.2. The Brownian sheet X in B satisfies the strong Markou property formulated in Proposition 3.1.

The last condusion is a consequence of the fact that in a metric space the Baire and Borel o-fields coincide.
4. Vector integrais. Since in the sequel we male use of integrals of Banach space valued continuous functions $x \in C\left(T_{m}, B\right)$ integrated with respect to vector measures taking values in the conjugate space B°, for convenience of the reader we. describe here briefly construction of such integrals.

Let S be a compact (Hansdorff) topological space and let $C(S, B)$ be the space of continuous functions defined on S with values in a real Banach space $(B,\|\cdot\|)$.

The space $C(S, B)$ equipped with the norm $\|x\| s=\sup _{\bullet \in S}\|x(0)\|$ is then a real Banach space.

A function $c: S \rightarrow B$ is said to be simple if it may be represented as a linear combination

$$
\begin{equation*}
e(s)=\sum_{i=1}^{n} x_{i} X_{E_{i}}(s) \tag{4.1}
\end{equation*}
$$

of some vectors $x_{i} \in B$ multiplied by indicators χE_{b}, where $E_{i}, 1 \leq i \leq n$, are arbitrary pairwise disjoint Borel subsets of S, i.e. $E_{i} \in B(S)$. The reader may readily verify that for each continuous function $x \in C(S, B)$ there exists a sequence $\left\{e_{n}\right\}$ of simple functions convergent uniformly on S to x in the norm $\|\cdot\|$ of $B, s 0$ that

$$
\begin{equation*}
\left\|x-e_{n}\right\|_{s} \rightarrow 0 \quad \text { as } \approx \rightarrow \infty \tag{4.2}
\end{equation*}
$$

Let $\lambda: B(S) \rightarrow B^{0}$ be an additive set function, for brevity called vector measure. The variation of λ is the extended nonnegative function $\operatorname{Var} \lambda$, whose value on a set $E \in B(S)$ is determined by the formula

$$
\operatorname{Var} \lambda(E)=\sup _{E_{E}} \sum_{E_{i} \in \mathbb{K}}\left\|\lambda\left(E_{i}\right)\right\|_{B^{\bullet}},
$$

where the supremum is extended over all partitions $\kappa=\left\{E_{i}, 1 \leq i \leq \pi_{k}\right\}$ of E into a finite number of disjoint Borel sets $E_{i} \subseteq S$. To simplify the notation we write $\operatorname{Var} \lambda(S)=\operatorname{Var} \lambda$ and assume that λ is of bounded variation $\operatorname{Var} \lambda<\infty$.

If e is a simple function given by (4.1), the integral of e over S with respect to λ is defined to be

$$
\int_{s} e(o) d \lambda(o)=\sum_{i=1}^{n}\left(\lambda\left(E_{i}\right), x_{i}\right)
$$

Basing on the inequality

$$
\left|\int_{s} e(o) d \lambda(s)\right| \leq\|e\|_{s} \operatorname{Var} \lambda
$$

one can easily demonstrate that for every sequence of simple functions $\left\{e_{n}\right\}$ satisfying (4.2) with a fixed function $x \in C(S, B)$ there exists the unique limit

$$
\int_{S} x(o) d \lambda(o)=\lim _{n} \int_{S} e_{n}(o) d \lambda(o),
$$

which is by definition taken as the integral of x with respect to λ over S. The obtained integral is a special case of the general Bartle [1] integral, constructed for a larger class of λ-integrable functions on an arbitrary measurable space (S, σ) with a field σ.

A vector measure $\lambda: B(S) \rightarrow B^{*}$ is countably additive if and only if for every sequence $\left\{E_{n}\right\}$ of pairwise disjoint Borel subsets of S the senies $\sum_{n} \lambda\left(E_{n}\right)$ converges in the norm of B^{*} and

$$
\sum_{n} \lambda\left(E_{n}\right)=\lambda\left(\bigcup_{n} E_{n}\right)
$$

Let us observe that the series $\sum_{n} \lambda\left(E_{n}\right)$ is then anconditionally convergent, i.e. for each subsequence $\left\{n_{r}\right\}$ the subseries $\sum_{r} \lambda\left(E_{n_{r}}\right)$ converges strongly in B° to $\lambda\left(\bigcup_{r} E_{n_{r}}\right)$.

A vector measure $\lambda: B(S) \rightarrow B^{\circ}$ is called regular, if for each $x \in B$ the real set function $(\lambda(\cdot), x): B(S) \rightarrow R$ is regular, so that for arbitrary $\varepsilon>0$ and $A \in B(S)$ we can select an open set $G_{z} \supseteq A$ and a compact set $K_{z} \subseteq A$, such that

$$
\left|(\lambda(A), x)-\left(\lambda\left(A^{\prime}\right), x\right)\right|<\varepsilon
$$

whenever $A^{\prime} \in B(S)$ and $K_{z} \subseteq A^{\prime} \subseteq G_{z}$.
Singer [18] proved that the topological dual space $C^{\circ}(S, B)$ conjugated to $C(S, B)$ is isometrically isomorphic to the space of countably additive regular vector measures $\lambda: B(S) \rightarrow B^{*}$ of bounded variation with the norm Var λ, and every continuous linear functional $L^{*} \in C^{*}(S, B)$ possesses the integral representation

$$
\left(L^{*}, x\right)=\int_{s} x(s) d \lambda(0)
$$

where $\lambda \mapsto \mathcal{L}$ is the mentioned isomorphism
We are going to describe besides a special lind of the double integral that will appear in our further considerations, namely

$$
\begin{equation*}
\iint_{S} g(t, s)\langle d \hat{\lambda}(t), d \dot{\mu}(s)\rangle \tag{4.3}
\end{equation*}
$$

where S is, as before, a compact (Hausdorft) topological space and $\lambda, \mu: B(S) \rightarrow B^{\bullet}$ are vector measures embedded by the isomorphism : into the Hilbert space $B \subset B$, being the generator of the Wiener measure in a separable Banach space B. The last integral can be defined (at least) for all bounded completely measurable functions $g: S \times S \rightarrow R$, i.e. functions which are uniform limits of sequences of simple functions.

A function $f: S \times S \rightarrow R$ is called now simple, if it may be represented in the form

$$
\begin{equation*}
f(t, o)=\sum_{i=1}^{p} \sum_{j=1}^{k} b_{i j} x_{D_{i}}^{(t) x_{E_{j}}(a), ~ \text {, }, \text {. }} \tag{4.4}
\end{equation*}
$$

where $\left\{D_{i}, 1 \leq i \leq p\right\}$ and $\left\{E_{j}, 1 \leq j \leq k\right\}$ are arbitrary finite partitions of S into disjoint Borel sets and $b_{i j} \in R$. The double integral (4.3) of any simple function (4.4) we define by the formola

$$
\int_{S} \int_{S} f(\ell, o)\langle d \hat{\lambda}(t), d \hat{\mu}(\theta)\rangle=\sum_{i=1}^{p} \sum_{j=1}^{k} \delta_{i j}\left\langle\hat{\lambda}\left(D_{i}\right), \hat{\mu}\left(E_{j}\right)\right\rangle .
$$

The above integral satisfies then the inequality

$$
\begin{equation*}
\left|\int_{S} \int_{S} f(t, s)\langle d \hat{\lambda}(t), d \hat{\mu}(0)\rangle\right| \leq C^{2} \sup _{t, 0 \in S}|f(t, s)| \operatorname{Var} \lambda \operatorname{Var} \mu \tag{4.5}
\end{equation*}
$$

with a positive constant O such that $\|x\| \leq C|x|$ for $x \in B$, and consequently $|\hat{y}|=\sup \left\{\left(y^{\circ}, x\right):|x| \leq 1, x \in \mathbb{}\right\} \leq C\left\|y^{*}\right\|_{B^{\circ}}$ provided $y^{\circ} \in B^{\circ}$. On the basis of (4.5) we infer immediately that for every bounded completely measurable function $g: S \times S \rightarrow R$, there exists the limit

$$
\int_{S} \int_{S} g(t, o)\langle d \hat{\lambda}(t), d \hat{\beta}(a)\rangle=\lim _{n} \int_{S} \int_{S} f_{n}(t, a)\langle d \hat{\lambda}(t), d \hat{\beta}(\rho)\rangle,
$$

and is unique for all sequences of simple functions $\left\{f_{n}\right\}$ convergent uniformly to g. Therefore the above equality will be treated as the definition of the integral (4.3). One can easily observe that every real continuous function $f: S \times S \rightarrow R$ is the uniform limit of a sequence of simple functions $\left\{f_{n}\right\}$, thas it can be used as the integrand in (4.3). Obviously, the described integral is well-defined too for $\mu=\lambda$.
5. Covariance operators of Brownian sheets. The covariance operator of a second order in the weak sense random element with expectation zero in a Banach
 operators of Ganssian distributions map \mathfrak{X}^{\bullet} into $\boldsymbol{I} \subset \mathfrak{X}^{\bullet 0}$ (c.f. Vahania [20], Ch.4). Obviously all the measures W_{m} are Ganssian as Wiener measures.

Theorem 5.1. For each $m \in N^{r}$ the covariance operator $\Gamma_{m}: C^{*}\left(T_{m}, B\right) \rightarrow$ $C\left(T_{m}, B\right)$ of W_{m} satisfies the formula

$$
\begin{equation*}
\left(\Gamma_{m} L^{\bullet}, M^{*}\right)=\int_{C\left(T_{m}, B\right)}\left(L^{\bullet}, x\right)\left(M^{*}, x\right) d W_{m}(x)=\iint_{T_{m}} \int_{T_{m}}|t \wedge \bullet|\langle d \hat{\lambda}(t), d \hat{\beta}(o)\rangle \tag{5.1}
\end{equation*}
$$

where $L^{\bullet}, M^{\bullet} \in C^{\bullet}\left(T_{m}, B\right)$ and $\lambda, \beta: B\left(T_{m}\right) \rightarrow B^{\bullet}$ are countably additive regular vector measures with bounded variation associated with L^{\bullet}, M^{*} and embedded into E by the isometric isomorphism $\hat{0}: B^{\circ} \subset B^{0} \rightarrow \boldsymbol{B}$.

Proof. To simplify the notation let us put $Q_{m}(n)=\left\{k 2^{-n} \in T_{m}: k \in N^{r}\right\}$, $n=1,2, \ldots$. It can be easily seen that

$$
\begin{align*}
& \left|\sum_{k, j \in Q_{-(n)}}\left(\lambda\left(V_{k}\right), x(k)\right)\left(\mu\left(V_{j}\right), x(j)\right)\right| \leq \tag{5.2}\\
& \leq\|x\|_{m}{ }^{2} \sum_{k, j \in Q_{-}(n)}\left\|\lambda\left(V_{k}\right)\right\|_{B \cdot}\left\|\neq\left(V_{j}\right)\right\|_{B^{-}} \leq\|x\|_{m}{ }^{2} \operatorname{Var} \lambda \operatorname{Var} \mu,
\end{align*}
$$

and by Fernique's [6] theorem,

$$
\begin{equation*}
E\left\|X_{m}\right\|_{m}^{2}=\int_{C\left(T_{m}, B\right)}\|x\|_{m}^{2} d W_{m}(x)<\infty \tag{5.3}
\end{equation*}
$$

because W_{m} is a Gaussian measure in $C\left(T_{m}, B\right)$. Moreover, with probability 1 ,

$$
\begin{equation*}
\sum_{k, j \in Q=(n)}\left(\lambda\left(V_{k}\right), X_{m}(k)\right)\left(\mu\left(V_{j}\right), X_{m}(j)\right) \rightarrow \int_{r_{m}} X_{m}(t) d \lambda(t) \int_{T_{m}} X_{m}(t) d \mu(v) \tag{5.4}
\end{equation*}
$$

Hence, on acoount of (5.2)-(5.4), the Lebesgue dominated convergence theorem and (2.7) we conclude that

$$
\begin{align*}
& E \int_{T_{m}} X_{m}(\ell) d \lambda(\ell) \int_{T_{m}} X_{m}(\rho) d \mu(\imath)= \tag{5.5}\\
& =E \lim _{n} \sum_{k, j \in Q_{m}(n)}\left(\lambda\left(V_{k}\right), X_{m}(k)\right)\left(\mu\left(V_{j}\right), X_{m}(j)\right)= \\
& =\lim _{n} \sum_{k, j \in Q_{m}(n)}|k \wedge j|\left\langle\hat{\lambda}\left(V_{k}\right), \hat{\mu}\left(V_{j}\right)\right\rangle=\iint_{T_{m}} \int_{T_{m}}|\ell \wedge \rho|\langle d \hat{\lambda}(\ell), d \hat{\mu}(\rho)\rangle .
\end{align*}
$$

Corollary 5.2. The measure W is Gaussian with mean zero and covariance operator $\Gamma: C^{\bullet}(T, B) \rightarrow C(T, B)$ determined by the equation

$$
\begin{equation*}
\left(\Gamma L^{*}, M^{*}\right)=\int_{C(T, B)}\left(L^{*}, x\right)\left(M^{*}, x\right) d W(x)=\int_{T} \int_{T}|\ell \wedge \theta|\langle d \dot{\lambda}(\ell), d \dot{\mu}(s)\rangle, \tag{5.6}
\end{equation*}
$$

where the last integral reduces to the integral over the product $T_{m} \times T_{m}$ with $m=\left(\operatorname{rank} L^{\bullet}\right) \vee\left(\operatorname{rank} M^{*}\right)$ for $L^{*}, M^{*} \in C^{\bullet}(T, B)$.

Proof. Since $C(T, B)$ is a B_{0}-space, each continuous linear functional $L^{\bullet} \in C^{\bullet}(T, B)$ has some rank $m \in N^{r}$, i.e. there exists a constant $C, 0<C<\infty$, such that for all $x \in C(T, B)$

$$
\begin{equation*}
\left|\left(L^{\bullet}, x\right)\right| \leq C\|x\|_{m} \tag{5.7}
\end{equation*}
$$

and (5.7) is no longer true if $m^{\prime} \leq m, m^{\prime} \neq m, m^{\prime} \in N^{r}$. Then it can be proved that there can be found a countably additive regular vector measare $\lambda: B(T) \rightarrow B^{\text {• }}$ with bounded variation heving support contained in the set T_{m}, such that

$$
\begin{equation*}
\left(L^{\bullet}, x\right)=\int_{T} x(t) d d(l) \quad \text { for all } x \in C(T, B) \tag{5.8}
\end{equation*}
$$

Indeed, if $\pi_{m} x=\pi_{m} y$ for some $x, y \in C(T, 3)$, then $\left|\left(L^{\bullet}, z-y\right)\right| \leq C\|x-y\|_{m}=0$ and hence $\left(L^{\bullet}, x\right)=\left(L^{\bullet}, y\right)$. Therefore the restriction $L_{m}^{*}=L^{\bullet} \circ \pi_{m}$ of L^{\bullet} to $C\left(T_{m}, B\right)$ determines completely L° in the unique manner and $L_{m}^{*} \in C^{\infty}\left(T_{m}, B\right)$, Applying again Singer's resolt [18] we see that there exists a countably additive regular vector measure $\lambda_{1}: B\left(T_{m}\right) \rightarrow B^{\circ}$ with bounded variation such that

$$
\left(L_{m}, z\right)=\int_{T_{m}} z(\ell) d \Lambda_{1}(\ell) \quad \text { for all } z \in C\left(T_{m}, B\right)
$$

Let $\lambda: B(T) \rightarrow B^{*}$ be an extension of λ_{1} defined as follows: $\lambda(G)=\lambda_{1}\left(G \cap T_{m}\right)$ if $G \in B(T)$, so that $\lambda(G)=0$ provided $G \subseteq T \backslash T_{m}$ and $G \in B(T)$. Then we have

$$
\left(L^{\bullet}, x\right)=\left(L_{m}^{\bullet}, \pi_{m} x\right)=\int_{T_{m}} \pi_{m} x(t) d \lambda_{1}(t)=\int_{T} x(t) d \lambda(t)
$$

Moreover, we observe that for an arbitrary number $\in \in R$,

$$
\begin{aligned}
\left.W \mid x \in C(T, B):\left(L^{\bullet}, x\right)<a\right] & \left.=W \mid x \in C(T, B):\left(L_{m}^{\bullet}, \pi_{m} x\right)<a\right]= \\
& =W_{m}\left[z \in C\left(T_{m}, B\right):\left(L_{m}^{*}, z\right)<a\right]=\Phi(a ; 0, \sigma),
\end{aligned}
$$

where

$$
\sigma^{2}=\int_{T_{m}} \int_{T_{m}}|\varepsilon \wedge \rho|\left\langle d \hat{\Lambda}_{1}(\ell), d \hat{\Lambda}_{1}(o)\right\rangle \quad(c f(5.5))
$$

Thus W is a Gaussian measure. Finally, by analogy to (5.5) we obtain

$$
\begin{aligned}
E\left(L^{\bullet}, X\right)\left(M^{\bullet}, X\right) & =E\left(L_{m}^{*}, \pi_{m} X\right)\left(M_{m}^{*}, x_{m} X\right)=E\left(L_{m}^{*}, X_{m}\right)\left(M_{m}^{*}, X_{m}\right)= \\
& =\int_{T_{m}} \int_{T_{m}}|\ell \wedge \theta|\left\langle d \hat{\lambda}_{1}(t), d \hat{\mu}_{1}(o)\right\rangle=\int_{T}|\ell \wedge d|\langle d \hat{\lambda}(t), d \hat{\beta}(o)\rangle,
\end{aligned}
$$

where M_{m}^{*}, μ_{1} and μ are defined similariy as L_{m}^{*}, λ_{1} and λ.
6. Expansion of Brownian sheets in B into a series of real processes. Suppose $\boldsymbol{\gamma}$ is a Gaussian measure in a real separable (infinite dimensional) Banach space $(\boldsymbol{X},\|\cdot\| \boldsymbol{x})$. From Theorem 3.1 given by Kuelbs [12] we know that there exists then a real separable Hilbert space $X \subset X$ such that $\gamma(\bar{X})=1$, where \bar{X} denotes the closure of \mathcal{X} in $(\mathcal{X},\|\cdot\| x)$, and for an arbitrary CONS $\left\{\alpha_{n}\right\} \subset \mathcal{X}$ for γ-ae. $x \in \mathcal{X}$, we have

$$
\lim _{N}\left\|x-\sum_{k=1}^{N}\left\langle x, \alpha_{k}\right\rangle_{x} \alpha_{k}\right\|_{I}=0
$$

Note that according to the definition of functions $\left\langle\cdot, \alpha_{k}\right\rangle_{X}: \tau \rightarrow R$ they are independent standard normal random variables on $(\boldsymbol{X}, \boldsymbol{B}(\boldsymbol{X}), \boldsymbol{\gamma})$ (\subset. also K no [15]). This observation can be formulated in other words as follows: the measure γ on cylindrical subsets of \mathscr{X}, and hence on the whole σ-field $B(X)$ is determined by the canonical Gauss measure $\boldsymbol{\gamma}_{1}$ in \mathcal{X} with mean zero and variance parameter 1 . Moreover, on the basis of Theorems 2 and 3 given by Dudley, Feldman and LeCam [5], $\|\cdot\|_{\gamma}$ is a measurable norm with respect to γ_{1} in the serse of Gross [8, thus γ is the Wiener measure.

Jain and Kallianpur [10] employed to the same problem the well-known Banach-Mazur theorem asserting that each real separable Banach space \bar{X} is iso metrically isomorphic (congruent) to some closed subspace C_{0} of the space $C(0,1)$ with the usual supremum norm. Investigating next Gausaian measure on C_{0} they obtained some other description of \mathcal{K}. Kallianpur [11] has shown besides that \bar{Y} is the topological support of γ, that is $\gamma(\bar{X})=1$ and for any open set G such that $G \cap \bar{X} \neq \emptyset$, the inequality $\gamma(G \cap \bar{X})>0$ holds. The approach proposid by Jain and Kallianpur possesses rather theoretical meaning.

Perhaps the most natural and simple characterization of the Hilbert space \forall being the generator of a Ganssian measure $\boldsymbol{\gamma}$ in a Banach space \mathcal{I} was found by LePage [17]. Assume for a moment that the space $\boldsymbol{\chi}$ consists of real functions on a parameter set A, such that distinct elements of X are distinct functions (it is always possible to take $A=K^{\circ}$ or $A=X^{*}$ and to define $x(\alpha)=(\alpha, x)$ for $\left.\alpha \in A \subset X^{*}\right)$. In
addition, suppose that all the projections $\pi_{a}: \Sigma \rightarrow R, \alpha \in A$, are continuous in the norm of X, so that $\pi_{a}\left(x_{n}\right)=x_{n}(\alpha) \rightarrow x(\alpha)=\pi_{\alpha}(x)$ whenever $\left\|x_{n}-x\right\| x \rightarrow 0$. Let \mathcal{L} be the smallest closed subspace of the space $L^{2}(X, B(X), \gamma)$ containing the family of projections $\left\{\pi_{\alpha}, a \in A\right\}$. Then the space \mathcal{L} is isometrically isomorphic to X and a congruence between these spaces is given by the Bochner integral

$$
\left.y=\int_{\Sigma} x(y, x) d x(x) \quad \text { (convergent strongly in } x\right)
$$

where $y \in \mathcal{L}$ and $y \in \mathcal{X}$. Scalar products in both spaces are connected by the equality

$$
\langle\tilde{z}, \tilde{y}\rangle_{X}=\int_{\mathcal{Z}}(z, x)(y, x) d \gamma(x)=\langle z, y\rangle_{L},
$$

and the closure \forall of \forall in $(X,\|\cdot\| \Sigma)$ is the topological support of γ. Moreover, for an arbitrary CONS $\left\{y_{k}, k \geq 1\right\}$ in \mathcal{L} the functions $y_{k}: X \rightarrow R$ are independent standard normal random variables such that

$$
\left\|x-\sum_{k=1}^{n}\left(y_{k}, x\right) y_{k}\right\|_{x} \rightarrow 0 \quad \text { for } \gamma-\text { ae. } x \in X,
$$

and for each $p>0$,

$$
\int_{z}\left\|x-\sum_{k=1}^{n}\left(y_{k}, x\right) \check{y}_{k}\right\|_{z}^{p} d \gamma(x) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

From our constraction of Brownian sheets X_{m} it follows directly that all the above results are true for W_{m}, only the last statement may be regarded as a cordlary to LePage thearem. We denote by X_{m} the Hilbert space generating W_{m}.

Remark. It is worth to mention that if we treat \hat{y}, obtained from $y^{*} \in \boldsymbol{X}^{*}$, as elements of X, then for an arbitrary $\boldsymbol{y}^{*} \in \boldsymbol{X}^{*}$ we have $\hat{\boldsymbol{y}}=\bar{y}$. In fact, since the scalar product $\langle\cdot, \cdot\rangle x$ is normalized so that the canonical Gauss distribution in X generates $\boldsymbol{\gamma}$, for each $z^{\circ} \in X^{*}$ we get

$$
\left(z^{\bullet}, y\right)=\int_{x}\left(z^{\bullet}, x\right)\left(y^{\bullet}, x\right) d \gamma(x)=\langle\hat{z}, \hat{y}\rangle x=\left(z^{\bullet}, \hat{y}\right),
$$

and this gives the desired conclusion.
The space X_{m} may be described in a more detailed way by means of the Hilbert space $\boldsymbol{H} \subset B$ and the space $C^{\prime}\left(T_{m}\right) \subset C\left(T_{m}\right)$. The space $C^{\prime}\left(T_{m}\right)$ being the generator of the Wiener measure in $C\left(T_{m}\right)$ consists of such functions $f \in C\left(T_{m}\right)$ which are absolutely continuous with respect to the Lebesgue measure on T_{m} and satisfy the condition

$$
\int_{T_{m}}\left\{\Delta^{\prime} f(t)\right\}^{2} d t<\infty
$$

where we have put $\Delta^{\prime} f(t)=\lim _{\operatorname{vol}(K) \rightarrow 0} \frac{\Delta f(K)}{\operatorname{vol}(K)}, \quad K=r$-dimensional closed cubs
The next theorem is a generalization of Lenmas 4 given by Kuelbs and LePage [14].

Theorem 6.1. Let $L: T_{m} \rightarrow B$ be an arbitrary function and let $\left\{y_{j}, j \geq 1\right\}$ form a CONS in H. Then $L \in \mathcal{X}_{m}$ if and only if $L(t) \in B$ for each $t \in T_{m}$, $\left.L\right|_{T_{m} \cap O T}=0$, all the mappings. $\left\langle y_{j}, L(\cdot)\right\rangle, j \geq 1$, belong to the space $C^{\prime}\left(T_{m}\right)$ and

$$
\sum_{j} \int_{T_{m}}\left\{\Delta^{\prime}\left(j_{j}, L(t)\right\rangle\right\}^{2} d t<\infty
$$

The scalar product in X_{m} is given by the formula

$$
\left.\langle L, M\rangle_{X_{m}}=\sum_{j} \int_{T_{\infty}}\left\{\Delta^{\prime}\langle \rangle_{j}, L(t)\right\rangle\right\}\left\{\Delta^{\prime}\left\langle j_{j} M(t)\right\rangle\right\} d t .
$$

Moreover,
a) $\boldsymbol{X}_{m}=\overline{\operatorname{Lin}}\left\{|6 \wedge \cdot| y: t \in T_{m}, y^{*} \in B^{\bullet}\right\}$,
where the closure is taken in the norm induced by the scalar product in K_{m}. In addition, for all $f, y \in C^{\prime}\left(T_{m}\right)$ and $y, y \in E$, we have

$$
\langle j \overline{\mathbf{j}}, j \theta\rangle_{x_{m}}=\langle f, j\rangle_{c^{\prime}\left(T_{\infty}\right)}|y, j\rangle,
$$

in particular $\langle | \ell \wedge \cdot|y,|0 \wedge \cdot| \delta\rangle_{x_{m}}=\mid t \wedge$ of $\left\langle\frac{y}{3}, ~ \delta\right\rangle$.
b) For each $L \in \mathcal{X}_{m}, y \in \mathbb{B}$ and $t \in T_{m}, L(t) \in E$

$$
\langle\tilde{y}, L(t)\rangle=\langle | \ell \wedge \cdot|, L\rangle_{x_{m}} \text { and }|L(t)| \leq|L| x_{m} \sqrt{|\ell|} \text {. }
$$

c) For arbitrary elements $f \in C^{\prime}\left(T_{m}\right), y \in B$ and $L \in X_{m},\langle\hat{y}, L(\cdot)\rangle \in C^{\prime}\left(T_{m}\right)$,

d) Let $\left\{\tilde{y}_{j}, j \geq 1\right\}$ be any CONS in B. Then for each $L \in X_{m}$ we have

$$
L=\sum_{j}\left(\xi_{j}, L(\cdot)\right)_{y_{j}}
$$

where the series converges in the norm $|\cdot| \gamma_{m}$.
e) If $\left\{y_{j}^{\prime}, j \geq 1\right\}$ is a CONS in \boldsymbol{H} such that $y_{j}^{\circ} \in B^{\circ}, j \geq 1$, then for W_{m}-ae. $x \in C\left(T_{m}, B\right)$ we have

$$
\sum_{j}\left(y_{j}^{j}, x\right) y_{j}=x,
$$

and the last series converges in the norm $\|\cdot\| m$.
Proof. As an example of methods exploited for the proof of this theorem we present here only the proof of the last statement, because the demonstration of the
analogous assertion was omitted by Kuelbs and LePage [14]. The other parts of our theorem follow easily from the construction of Brownian sheets in a Banach space.

At the beginning we quote some basic facts concerning convergence of double series in a Banach space that are applied in a forther fragment of the proof.

Let N be a collection of all finite subsets of the prodact $N \times N$ ordered partially by inclusion. We say that a double series
玉.".
of elements of a Banach space I converges strongly with respect to the family \dot{N} to an element $x \in I$ and write

$$
\lim _{D \in \mathcal{A}} \sum_{(i, j) \in D} x_{i j}=x
$$

iff given any $\varepsilon>0$ there is a set $D \in \mathcal{N}$ such that for every $D^{\prime} \supseteq D, D^{\prime} \in \mathcal{N}$,

$$
\left\|\sum_{(i, j) \in D^{\prime}} x_{i j}-x\right\|_{Z}<\varepsilon .
$$

It can be shown that if $\lim _{D \in N} \sum_{(i, j) \in D} x_{i j}=x$, then

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} x_{i j}=x
$$

strongly in 1 . The proof of this result may be obtained by a slight modification of argaments used by Singer (19] - Ch. II, Lemma 16.1 p. 458-461.

Let now $\left\{f_{j}^{\prime}, j \geq 1\right\}$ be a CONS in $C^{\prime}\left(T_{m}\right)$ and let $\left\{y_{n}, n \geq 1\right\}$ be a CONS in B. Obviously $\left\{f_{j} y_{n}, j, x \geq 1\right\}$ forms then a CONS in X_{m}. Suppose that $f^{\circ} \in C^{*}\left(T_{m}\right)$ and $y^{\bullet} \in B^{\bullet}$. If $x \in C\left(T_{m}, B\right)$, then the map $\left(y^{*}, x(\cdot)\right): T_{m} \rightarrow R$ is an element of $C\left(T_{m}\right)$, for $\left|\left(y^{*}, x(t)\right)-\left(y^{*}, x(0)\right)\right| \leq\left\|y^{*}\right\|_{B^{\bullet}}\|x(t)-x(0)\|$ and $\left(y^{*}, x(t)\right)=\left(y^{\bullet}, 0\right)=0$ provided $t \in T_{m} \cap \partial T$. Thus we can define the functional $(f y)^{\vee} \in C^{\bullet}\left(T_{m}, B\right)$ by the formala $\left((f y)^{v}, z\right)=\left(f^{\bullet},\left(y^{*}, x\right)\right)$. Note that $(f y)^{v}=f y$. Indeed, to see this it is enough to show that for each $z^{\bullet} \in B^{\bullet}$ and $t \in T_{m},\left(G_{z^{*}, t},(f y)^{v}\right)=\left(G_{z^{\bullet}, t}, f^{\prime} y\right)$, where $G_{z^{\bullet}, t}=G_{z^{*}}, V$ for V of the form $(0, t)$. Evidently, we have

$$
\begin{equation*}
\left(G_{z^{*}}, t, f y\right)=\left(z^{*}, f(t) y^{y}\right)=f(l)\langle x, y\rangle, \tag{6.1}
\end{equation*}
$$

and on the other side

$$
\begin{align*}
& \left(G_{z}{ }^{\bullet}, t,(f y)^{v}\right)=\int_{C\left(T_{m}, B\right)}\left(G_{z^{*}, t}, x\right)(f y, x) d W_{m}(x)=\left(f y, G_{z^{*}, t}\right)= \tag{6.2}\\
& =(f y, \mid t \wedge \cdot z)=\left(f,\left(y^{*},|t \wedge| z\right)\right)=(f,|z \wedge \cdot|\rangle_{C^{\bullet}\left(T_{m}\right)}\langle y, z\rangle=f(t)\langle y, z\rangle,
\end{align*}
$$

because $\dot{G}_{z^{*}, t}=\dot{G}_{z^{\bullet}, \ell}=|\ell \wedge \cdot| z$.

It can be proved moreover that $\left(y^{\circ}, \cdot\right): C\left(T_{m}, B\right) \rightarrow C\left(T_{m}\right)$ is a Gaussian random element. Clearly

$$
\sup _{u \in T_{m}}\left|\left(y^{*}, x(t)\right)\right| \leq\left\|y^{*}\right\|_{B} \cdot\|x\|_{m} .
$$

Hence we conclude that the mappping $\left(y^{\bullet}, \cdot\right): C\left(T_{m}, B\right) \rightarrow C\left(T_{m}\right)$ is continnous, and consequently it is a random element defined on $\left(O\left(T_{m}, B\right), B\left(O\left(T_{m}, B\right)\right), W_{m}\right)$ with values in $\left(C\left(T_{m}\right), B\left(C\left(T_{m}\right)\right)\right)$. This is a Gaussian random element since for an arbitrary $f^{\circ} \in C^{\circ}\left(T_{m}\right)$,

$$
\begin{aligned}
W_{m}\left[x \in O\left(T_{m}, B\right):\left(f^{\circ},\left(y^{\bullet}, x\right)\right)<\sigma\right] & =W_{m}\left[x \in O\left(T_{m}, B\right):(f y, x)<a\right]= \\
& =\Phi\left(a ; 0,|f y| x_{m}\right) .
\end{aligned}
$$

Let $W_{m} \circ\left(y^{\bullet}\right)^{-1}$ denote the distribution of $\left(y^{\bullet}, \cdot\right)$. Assume now that $y^{\bullet} \in B^{\bullet}$ and $\int_{k j}^{*} \in C^{\bullet}\left(T_{m}\right)$, where $f_{k j} \rightarrow f_{j}$ in $C^{\prime}\left(T_{m}\right)$. The scalar product of two functions $\left(f^{\bullet}, \cdot\right)$ and $\left(g^{\bullet}, \cdot\right), f^{\bullet}, g^{\bullet} \in C^{\bullet}\left(T_{m}\right)$, in the space $L^{2}\left(C\left(T_{m}\right), B\left(C\left(T_{m}\right)\right), W_{m} \circ\left(g^{\bullet}\right)^{-1}\right)$ is equal to

$$
\begin{align*}
\int_{C\left(T_{m}\right)}\left(f^{\bullet}, x\right)\left(g^{\bullet}, \varepsilon\right) d W_{m} \circ\left(y^{*}\right)^{-1}(z) & =\int_{C\left(T_{m}, B\right)}(f y, x)(g y, x) d W_{m}(x)= \tag{6.3}\\
& =\langle f \dot{y}, y y\rangle x_{m}=\left\langle f_{j}^{x}, y\right\rangle_{C^{\prime}\left(T_{m}\right)|\check{y}|^{2}} .
\end{align*}
$$

Therefore the mapping $f^{\prime} \rightarrow\left(f^{\circ}, \cdot\right)$ defined on the dense subset $\left\{f^{*}: f^{*} \in C^{*}\left(T_{m}\right)\right\}$ of $C^{\prime}\left(T_{m}\right)$ with values in $L^{2}\left(C\left(T_{m}\right), B\left(C\left(T_{m}\right)\right), W_{m} \circ\left(y^{\bullet}\right)^{-1}\right)$ preserves the scalar product ap to the positive factor $|\bar{j}|^{2}$. Since $f_{k j} \rightarrow f_{j}$ in $C^{\prime}\left(T_{m}\right)$, the sequence of random variables ($f_{k j}$,) converges in $L^{2}\left(C\left(T_{m}\right), B\left(C\left(T_{m}\right)\right), W_{m} \circ\left(y^{\circ}\right)^{-1}\right)$ to a r.v. denoted by $\left(f_{j}^{\prime},\right\rangle_{C^{\prime}\left(T_{m}\right)}$. This r.v. is determined $W_{m} \circ\left(y^{\bullet}\right)^{-1}-$ a.e on $C\left(T_{m}\right)$, hence W_{m} - aee on $C\left(T_{m}, B\right)$ the r.v. $\left\langle f_{j},\left(y^{*}, \cdot\right)\right\rangle_{C^{\prime}\left(T_{m}\right)}$ is defined as well. On the other side, to each functional $f^{\bullet} \in B^{*}$ there corresponds the r.v. ($\left.f y, \cdot\right)$ being an element of the space $L^{2}\left(C\left(T_{m}, B\right), B\left(C\left(T_{m}, B\right)\right), W_{m}\right)$ and (6.3) implies that the mapping $f^{\prime} \rightarrow(f y, \cdot)$ also preserves the scalar product up to the positive factor $|y|^{2}$. Since $f_{k j} \rightarrow f_{j}$ in $C^{\prime}\left(T_{m}\right)$, and consequently $\left(f_{k j} y\right)^{\vee} \rightarrow f_{j}^{\prime}$ in \mathcal{K}_{m}, it follows that $\left(f_{k j} y, \cdot\right) \rightarrow\left\langle f_{j} y_{y},\right\rangle_{X_{m}}$ in $L^{3}\left(C\left(T_{m}, B\right), B\left(C\left(T_{m}, B\right)\right), W_{m}\right)$. However, $\left(f^{\bullet},\left(y^{*}, x\right)\right)=$ ($f y, x)$ for all $x \in C\left(T_{m}, B\right)$, thus W_{m}-ae on $C\left(T_{m}, B\right)$ we have the equality

$$
\begin{equation*}
\left\langle f_{j},\left(y^{*}, x\right)\right\rangle_{O^{\prime}}\left(T_{m}\right)=\left\langle f_{j}, x\right\rangle_{x_{m}} . \tag{6.4}
\end{equation*}
$$

We observe next that on the basis of our construction the double series

$$
\sum_{(j, n) \in N \times N}\left(f_{j} y_{n}, x\right)_{x_{m}} f_{j} y_{n}
$$

converges strongly with respect to the family \mathcal{N} to $x \in C\left(T_{m}, B\right) \quad W_{m}$-a.e. . Hence, taking into account the quoted already result concerning double series we conclude that for W_{m} - a.e. $x \in C\left(T_{m}, B\right)$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{j=1}^{\infty}\left\langle f_{j} y_{n}, x\right\rangle_{x_{m}} f_{j} y_{n}=x . \tag{6.5}
\end{equation*}
$$

Applying a very well-known expansion into a series of real Brownian sheet (cf. Kuelbs [12] Theorem 3.1) we see that $W_{m} \circ\left(y^{\circ}\right)^{-1}-$ ae. in the usual sup norm of $C\left(T_{m}\right)$

$$
\begin{equation*}
\left.\sum_{j=1}^{\infty}\left\langle f_{j}, f\right\rangle_{C^{\prime}\left(r_{m}\right)}\right]_{j}=f . \tag{6.6}
\end{equation*}
$$

However $\|f\|_{m}=\|f\|_{C\left(r_{m}\right)}\|y\|_{\text {, so }}$ in view of (6.4) and (6.6), W_{m} - a.e. strongly on $C\left(T_{m}, B\right)$,

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left\langle f_{j}, x\right\rangle x_{\infty} f_{j}=\sum_{j=1}^{\infty}\left\langle f_{j},\left(y^{\bullet}, x\right)\right\rangle_{C^{\prime}\left(T_{m}\right)} f_{j}=\left(y^{\bullet}, x\right) \tag{6.7}
\end{equation*}
$$

Neglecting a set of W_{m} - measure zero determined by $\left\{y_{n}^{\circ}, n \geq 1\right\}$, on account of (6.5) and (6.7) we obtain

$$
\sum_{n=1}^{\infty}\left(y_{n}^{*}, x\right) y_{n}=x \quad W_{m} \text {-a.e. }
$$

and the proof is complete.
Acknowledgements. The author wishes to thank sincerely Prof C. RyllNardzewski and Prof. A. Weron for very helpinl remarks and comments leading to considerable improvement of the paper.

REFERENCES

[1] Bartle, R. G. , A general bilinear vector integral, Stucia Math. 15 (1958), 337-352
[2] Broiman, L. , Probabaity, Addison - Wealoy Publ. Comp. Reading Mass. - London Don Mill. Ont 1988.
[3] Chevet, S., Series de pariables aĺatories ganssiennes á valeurn dans $E \otimes_{6} F$. Application anc prodeŕs's d'espaces de Wiener abstraits, Servin sur la Gborn des Eapaces de Banach (1977-1978), Exp. No 19 (1978), Eoole Polytechriqua, Polaireau 1972.
[4] Daleckii, Ju. L. , Formin S. V. Measures and Differentiol Eqeations in Infinste Dimensional Spaces, Naula, Moolva 1983, (in Rumsian).
[5] Dudley, R.M. , Foldman, J. , LeCam, L. , On seminorma and probabilities, and abstract Wiener spaces, Ann of Math 93 (1971), 390-408
[6] Fornique, X. , Intégrabilité des vecteurs gasssiens, C. R. Acad. Sá. Paris (1970), 1698 169.
[7] Gihman, I.I., Skorohod, A.V. , The Theory of Stachartic Processes I, Springer Verlag, Berlin, Heidelberg, New York 1974.
[8] Grose, L. Abstract Wiener spaces, Proc. Fith Bearkeloy Symup. Math. Stat. Prob. 2, 1965, 31-12
[9] Grose, L. , Lectures in Modern Analysie and Apph. U, Lecture Noten in Math. 140, Spingor - Veriag, Berlin. Heidelberg, New York 1970.
[10] Jain, N.C., Kallianpur, G. , Norm consergent expanaione for Gamsion procemes in Banach spaces, Proc. Armer. Math Soc 25 (1970), $880-806$.
[11] Kallianpur, G. , Abstract Wiener procesees and their reproducing hernal Hilbert opeces, Z Wahrech. Verw. Gebiete 17 (1971), 113-123.
[12] Kuel bs , J. , Eapansions of wectors in a Banech apace related to Clamsion mensures , Proc. Amar. Math Soc. 27 (1971), 361-370
[13] Kuelbi, J., The isvariance primaple for Banach apace valed rasdom mariables, J. Multivariate Anal. 3 (1973), 161-172
[14] Kuelba, J. , LePage, R.D. -, The lave of the iterated logerithon for Brownias motion in a Banach space, Trans. Ammer. Math Soc. 185 (1973), 253-284.
[15] Kuo, H.'. . Gonssian Mearmes in Bonach Spaces, Lecture Notes in Math, 483, Springer Verlag, Berlin, Heidelberg, Now York 1975.
[16] Morrow, G.J., Approsimation of rectongular seme of B-ached readom mariablen, Z Wahrach. Verw. Gebiete 57 (1981), 285-291.
[17] LePage, R. D. , Note relating Bochnar integrals und reprodecing hernels to neriea expaneion on a Gaussian Banoch space, Proc. Amer. Math. Soc. 32 (1972), 285-288.
[18] Singer. I. , Lineor fractionals on the space of contineons mappings from a bicompact Hausdorff space into a Banoch space, Rev. Roumaine Masth Puree Appl. 2 (1857), 301-305 (in Russian).
[19] Singer, I. , Bases in Barach Spaces I, Springer - Vadag, Bedin, Haidalberg, Now Yort 1970.
[20] Vahania, N.N. , Probability Didtributions on Limear Spacas, North Bolland, Now York Ordord, 1981.

STRESZCZENIE

W artykule praedatawiona zostada demmentarna metoda honstrukcji widoparametrowego procea a
 podetawowe whasnofí togo procssu, np. struktury howariancji, mocn wheonoft Martoma i.t.p.
 aisghch trajaktorii i wyprowadmono roswinipcie procesu wamereg mieadeinych jednowymiarowych powierzchni brownowstich.

SUMMARY

This paper deals with an elementary construction of a mailiparamoter Wiener process with values in a real separable infinitely dimensional Banach epece. Besic propertien of this procase such as covariance atructure, strong Markov property, otc. are described. Moreover, a Bulberr, apaco
generating the distribution of the proces in she spnce of its trajectones was characterised and the expansion of the prooses in a series of one dimensunal independant Brownian sheore was given.
[9] Gross, L. , Lectures in Modern Analysio and Appl. II, Lecture Noten in Math. 149, Spingor - Veriag, Berlin, Heidelbers, Now York 1970.
[10] Jain, N.C., Kallianpur, G. , Norm coneergent espameions for Gamsion procemes in Banech spaces, Proc. Amme. Math. Soc 25 (1970), 880-895.
[11] Kallianpur, G. , Abstrect Wiener processee and their reproducing hernal Hilbert apeoces , Z Wahrach. Vorw. Gebiete 17 (1971), 113-123.
[12] Kuel bs , J. , Eapansions of nectors in a Blanech apace related to Gomsien mearurres, Proc Arnar. Math. Soc. 27 (1971), 364-370.
[13] Kuel bs, J., The invariance principle for Banach apace salsed rasdom sariables, J. Multivariate Anal. 3 (1973), 161-172.
[14] Kuelbs, J., LePage, R.D., The law of the iderated logarithrn for Brownion motion in a Banach space, Trans. Amer. Math Soc. 188 (1973), 253-281.
[15] Kuo , H.'. H. Ganssian Moaswes in Banach Spaces , Lecture Notes in Minth, 463, Springur Verlag, Berlin, Heidelberg, Now York 1975.
[16] Morrow, G.J., Approsimation of rectangular seme of B-aoleed nandom variobles, Z. Wahrach. Verw. Gebieto 57 (1981), 285-291.
[17] Le Pase, R. D. , Note relating Bochner integrals and reprodecing hernals to series expansion on a Gaussian Barach space, Proc. Amer. Math. Soc. 32 (1972), 285-288.
[18] Singer. I. , Linear functionole on the apace of contiasone mappings from a broompact Hausdorff upace into a Banach apoce, Rov. Roumino Math Puren Appl 2 (1957), 301-305 (in Russian).
[19] Singer, I. , Bases in Banach Spaces I, Springer - Verlag, Bedin, Heidalberg, Now Yatz 1970.
[20] Vahania, N.N. , Probabildy Dintribetions on Limeor Spacse, North Bolland, New Yark Oxdord, 1981.

STRESZCZENIE

W artykule prsedatawiona została demmentarna metode honatrukcji widoparametrowego procesa
 podstawowe whasnod́ci tego procosu, np. atruktury bowariancii, mocnat whanot Marbowe i.t.p.
 ciaghych trajaktorii i wyprowadiono rozwinigcie procesu wameg mieudecinych jednowymiarowych powrenchni brownowtich.

SUMMARY

This paper deals with an dementary conatruction of a maltiparamoter Wiener process with values in a real separable infinitely dimaneional Banach apece. Besic propertien of this procase such as covariance atructure, strong Markov property, etc. are described. Moreover, a Eulbert, apace

[^0]
ANNALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN-POLONIA
VOL XL SECTIO A
25. S. Topila, P. Lounesto: On a Conjecture of Hellerstein, Shen and Will liamsar.
22. J. Wandurski: Convex Mappings and the Lebesgue Measure of Omitted Values.
27. Wen Guo-Chun: The Nonschlicht Mapping of Multiply Connected Domains.
28. J. Zderkjewicz: On a Generalized Problem of M. Biernacki for Subandinate Functions.
29. List of Problems.

Biblioteka Uniwersytetu
 MARII CURIE-SKEODOWSKIEJ w Lublinie
 1987

[^0]: generating she distribution of the orocen in she spnce of its trajectones was charactensed and the expansion of the process in a series oi one dimensunal independans Browmian sheots was given.

