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1. Introduction. Let (B, | - ||) be a real separable infinite dimensional Banach
space and let p; be the Wiener measure with mean zero and variance parameter t > 0
defined on the Borel #— field B of subsets of B. In other words, we assume that there
exigts a real separable infinite dimensional Hilbert space H C B with a centered at
zero cylindrical Gauss measure g having variance parameter ¢, such that || - || is a
pe—measurable norm on H, B is the completion of H with respect to || - || and p;
is the unique o—additive extension of a measure ji¢ associated with g¢ by equality
on cylinders in B and H. This is possible because any seminorm in H is always
measurable or not with respect to all ¢ sirmitaneously, furthermore H is determined
uniquely by B and p; for a fixed t > 0. It is well known that an arbitrary real separable
Banach space B can be used in the described above context, and since a measurable
norm is weaker than the original norm |-| = \/{-,-) generated by the inner product of
H, (H,]|l-|l) is not complete unless it is finite dimensional. Construction and further
properties of the Wiener measure in a Banach space were given by Gross [9] (d.
also Kuo [16]).

Let po denote the measure assigning the unit mass to the origin 0 € B. Then
the family of measures {p;, ¢ > 0} forms a strongly ¢ontinuous contraction semigroup
acting in the Banach space of bounded uniformly continuous (real or complex valued)
functions on B, in particular p; s p, = pe4, fOr t, @ > 0, where s depotes the con-
volution. Consequently a one parameter B—-valued Wiener process {£;, ¢t > 0} with
independent pi—,—distributed increments & —£&, ,t > s > 0 and continuous paths can
be constructed (see Gross [8,9] and Kuo [15]). In the presented article we describe
a simple construction and basic properties of a multiparameter Wiener process called
Brownian sheet with values in a real separable infinite dimensional Banach space B.

The notion of a Banach space valued Brownian sheet is not entirely new, because
such a process was introduced e.g. by Morrow [16] for the purpose of approximation
of rectanmular sums of B-valued random elements. Moreover, by analogy to the fact
observed by Kuelbs [14] for real Brownian sheets we may define B—valued Brownian
sheet on the cube (0,¢0)" , r > 2, identifying it with {&;, ¢ € (0,t0)}, where the last
Wiener process takes values in the Banach space C({(0,t5)"~", B) of continuous
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functions from (0,)"T! into B. We do not want to display these considerations, but
we will present here some other method based on random series in tensor products of
Banach spaces leading quickly to the same resulits.

Throughout the paper B® denotes the topological dual of B (H® resp. for H)
and the bracket (- ,-) means the natural pairing between B® and B. Since the norm
Il - || is weaker than |- |, the restriction of any y* € B* to H is a continuous linear
functional on H, so that B®* € H®. In view of the Riesz representation theorem H*
is isometrically isomorphic to H. Denote by * the following isomorphism: 0°—0 and
if0° # y* € H® let § = 9;(y°, ), where g, € H is the unique vector characterized
by the properties: g3 € {z: (y*,z) =0}, |g1| = 1 and (3°,31) > 0. Thus we have
defined an embedding B* € H*—H C B, 80 that for y* € B® and z € H, the scalar
product (§,z) is well-defined and (§, z) = (y°, z).

3. Comnstruction of the process. Let T = {t = (t1,...,¢,) ER" : ¢, E Ry =
=(0,0), 1<i<r}anddT ={tE€T:t; =0 forsome i =1,2,...,r}. In the
sequel for s,¢ € T we will use the notation: ¢ A ¢ = (min(e;,4;),...,min(s,,¢ ,)) and

bynna]oyonwithmnx,furthermom ott= (o £¢4,...,0,%¢,) and |t| = Hl.

Let O(T, B) denote the space of continuous functions £: T — B such that :|ar =0.
We shall prove that there exist a probability space (£}, 7, P) and a stochastic process
X = {X(¢), t € T} defined on it with values in B, satisfying the following conditions:
(2.1) for an arbitraryt €T, X(¢):0Q — B is a random element in (B, B),
(2.2) the process X has independent increments

: Zr: x(t; = o;)
AX(V)= D (- =1 Xty ta, ..oty
{(1SiSr:=aVE =)

on disjoint rectangles V = (a,8) = (t €T :a; S ti < b, s ST},

(23) AX(V) has distribution pyoi v for V = (a,6) € T, where vl V = |b - a|;
hence X(t) = 0 with probability 1 iff ¢ € 3T and X(¢) is pys — distributed whenever
teT.

Moreover,

(2.4) -realizations of the process X are a.s. continuous, i.e. belong to C(T, B).

] We are going now to describe brefly construction of X. Let T, = (¢t € T :
0<¢t <m;, 1 <s <r}, wherem; € N = {1,2,...}. Suppose {gn, n 2 1} is a
CONS in H and {f;, 5 2 1} is 2 CONS in C'(T\»), where C'(T,,) is the Hilbert space
geuerating Wiener measure in C(Tm) — the space of continuous functions from T,

into R vanishing on 8T NTp. It is easy to see that for any sequence of i.i.d. stan-
dard normal random variables {gn}, defined on the same probability space, 3_ gnyn

n
converges a.s. in (B, | - [|), and similady 3" g, f; is convergent with probability 1 in

]
the usual sup norm in C(T,,). Hence if gn; are independent standard normal random
variables defined on & common probability space, cn account of the result given by
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Chevet (3],

(2.5) Y i fi®sm

Jn

converges as. in C(Tm) @¢ B, where ¢ is the least reasonable croe—norm. It is very

well known that the space C(Trm)®, B is equivalent to C (T, B) — the real separabie

Banach space of continuous functions z : T,, — B with norm ||z||m = snp =)l
t€Twm

such that zlar = 0. Thus if we identify the tensor product ® with mulnphm.nor.
the above series (2.5) defines a stochastic process X = {Xm(t), ¢ € T} with
realizations in C(T, B).

Let W,, be the distribution of Xp in (C(Tm,B) . B(C(Tm,B))) and et
¥ = C'(Tp,) ®3 H. Then {fjgn, jy,n 2 1} is a CONS in Xp,, which implies that ¥,
is the Hilbert space generating Wiener measure Wy, in C(Tr,, 5).

All what we have to prove is that X, satisfies (2.1){2.3). Consider the proba-
bility space (C(Tm, B), B(C(Tm,B)),Wm). Obviously Xpm(t), t € T , are random
elements with values in B. Observe now that the functional Gy« y € 0" (T, B) given
by Gys.v(2) = (3°, Az(V)) after embedding into ¥m is equal to Ajt A-|(V)j. Indeed.
for each f; and yn we have (Alt A |[(V)F, i)k = (BJtA-[(V), fi)cr(xo) (9, 9m) =
= Afi(V)(5* 9n) = (5%, A(fign)(V)), 80 Gyey = At A-|(V)g. It follows that
AXm(V) has distribution pyos v . because for each y* € B* , (3*,AXm(V)) is dis-
trbuted normally with mean zero and variance vol V - ly|? (cx. Kuo (15| p. 78).

Furthermore, since W, is generated by the cylindrical Gauss measure in X,
HF LG, F.G € A, then (F.Xrm)x. and (G,Xm)x_ are independent. Suppose
Vi,Va € T, are disjoint rectangles. let sj,...,8; , z7,...,2n € B*. Without
loss of generality we assume that #; are orthogonal in H and similarly z; (for we
can always form a basis in Lin(s3,....u}) consisted of orthogonal vectors). However
éu;,v. and é,;'y, are then all rmtuaily orthogonal in ¥m, 80 that joint distribution
of the random vector
{(s}, AXm(V1)),..., (8}, AXm(V1)) s (2], AXm(V3)),.... (25, AXm(V2))}
is Gaunssian and random vectors {(u},AXm(V})).....(85.AXm(Vi))} and
(23, AXm(V3)),.. ., (28 AXm(V3))} are independent. Consequently AXm(V;) and
AXpn(V3) are independent random elements in B.

Finally X,, is the process with continuous reaiizations on Ty, satisfying (2.1}
(2.3). Note also that the measure Wy, does not depend on the choice of f; in C'(Tp,)
and yn in H — any other CONS'in C"(Tm) as well as in H will lead to the same
distribution W,,.

Let C(T,B) be viewed with a family of seminorms || - ||m , m € N'. Then
C(T,B) is a real separable By-space. Denote by *m : C(T.B) — C(Tm,B) prc-
jections obtained by restriction of the domain of functions z € C(T,B) to T, and
set Um = xpm~!(B(C(Tm,B))), and W(U) = W,,(A) provided A € B(C(Tm, BY)
and U = x,,"'(4). Then W is well-defined and is a cylindrical measure on the
fild | Um in C(T,B), thus W is countably additive (see, e.g. Daleckii and

meN"

Fomin [4], Th. 1.3 p. 25, where K = UN' Km +» Km =%~ (M) and My, is,
m€E
for example, the class of compact sets in C(Tm, B) ). Moreover, the o—field generated
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by ‘U Um is equal to B(C(T, B)), therefore W has the unique s—additive ex-
meN"
tension to B(C(T, B)) denoted still by W. Defining X on (C(T, B),B(C(T, B)),W)
by
X(,z)=z2(), 2z€C(T,B),

we see that X is the process satisfying (2.1)(2.4). To check these conditions it suffices
to restrict ourselves to Ty, Xm and W, with an appropriately chosen m € N'.

Let O = BT and let 0C(BT) denote the o-field of subsets of BT induced by
the mappings z — z(t) , t € T. Then oC(BT) N C(T,B) = B(C(T,B)), so that
we can define a measure P on oC(BT) by the forrmla P{A] = W[A N C(T, B)j for
A € oC(BT). Assume now that Y is a stochastic process on ({3,¢C(BT)) satisfying
(2.1)12.3) obtained on the basis of Kolmogorov’s extension theorem. Since P on
cylindrical sets caincides with finite dimensional distributions of Y, P is predsely
the same probability measure as that being the distribution of ¥ on (0, C(BT)) in
Kolmogorov's representation. Denoting by ¥ the completion of #C(BT) under P we
see that the process Y considered on ({1, #, P) possesses the continuous modification
X, hence separable. However the exsistence of a separable modification for Y does
not foliow fram a generai version of Doob’s theorem. because infinite dimensional
separable Banach space is neither compact ncr locally compact (compare Gihman
and Skorohod (7}, Ch. II). Though ¥ need not be continucus or separable, it is
stochastically continuous (and also in L , 0 < p < oo, uniformly on each set T,,)
because X is so. Stochastic continaity of X implies in turn that an arbitrary dense
subset of T may serve as a set of separability for X (see Gihman and Skorohod

)
Conditions (2.1)~2.4) imply the following properties:
(2.6) A A E(' 1X(‘)) "/(’ 'X“))dp /(’ v:)dﬂll(:) =0
yEB teT
and
(2.7 _‘
A A B XO) X)) = [ (5" X)), X(0)) dP = G 2)leAsi
9°.2*€B* €T n .

The first formmia follows easily from the above construction and arguments. We
shall* prove (2.7). Since increments of X on disjaint rectangles are independent, we
have

E(y* . X(1))(z*,X(9)) = E(y'. X(tA9))(s*. X(tA ) .
H y* = 0°. then (2.7) is obvious! Supposs y°* # 0°. Then i = (§/|§i, %) 5/li| + ¢.
where (0, §) = 0. Hence we infer that (§.X(t A s)) and (6, X(t A s)) are independent
random variaties with distributions N (0. |g|? ¢ A el) and N(0,[6? |t A of), thus
E(y* ,.\'(t Au)} (2" X(tA0))=E(y,2)(5. X(tAs))? |§I"2+E{F. X(t A0)){(t,X(t Ae))=
=(g.2) [t A sl .

3. Strong Markov property. Let Z = {Z1it), ¢ € T} be a stochastic process
:efined on a probability space ({3, 7. P) taking values in a Hansdaorff topological grcup
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E with its Baire o—field 6. We say that Z is right continuous, if for each ¢ € T and
w€fl,

Z(o,w) — Z(t,w) as 02¢, 90—,

Lét % = o(Z(e), # € (0,1)) and let B(S) denote the Borel o—field of subsets
AC S CT. It can be easily seen that under our assumptions the process Z is
progreasively measurable. For the proof of this fact it suffices to consider a sequence

Za(e)= Y Z((k-127")x o e (@)
EENT ((k—'l)z k2 )

convergent in E to Z(s) for all ¢ € T and w € {1, and observe that the mapping
(o,w) — Zy(o,w) of (0,¢) x 0 into (E,e) is B((0,t)) x # — measurable for a fixed
teT.

As an obvious corollary we condude that the Brownian sheet X in a Banach
space is progressively measurable, and consequently measyrable.

Let 7 : (Q,7,P) — (T,B(T)) be a stopping time. Then it can be noted that
Z(t + r) is a random element with values in E. Recall that a random wvectar 7.
is called a stopping time with reapect to the filtration {#, t € T} if for every
teT, {rst}eh. Lt F, ={DeF:DN{r St} € R foreacht € T} and
G-={DeF:Dn{r <t} €e(Z(s), s€T) (t,)) for each t € T}. Note that %
and ¢, are o—fields and 7, C §,.

We are now in a position to establish a kind of the strong Markov property for
Brownian sheets in B. We are ahle to prove even a somewhat stronger result that
unpheeeas.lystxmgMn.dmvpmpetyfotX

Propasition 3.1. Let Z be o right continuous process with stationary indepen-
dent increments vanishing at the boundary Z|pr = O taking values in a (Hausdorff)
Abelian topological group E such that operations +,— are (¢ X &,8) - measurable
and let v be a stopping time with respect to the fitration {%, t € T). Denote
Zy(e) = AZ((f,r +t)), t €ET. Then the processes Z and Zy are stochastically

equivalent in the wide sense and the ¢—field c(Zo(t), t € T) is independent of §.
(and% ).

Proof. The proof can be obteined by a modification of Breimarr’s (2] arge-
ments, but details will be given elsewhere.

Corollary 3.2. The Broumian sheet X in B satisfies the strong Markov property
formulated in Proposition 3.1 . -

The last conclusion is a consequence of the fact that in a metric space the Baire
and Borel o—fidds coincde.

4. Vector integrals. Since in the sequel we make use of integrals of Banach
apace valued continuous functions £ € C(Tm, B) integrated with respect to vector
measures taking values in the conjugate space B°, for convenience of the reader we.
describe here briefly construction of such integrals.

Let S be a compact (Hansdorff) topological space and let C(S, B) be the space
of continuous functions defined on S with values in a real Banach space (B, || - ||).
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The space C(S, B) equipped with the norm ||z||s = sup llz(s)]| is then a real Banach
space. i

A function ¢ : S — B is said to be aimple if it may be represented as a linear
combination

n
(4.1) () =} = xg, (0)
i=l
of some vectors z; € B mmltiplied by indicators xg,, where E;, 1 € § < n, are
arbitrary pairwise disjoint Borel subsets of S, i.e. E; € B(S). The reader may readily
verify that for each continuous function z € C(S, B) there exists a sequence {en} of
simple functions convergent uniformly on S to z in the norm || - || of B, so that

(4.2) lz=enlls —0 as m—oo.

Let A : B(S) — B* be an additive set function, for brevity called vectar measure.
The variation of A is the extended nonnegative function Var A, whose value on a set
E € B(S) is determined by the formmla

Var A(E) = sup Z A (E)ls-
F;ex

where the supremum is extended over all partitions & = {E;, 1 <5 < n,} of E into
a finite number of disjoint Borel sets B; € S. To simplify the notation we write
Var A(S) = Var ) and assume that A is of bounded variation Var A < oo.
If e is a simple function given by (4.1), the integral of e over S with respect to A
is defined to be “
/ () () = Y (A(B), =) -

Basing on the inequality

| f e(s) dA(s)| < lefls Var
S

one can easily demonstrate that for every sequence of simple functions {e, } satisfying
(4.2) with a fixed fanction z € C(S, B) there exists the unique limit

/ #(s) A(s) = m f en(8) dA(s) ,
5 S

which is by definition taken as the integral of z with respect to A over S. The obtained
integral is a special case of the general Bartle [1] integral, constructed for a larger
class of A-integrable functions on an arbitrary measurable space (S, o) with a field .

A vector measure A : B(S) — B*® is countably additive if and only if for every
sequence {E,} of pairwise disjoint Borel subsets of S the seres 3~ A(E,) converges

in the norm of B* and

2A(B,,)=A(9E,,) .
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Let us observe that the series E;\(E,.) is then unconditionally convergent, i.e. for
each subsequence {n,} the subsene E A(En,) converges strongly in B® to ,\(U E,).

A vector measure A : B(S) — B‘ is called regular, if for each z € B the real set
function (A(-),z) : B(S) = R is regular, so that for arbitrary ¢ > 0 and A € 8(S) we
can select an open set G; 2 A and a compact set K, C A, such that

[(A(4),2) - (A(4"),2)| < ¢

whenever A’ € B(S) and K, C A'C G, .

Singer [18] proved that the topological dual space C*(S, B) conjugated to
C(S, B) is isometrically isomorphic to the space of countably additive regular vec-
tor measures A : B(S) — B*® of bounded variation with the norm Var A, and every
continuous linear functional L* € C*(S, B) possesses the integral representation

@*.2) = [ ar),

s \

where A — L is the mentioned isomorphism.

We are going to describe besides a special kind of the double integral that will
appear in our further considerations, namely

(43) f [ ste,oxaie, au
S 8

‘where S is, as before, a compact (Hausdorff) topdlogical space and A, : B(S) —» B
are vector measures embedded by the isomorphism * into the Hilbert space H C B,
being the generator of the Wiener measure in a separable Banach space B. The last
integral can be defined (at least) for all bounded completely measurable functions
g:Sx8S — R,i.e. functions which are uniforrnlimits of sequences of smple functions.

A function f: S xS — R is called now simple, if it may be represented in the
form

(44) f(t0)= ):E by Xy, (t) xg, (#)
i =l j=1
where {D;, 1 < < p} and {E;, 1 £ 5 < k} are arbitrary finite partitions of S into

disjaint Borel sets and &;; € R. The double integral (4.3) of any simple function (4.4)
we define by the formmla

/ / Fle ) 400,460 = 3 3-8y G0, AE

=l j=1

The above integral satisfies then the inequality

(4.5) | f / £(t,9) (dA(),di(0))| < C* sup |F(t,0)| VarA Ve
8§ S es
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with a positive constant O such that ||z|| £ Clz| for £ € H, and consequently
|#| = sup{(s*,2) : |z| < 1, z € H} < C|ly*||n- provided y* € B*. On the basis
of (4.5) we infer immediately that for every bounded completely measurable function
g:S xS — R, there exsts the limit

[ [ o) @i diion = tm [ [ 1ate,0) @iy, dio,
s S s s

and is unique for all sequences of simple functions {fn} convergent uniformly to g.
Therefore the above equality will be treated as the definition of the integral (4.3). One
can easily observe that every real contingous function f : S x S — R is the uniform
limit of a sequence of simple functions {f,}, thus'it can be used as the integrand in
(4.3). Obviously, the described integral is well-defined too for p = A.

5. Covariance operators of Brownian sheets. The covariance operatar of
a second order in the weak sense random element with expectation zero in a Banach
space X is in general a mapping X°®* — X°*°, but it is well-known that covariance
operators of Gaussian distributions map X® into I € X** (cfL Vahania [20],
Ch.4). Obviously all the measures W, are Gaussian as Wiener measures.

Theorem B8.1. For each m € N' the covariance operator Iy, : O* (T, B) —
C(TmyB) of Wm satisfies the formula s

(5.1) (Tml® M) = / (L*,2) (M*,2) Wnm(z) = / f It A of (dA(e), dii(s))
C(Twm.B) | Al S5 -

where L* . M* € C*(T,,B) and A,p : B(T,,) — B* are countably additive regular
vector measures with bounded variation associated usth L*,M* and emdedded into H
by the isometric isomorphism ‘: B*c H* — H.

Proof. To simplify the notation let us put Qm(n) = {k2™" € T : k € N"},
n=1,2,.... It can be easily seen that

52 | X (OW)h®) iat)|s

kJjEQum(n)

Shelm® 3 IAV)s Ia(V;)lls- S llzlm® Vard Vars,
k,;E€EQum(n)

and by Fernique’s [6] theorem,
(52) EWXml = [ el @m(z) < o0,
; C(Tw.B)
because W,y is 2 Gaussian measure in C(Tm, B). Moreover, with probability 1,

64 T A0Xm(®) (1) X)) = [ X 20) [ Xenle) (o).
) oo b

kJEQu(n)
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7

Hence, on acoount of (5.2)5.4), the Lebesgue dominated convergence theorem and
(2.7) we conclude that

55 E / Xon(8) dA(E) / Xosfe) dula) = = 1
i o jr B

=Elm 3 (AVe). X)) (V). X)) =

kJEQwm(n) ‘
=im ¥ A G0N = [ [ 1A @i, die)
k,jEQm(n) ToTw

Corollary 5.3. The measure W is Gaussian with meun zero and covariance
operator I' : C* (T, B) — C(T, B) determined by the equation

69 . @M= [ @D or)ae) = [ [lnd @hodio .,

C(T.B) 7 |

where the last integral reduces to the integral over the product T,, x Tp, with
m = (rank L®) V (rank M") ft;r L*,M* € C*(T, B).

" °

Proof. Since C(T,B) is a Bg-space, each ocontinuous linear functional
L* € C*(T, B) has some rank m € N', i.e. there exists a constant C, 0 < C < oo,
such that for all z € C(T, B)

(6-7) IZ*, )| < C ||zl

and (5.7) is no longer trueif m' <m , m’ #m, m' € N" . Then it can be proved
that there can be found a countably additive regular vector measure A : 8(T) — B*
with bounded variation having support contained in the'set Ty, such that

(5.8) (L°,2) = f 2() D) forall z € C(T, B) .
b o

Indeed, if #p, 2 = %,y for some z,y € C(T, 3), then |(L*,z—y)| £ C ||lz—y|lm = 0 and
hence (L*,z) = (L®,y). Therefore the restriction L7, = L® o x,, of L* to C(Tp,, B)
determines completely L® in the unique manner and L}, € C*(Tm,B)., Applying
again Singer’s result [18] we see that there exists a countably additive regular
' vector measure A : B(Tm) — B* with bounded variation such that

(Lony2) = / z(t) d\g () fcx-all 21 € C(T., B) .
T »

Let A : B(T) — B*® be an extension of Ay defined as follows: A(G) = A(G N Ty,) if
G € B(T), so that A(G) = 0 provided G C T\ T, and G € B(T). Then we have

(Lh2) (L8, wimaf= / Fmz(t) dAs (t) = f 2(6)dA(t) .
y I8 T

\



163 A.M.Zapala

Moreover, we observe that for an arbitrary number a € R,

W|z € C(T,B):(L%,z) <a|=W[z € C(T,B): (L},,xmz) < 8] =
= Wm|z € C(Tm, B) : (Ly,,3) < a] = ®(s;0,0) ,

where oy P
o = j j Ao} (dhr (), dhi(e)) (L (55)).

TaTa

Thus W is a Gaussian measure. Finally, by analogy to (5.5) we obtain
E(L*,X) (M*,X) = E(L},,#mX) (M7, smX) = E(L7y, Xm) (M, Xm) =
= f / (e Aol (e, din () = [ [ e nsl (@), dao),

b S TT
where M}, p1 and p are defined similarly as L},,A; and A.

8. Expansion of Brownian sheets in B into a series of real processes.
Suppose 4 is a Gaussian measure-in a real separable (infinite dimensional) Banach
space (X, ]|-llx)- From Theorem 3.1 given by Kuelbs [12] we know that there exists
then a real separable Hilbert space ¥ € I such that 4 (¥) = 1, where ¥ denotes the
closure of X in (X, - ||z), and for an arbitrary CONS {an} € X for y—a.e. z € I,
we have

li“x'n"z - :v;(x, ap)y ag "z =0.

Note that according to the definition of functions (-,ax)y : £ — R they are
independent standard normal random variables on (X,8(X),9) (d. also Kuo [15]).
This observation can be formulated in other words as follows: the measure 4 on
cylindrical subsets of X', and hence on the whole o—field B(X) is determined by the
canonical Gauss measure 9; in ¥ with mean zero and variance parameter 1. Moreover,
on the basis of Theorems 2 and 3 given by Dudley , Feldman and LeCam [5),
|| - llx is a measurable norm with respect to 43 in the sefise of Gross [8], thus v is
the Wiener measure. '

Jain and Kallianpur [10] employed to the same problem the well-known
Banach—Mazur theorem asserting that each real separable Banach space I is iso-
metrically isomorphic (congruent) to some closed subspace Cy of the space C(0, 1)
with the usual supremmm norm. Investigating next Gaussian measure on Cp they
obtained some other description of ¥. Kallianpur [11] has shown besides that ¥
is the topological suppart of 4, that is 4 (¥) = 1 and for any open set G such that
GN X # 0, the inequality y(GNX) > 0 holds. The approach propcsed by Jain and
Kallianpur poesesses rather theoretical meaning.

Perhaps the most natural and simple characterization of the Hilbert space ¥
being the generator of a Gaussian measure 4 in a Banach space I was found by
LePage [17]. Assume for a moment that the space X consists of real functions on a
parameter set A, such that distinct elements of X are distinct functions (it is always
possible to take A = K® or A = I* and to define 2(a) = (a,z) fora € Ac I*). In
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addition, suppose that all the projections x4 : ¥ — R, a € A, are continuous in the
norm of X, so that x4(zn) = zn(a) — z(a) = x4(z) whenever ||zn — z||x — 0. Let
£ be the smallest closed subspace of the space L3(X,B(X),y) containing the family
of projections {x,, @ € A}. Then the space [ is isometrically isomorphic to ¥ and a
congruence between these spaces is given by the Bochner integral .

i= f z (y,2) dy(2) (convergent strongly in X)
b 4

where y € £ and § € X. Scalar products in both spaces are connected by the equality

(e = [[(5,2) 008 da(a) = Gye
b 4

and the closure § of ¥ in (I, ]| - ||z) is the topological support of 4. Mor=over, for
an arbitrary CONS {yx, k¥ 2 1} in £ the functions g3 : I — R are independent
standard normal random variables sach that

n
“"‘ Z(?koz) !tﬂ —0 for y-ae z€X,
k=1 X

and for each p > 0,

/

From our construction of Brownian sheets X, it fdlows directly that all the
above results are trme for W,,, only the last statement may be regarded as a corcllary
to LePage thearem. We denote by N, the Hilbert space generating Wp,.

z - E(’h‘) ¥

k=1

»
l dy(z) —0 asm—oo.
r 2

Remark . It is worth to mention that if we treat §, obtained from y* € X*, as
elements of X, then for an arbitrary y* € X* we have § = y. In fact, since the scalar
product (-,-)x is normalized so that the canonical Gauss distribution in X generates
4, for each z* € X® we get

@)= @2 07D i) = it = (),
X

and this gives the desired conclusion.

The space ¥ may be described in a more detailed way by means of the Hilbert
space H € B and the space C'(Ty,) € G(Tm). The space C'(Tm) being the generator
of the Wiener measure in G(T,,) consists of such functions f € G(T,,) which are
absolutely continuocus with respect to the Lebesgue measure on Ty, and satisfy the

condition
Jroya<e,
T
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n DK
volg()—oo VQl(K) !

3t

The next theorem is a generalization of Lemma 4 given by Kuelbs and
LePage (14). .

where we have put A'f(¢t) = K = r-dimensional closed cubs.

Theorem 6.1. Let L : T,, — B be an arbitrary function and let {3;, j 2 1}
form a CONS in H. Then L € X, if and only if L(t) € H for eack t € Tn,
Lir.nor =0, all the mappings.(§;,L(-)), 7 2 1, belong to the space C'(T,) and

£ J(a G, Lie)} dt < oo .
I I .

The scalar product in ¥ is given by the formula \

(L, M)y, = ’,-:rj {& (5, L)} (A @5 M)} & .

Moreover, W

a)' Xm=Ln{|tA-l§:teT,, s*€B*},
where the closure'is taken in the norm induced by the scalar product in N,,. In
addition, for all f,§ € C'(T,,) and §,8 € H, we have

(f ¥.9 G)]_ -~ - (j' ) ')C'(T..) /.g ) 6) )

in particular ([t A-|§ , |[oA-| 8)u. = [t A el (g, 8.
b) ForeachL€Xy ,§€EH andt €T, ,L(t)eH

5, LOY=(tA |3, L)y and |L(9)| < |Llx. VI -
¢) For arbitrary elements f € C'(T,,), § € B and L € ¥, (§,L(")) € C'(Ty),
(&L Hogay =L, fHu. and |(#, L())era < x5 -
d) Let {§;, 7 2 1} be any CONS in H. Then for each L € X,,, we have

L= E(ﬂ ) L('» ¥
i Y

where the series converges in the norm | - Ilm .
e) If{yj, 21} isa CONS in H such thaty; € B®, 52 1, then for Wy -a.e.

z € C(Tm,B) we have v
' L5 d=x, : :
A

and the last series converges in the norm || - |-

Proof. As an example of methods explcited for ‘the proof of this theorem we
present ‘here only the proof of the last statement, because the demonstration of the

[ :
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analogous assertion was omitted by Kuelbs and LePage [14]. The other parts of
our theorem follow easily from the construction of Brownian sheets in a Banach space.
At the beginning we quote some basic facts concerning convergence of double
series in a Banach space that are applied in a further fragment of the proof.
Let N be a collection of all finite subsets of the product N x N ordered partially
by inclusion. We say that a double sernies

Y

(s.4)EN XN

of elements of a Banach space I converges strongly with respect to the family N to
an element z € X and write

Z Tig =T,

(ig)ep

iff given any & > 0 there is a set D € N such that for every D' D D, D' € N,

z a;f—:ﬂz<e.

(1J)€ED’

It can be shown that if lim } =zi; = 2, then
DeX (; jyep

jxel jami j=1 =1
\

strongly in I. The proof of this result may be obtained by a slight modification of
arguments used by Singer [19] — Ch. II, Lernma 16.1 p. 458461.

Let now {f;, j 2 1} be a CONS in C'(T/n) and let {§n, 8 2 1} bea CONS in H.
Obviously {f; §a, J,» 2 1} forms then a CONS in ¥,,. Suppose that f* € C*(T,,)
and y* € B*. If z € G(Tm, B), then the map (y*,z(-)) : Tm — R is an element of
C(Tm), for |(5*,2(t)) - (5°2(s))| < lly"[| 5. |2(8)— =(o)]| and (5°,2(t)) = (5°,0) = 0
provided ¢ € T, N 3T. Thus we can define the fanctional (fy)Y € C*(Tm,B) by the
formala ((fy)V,2) = (f*,(y*,2)). Note that (fy)¥ = f §. Indeed, to see this it is
enongh to show that for each z* € B® and t @Twm, (G0 1, (f9)¥) = (G 1] 9),
where G0 y = Gje y for V of the form (0,¢). Evidently, we have

(6'1) (Gz‘,bl ’) e ("1](‘)1) = ](‘) (’v’) ’
and on the other side
(.2) (Cye 1 (fy)Y) = / (@ 108) (9,2 Wm(e) = (13,80, ) =

C(Tw.B)

= (I’! l‘ A | ’) = (f',(f,li A'l 1)) = U! ItA'l)C'(T-)(’! ’) = ](‘) (’)’) ]
becanse C‘,a“ = é’o" =[tA:|2.
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It can be proved moreover that (g°, -) : C(Tm, B) — C(Tm) is a Gaussian random
element. Clearly
up [(s", 2@)] < N5 llB-lI=llm -

Hence we conclude that the mappping (¥°, -) : C(Tm, B) — C(T.,) is continuous,
and consequently it is a random element defined on (G(Tm, B), B(C(Tm, B)),Wm)
with values in (C(Tin), B(C(Tm))). This is a Gaussian random element since for an
arbitrary f* € C*(T) ,

W [z € O(Tm,B): (/*,(5°,3)) < a] =Wm [z € O(Tm,B): (f 3,2) < a] e
=¢(‘;B1 U"IX.)‘ |
Let Wmo(y®)~! denote the distribution of (3°, -) . Assume now that y* € B* and
fi; € C*(Tm), where fij — f; in C'(Ty). The scalar product of two functions (f°, )

and (¢*,7) , f*,9° € C*(Tm), in the space L*(C(Tin), B(C(Tm)),Wm o (5°)7?) is
equal to

63) [ (M6 0Fno6) @ = [ (02 602 dWne) =
C(Twm) C(Tw.B)
=(f .9 M. = U\ Devra il -

Therefore the mapping f — (f*, ) defined on the dense subset {f : f* € C*(Tm)}
of C'(Tm) with values in L?(C(Twm), B(C(Tm)), Wm o (¥°)~") preserves the scalar
product up to the pesitive factor |§|2. Since fi; = f; in C'(Tm), the sequence of
random variables (f3;, -) converges in L?(C(Tin), B(C(Tm)), Wm o (5°)~?) toa r.v.
denoted by (f;, )ev(r..)- This r.v. is determined W, o (y°)~! - a.e. on C(Tin),
hence W, — a.e. on C(Tm,B) the r.v. (f;,(3° ))cr(r.) is defined as well. On
the other side, to each functional f* € B* there corresponds the r.v. (fy, -) being
an element of the space L?(C(Tm, B), B(C(Tm,B)), W) and (6.3) implies that the
mapping f — (fy, :) also preserves the scalar product up to the pasitive factor |§[?.
Since fx; = f; in C'(Tm), and consequently (fijy)¥ — fj# in ¥pm, it follows that
(fkiya ) =R (]jg1 ')X- in Lz(C(Tm,B),B(C(Tm,B)),Wm). However, (.f.a (,.vx)) =
(fy,2) for all z € C(Tm,B), thus Wy, — a.e. on C(Tm, B) we have the equality

(6.4) s, (s°,2) )& (T) = Ui #ohne -
We observe next that on the basis of our construction the double series

z: UJ’ P ’)l.. 'ij In

(5,n)EN XN

converges strongly with respect to the family ¥ toz € C(T;m,B) Wm —a.e. . Hence,
taking into acoount the quoted already result concerning double series we conclude
. that for Wy, — a.e. z € C(T,,, B) ,

(8.5) S Ui dm2hna fidn =2
n=1 j=1
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Applying a very well-known expansion into a series of real Brownian sheet (cL
Kuelbs [12] Theorem 3.1) we see that Wm0 (3°) ™! — ae. in the usual sup norm of
C(Tm)

(8.6) YU Newxadi=1.

Jmi

However || §llm = (| fllc(r.)lI#ll, 30 in view of (6.4) and (6.6), Wm — a.e. strongly on
C(Tem, B) ,

(6.7) S 8= Ui 0" 2o fid=(%2) # -

1=l jm=i

Neglecting a set of Wy, — measure zero determined by {y5, n 2 1}, on account of
(6.5) and (6.7) we obtain

E(’:,s) fn=2 Wyu-ae
n=l

and the proof is complete.
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. STRESZCZENIE

W artykule praedstawiona zostala dementarna metoda konstrukei wmieoparamstrowego procesu
Wienera o wartodciach w rzecaywiste) niesloficaeme wymiarowe) piasstresemi Banacha. Opisano tex
podstawowe wlasnodci tego procesu, np. struktury kowanancji, mocng wiasnoéé Markowa i.t.p. .
Ponadto scharakteryzowana mostala prasstrasti Hil berta generujaca rozkdad procesu w praestraem jego
daglych trajektorii i wyprowadsono roawinieGe procesu w saereg niezaleinych jednowymiarowych
powierzchni brownowslach.

SUMMARY

This paper deals with an elementary construction of a muitiparameter Wiener process with
values in a real separable infinitely dimensional Banach space. Basic properties of this process such
as covanance structure, strong Markov property, etc. are descaibed. Moreover, a Hilbert space
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generating the distnbutioa of the process in the space ot its trajectones was chiaractenzed and the
expansion of the proocess in a series ot one dimenmonal independent Browman sheets was gven.
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Ponadto scharakteryaowana sostala prasstrami Hilberta generujaca rozidad procesu w praestraem jego
daglych trajektorii i wyprowadsono rozwinieGe procesu w sacreg mezaleanych jednowymiarowych
powierzchni brownowslich.

SUMMARY

This paper deals with an eementary construction of a multiparamster Wiener process with
values in a real separable infinitely dimensional Banach space. Bamc properties of this process such
as covanance structure, strong Markov property, etc. are described. Moreover, a Hilbert, space
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generating the distribution of the orocess in the space ot its trajectones was charactenzed and the
expansion of the process in a senes of one dimenmional independent Browman sheets was given.

' ’
.
1 %
i
o
-
N
v (
‘
v
1
‘ &
. -
\ J 3
\
i
. .
*
'
. y M/
? A
i
\ |
L
-, ]
.
a ‘ - 1
r y = .
. a
'
oL e
*
-
#
Y
'
‘.
'
- 3 -
- |
] -
. 0




ANNALES UNIWERSITATIS MARIAE CURIE-SKLODOWSKA

Naktad 650 egz. + 25 nadbitex. Ark. wyd 32.8, ark. druk. 11.
Oddano do sktadu w pazdzicruikul988 roku, do powiclent ptzyjeto w czerwcu 1989 roku,
powielono w pazdzierniku 1989 roku w Zak tadzie Poligraris UMCS, zam. nr 316/89. Cena 2t 500,—



ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN—POLONIA
VOL. XL SECTIO A 1986

25. S. Topila, P. Lounesto: On a Conjecture of Hellerstein, Shen and
Williamson.

28. J. Waniucrski: Convex Mappings and the Lebesgue Measure of Omitted
Values.

27. Wen Guo-Chun: The Nonschlicht Mapping of Multiply Connected Domains.

28. J.Zderkiewicz: On a Generalized Problem of M. Biernacki for Subordinate
Functions.

29. List of Problems.



Biblioteka Uniwersytetu
MARII CURIE-SKEODOWSKIEJ

w Lublime

5044

CZ ASOPISMA

19871

Adresse:

UNIWERSYTET MARII CURIE-SKEODOWSKIEJ
BIURO WYDAWNICTW

Plac Marii
Curie-Sklodowskie] 5 20-031 LUBLIN POLOGNE

Cena zl 500,—




