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Powierzchnie brownowskie o wartościach w przestrzeni Banacha

1. Introduction. Let (P, || • ||) be a real separable infinite dimensional Banach 
space and let pt be the Wiener measure with mean zero and vari ance parameter t > 0 
defined on the Borel a- field 3 of subsets of B. In other words, we assume that there 
exists a real separable infinite dimensional Hilbert space 3 C B with a centered at 
zero cylindrical Gauss measure pt having variance parameter t, such that || • || is a 
/»(-measurable norm on P, B is the completion of H with respect to || • || and pt 
is the unique u-additive extension of a measure /»< associated with /»< by equality 
on cylinders in B and H. This is possible because any seminorm in H is always 
measurable or not with respect to all /»< simultaneously, furthermore H is determined 
uniquely by B and pt for a fixed ( > 0. It is well known that an arbitrary real separable 
Banach space B can be used in the described above context, and since a measurable 
norm is weaker than the original norm | • | = >/(•,•) generated by the inner product of 
B, (P,H) is not complete unless it is finite dimensional. Construction and further 
properties of the Wiener measure in a Banach space were given by Gross [9] (cf. 
also Kuo [15]).

Let po denote the measure assigning the unit mass to the origin 0 € B. Then 
the family of measures {p(, t > 0} forms a strongly continuous contraction semigroup 
acting in the Banach space of bounded uniformly continuous (real or complex valued) 
functions on P, in particular pt * p, = Pt+» for (,» > 0, where * demotes the con
volution. Consequently a one parameter P-valued Wiener process {&, t > 0} with 
independent p»-,-distributed increments , i > » > 0 and continuous paths can
be constructed (see Gross [8,9] and Kuo [15]). In the presented article we describe 
a simple construction and basic properties of a multi parameter Wiener process called 
Brownian sheet with values in a real separable infinite dimensional Banach space P.

The notion of a Banach space valued Brownian sheet is not entirely new, because 
such a process was introduced e.g. by Morrow [16] for the purpose of approximation 
of rectanmlar sums of P-valued random elements. Moreover, by analogy to the fact 
observed by Kuelbs [i4] for real Brownian sheets we may define P-valued Brownian 
sheet on the cube (O,<o)r , r > 2 , identifying it with {f(, t € (0, to)}, where the last 
Wiener process takes values in the Banach space G((0, to)r_1,P) of continuous
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functions from (0, <o)r_1 into B. We do not want to display these considerations, but 
we will present here some other method based on random series in tensor products of 
Banach spaces leading quickly to the same results.

Throughout the paper B* denotes the topological dual of B (H* resp. for P) 
and the bracket (■, •) means the natural pairing between B* and B. Since the norm 
|| • || is weaker than | • |, the restriction of any j* € B* to H is a continuous linear 
functional on H, so that B* C B*. In view of the Riesz representation theorem H* 
is isometrically isomorphic to H. Denote by • the following isomorphism; 0* -^-»O and 
if 0* ye € H*, let j = fi(y*, jfi), where yi € H is the unique vector characterized 
by the properties; jn € {« : (y*,x) = 0}x , |yi| = 1 and (y*,yi) > 0. Thus we have 
defined an embedding B* C H*—'-*H C B, so that for y* € B* and x € H, the scalar 
product (y,x) is well-defined and (y,x) = (y*,x).

2. Construction of the process. Let T = {f = € Rr : li € R+ =
= (0, oo), 1 < i < r} and <ZT = {t € T r = 0 for some i = 1,2,... , r}. In the 
sequel for », t € T we will use the notation: * A t = (min(«i, ),..., min(«r,lr)) and

r
by analogy • Vt with max, furthermore «±t = (»i ±<i,...,*r ±fr) and |t| =

Let G(T, B) denote the space of continuous functions x: T -» B such that x|«r = 0. 
We shall prove that there exist a probability space (0,7, P) and a stochastic process 
X = {X(<), f € T} defined on it with values in B, satisfying the following conditions:

(2.1) for an arbitrary t € T, X(t): 0 —►B is a random element in (B, B),
(2.2) the process X has independenfincrements

£ X(<f = «f)

AJf(V)= £ (-!)>= 1 X^t,........tr)

on disjoint rectangles V = (a, 6) = {< e T : «, < li < bi, * < r),
(2.3) AX(F) has distribution proi V for V = (a, 6) C T, where vol V = |6 — a|;
hence X(f) = 0 with probability 1 iff t € dT and X(t) is p,<, — distributed whenever 
teT.

Moreover,

(2.4) -realizations of the process X are as. continuous, i.e. belong to G(T,B).
We are going now to describe briefly construction of X. Let Tm = {t € T : 

0 < t, < m,-, 1 < i < r}, where m, € IV = {1,2,...}. Suppose {y„, n > 1} is a 
CONS in H and j > 1} is a CONS in C'fTm), where C*(Tm) is the Hilbert space 
generating Wiener measure in C(Tm) — the space of continuous functions from Tm 
into R vanishing an dT fl Tm. It is easy to see that for any sequence of ia.d. stan
dard normal random variables {yn}, defined on the same probability space, £2 injn

n ’
converges as. in (P, || • ||), and similarly J2 tjfj >s convergent with probability 1 in 

i
the usual sup norm in C(Tm). Hence if yny are independent standard normal random 
variables defined on a oommon probability space, an account of the result given by
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Chevet [3] ,

(2.5) 52 fi ® *"
I."

converges an. in G(Tm) ®, B, where e is the least reasonable cross-norm. It is very 
well known that the space C(Tm)®tB is equivalent to C(Tm, B) — the real separable 
Banach space of continuous functions x : Tm -* B with norm l|x||m = sup ¡|x(t)|]

ter«.
such that x|ar = 0. Thus if we identify the tensor product ® with multiplication, 
the above series (2.5) defines a stochastic process Xm ~ t € Tm] with
realizations in G(Tm,B).

Let Wm be the distribution of Xm in (G(Tm,B) , B(G(Tm, J?))) and let 
Mm = G'(Tm) ®3 H. Then {/,yn, /,» > 1} is a CONS in #m, which implies that Mm 
is the Hilbert space generating Wiener measure Wm in C(Tm, B).

All what we have to prove is that Xm satisfies (2.1)-(2.3). Consider the probar 
bility space (G(Tm,B), B{G(Tm,B)),Wm). Obviously t € Tm , are random
elements with values in B. Observe now that the functional B) given
by = (y‘, Ax(V)) after embedding into Mm is equal to A|t A-](V’)y. Indeed,
for each fj and y„ we have (A|t A = (A|i A •|(F),/>)c-<r„) (?,»«) =
= A//(Vj(y*,y„) = (y*,A(/yf„)(V)), so = A|t A-|(V)y. It follows that
AXm(V) has distribution pv0| y , because for each y* € B* , (y*,AXm(V)) i8 dis- 
tributed normally with mean zero and variance vol V ■ lyjJ (cf. Kuo ¡15] p. 78).

Furthermore, since Wm is generated by the cylindrical Gauss measure in 
if F ± G. F.G € Jfm, then {F.Xm})tm and (G,Xm)xm are independent. Suppose 
v„y, c rm are disjoint rectangles. I et Mj,.,., sj, , Xj,•• •, € B Without
loss of generality we assume that axe orthogonal in H and similarly ij (for we 
can always form a basis in Lin(aJ,.... mJ) consisted of orthogonal vectors i. However 
Guj,v, and Gt*tyt are then all manually orthogonal in Xm, so that joint distribution 
of the random vector
{« AXm(Vi)),..., («J, AXm(V,)) , (4, AXm(V’,)),..., (4, AXm(V,))} 
is Gaussian and random vectors {(«*, AXm(Vi)),...,(«J, AXm(Vi))} and 
(«*, AXm(Vj)),...,(z*, AXm(Vj))} are independent. Consequently A A'm(V'j) and 
AAm(Vj) are independent random elements in B.

Finally Xm is the process with continuous realizations on Tm satisfying (2.1V-
(2.3). Note also that the measure Wm does not depend on the choice of fi in 
and yn in H — any other CONSin Gl(Tm) as well as in H will lead to the same 
distribution Wm-

Let G(T,B) be viewed with a family of seminorms |] • ||m , m € NT. Then 
G(T,B) is a real separable Bo-space. Denote by xm : G(T.B) — C{Tm.B} pro
jections obtained by restriction of the domain of functions x € C[T,B) to Tm and 
set Um = xm~l(B{C(Tm,B))), and WftZ) = Wm(A) provided A e B(G{Tm,B}) 
and U = xm-l(A). Then W is well-defined and is a cylindrical measure on the 
field (J Um in G(T,B), thus W is countably additive (see, e.g. Daleckii and

m € Nr
Fomin [4], Th. 1.3 p. 25, where K — (J , /Cm = and is,

m€.Vr
for example, the class of compact sets in G(Tm, B) ). Moreover, the <r-neld generated
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by U Um is equal to B(C(T,B)}, therefore W has the unique a-additive ex- 
' meNr

tension to B(G[T,B)) denoted still by W. Defining X on (C(T,B),B(C(T,B)),W) 
by

X(t,x) = x(f), xeG(T,B) ,

we see that X is the process satisfying (2.1}-(2.41. lb check these conditions it suffices 
to restrict ourselves to Tm,Xm and Wm with an appropriately chosen m € Nr.

Let Q = BT and let <rC(BT) denote the a-field of subsets of BT induced by 
the mappings x -* x(f) , f € T. Then aC(BT} D(7(T,P) = 8{C(T,B)), so that 
we can define a measure P on <rC(BT) by the formula P[A] = W[A fi G(T, J?)j for 
A G <rC(BT). Assume now that K is a stochastic process on (O,»C(Br)) satisfying 
C2.1)—(2^3) obtained on the basis of Kolmogorov’s extension theorem. Since P on 
cylindrical sets coincides with finite dimensional distributions at Y, P is precisely 
the same probability measure as that being the distribution of Y on (0, <rC(BT)) in 
Kolmogorov’s representation. Denoting by 7 the completion of aC (BT) under P we 
see that the process Y considered on (0, 7,P) possesses the continuous modification 
X, hence separable. However the exsistence ox a separable modification for Y does 
not follow from a general version of Doob’s theorem, because infinite dimensional 
separable Banach space is neither compact nor locally compact (compare Gihman 
and Skorohod [7], Ch. HI). Though Y need not be continuous or separable, it is 
stochastically continuous (and also in Lf , 0 < p < oo, uniformly on each set Tm) 
because X is so. Stochastic continuity of X implies in turn that an arbitrary dense 
subset of T may serve as a set of separability for X (see Gihman and Skorohod
17])- . ’

Conditions (2.1J-<2.4) imply the following properties:

(2.61 A A ^^))=/(^X(*))dP= /(y’,x)dP,t|(x)=0

y* e P* t € T q b

and
(2.7)

A A = /(y-.X(t))(r’,X(.))dP = (i,x)|tA.i.

y\?GFt,.GT n

The first formula follows easily from the above construction and arguments. We 
shall'prove (2.7). Since increments of X on disjoint rectangles are independent, we 
have

£(f,X«))(?,X(.))=£(f,X(fA.))(?,X(fAi)) .

If y* = 0*. then (2.7) is obvious? Suppose y* (T. Then i = (y/|yj,
where (c,y) = 0. Hence we infer that (y,X(t A »)) and (6,X(t A »)) are independent
random variables with distributions :V(0. jyj1 jt A •!) and 1V(O. |»|a |f A »(), thus

B(y’,X(t A A •))=£?(y,i)(y,X(f A »))’ l»!~a +E(y.X(t A •)><«,X(t A .))=

=(y.x) |l A »1 .

3. Strong Markov property. Let Z = {Z,f), I € T) be a stochastic process 
defined on a probability space (0,7, P) taking values in a Hausdorff topological group
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E with its Baire <r-field e. We say that Z is right continuous, if for each ( 6 T and 
« € ft,

Z(«,w) —* Z(t,w) as »>(,«-»<.

Let 7t = <r(Z(«), • € (0,0) and let S(S) denote the Borel <r-field of subsets 
A C S C T. It can be easily seen that under our assumptions the process Z is 
progressively measurable. Fbr the proof cf this fact it suffices to consider a sequence

*»(•) = E W 
kefr

)*((*- i)2-n,*2-"/*)

convergent in E to Z(s) for all • € T and w € ft, and observe that the mapping 
(•,w) —» Z^(s,(>z) of (0,0 x 0 into (25,e) is B((O,0) x 7< — measurable for a fixed 
teT.

As an obvious corollary we conclude that the Brownian sheet X in a Banach 
space is progressively measurable, and consequently measurable.

Let r : (ft, 7,P) —» (T,B(T)) be a stopping time. Then it can be noted that 
Z(t + r) is a random element with values in E. Recall that a random vector r. 
is called a stopping time with respect to the filtration (7<, I € T} if for every 
t € T, {r < 0 € 7«. Let 7r = {P € 7 : P n (t < 0 € 7t for each t € T} and 

= {P € 7 : P 0 {r < 1} € <6 T \ (t,oo)) fbr each t 6 T}. Note that 7r
and ffr are <r-fidds and 7r C yr.

We are now in a position to establish a kind of the strong Markov property for 
Brownian sheets in B. We are able to prove even a somewhat stronger result that 
implies easily strong Markov property for X.

Proposition 3.1. Let Z be a right continuous process with stationary indepen
dent increments vanishing at the boundary Z|ar = 0 taking values in a (Hausdorff) 
Abelian topological group E such that operations +,— are (« X e,e) - measurable 
and let r be a stopping time with respect to the filtration {7t, t € T}. Denote 
Zv(t) = AZ((r, r + 0) , ( € T. Then the processes Z and Zo are stochastically 
equivalent in the wide sense and the a-field n(Zo(0, t € T) is independent of Sr 
( and 7r ) .

Proof. The proof can be obtained by a modification of Breimatr’s (2] argu
ments, but details will be given elsewhere.

Corollary 3.2. The Brownian sheet X in B satisfies the strong Markov property 
formulated in Proposition 3.1 .

The last conclusion is a consequence of the {act that in a metric space the Baire 
and Borel <r-fidds coincide.

4. Vector integrals. Since in the sequel we make use of integrals of Banach 
space valued continuous functions x € C(Tm,2?) integrated with respect to vector 
measures taking values in the conjugate space B*, for convenience of the reader we 
describe here briefly construction of such integrals.

Let S be a compact (Hausdorff) topological space and let <7(S,2?) be the space 
of continuous functions defined on S with values in a real Banach space (2?, || • ||).
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The space C(S, 2?) equipped with the norm ||r||s = sup ||x(«)|| is then a real Banach 
•€Sspace.

A function « : S —» B is said to be ample if it may be represented as a linear 
combination

(<•») =

of some vectors n € B multiplied by indicators XB{, where Ei, 1 < i < n, are 
arbitrary pairwise disjoint Borel subsets of S, i.e. € B(S). The reader may readily 
verify that for each continuous function x € G(S,B) there exists a sequence {«„} of 
simple functions convergent uniformly on S to x in the norm || • || of B, so that

(4.2) ||x-en||s—>0 asn —oo.

Let A : 8 (S) —♦ B* be an additive set function, for brevity called vector measure. 
The variation of A is the extended nonnegative function Var A, whose value on a set 
E 6 8(S) is determined by the formula

Var A(£) = sup £ ||A(^.-)||^. ,
‘ E,ex

where the supremum is extended over all partitions <c = {£?<, 1 < »' < nK) of E into 
a finite number of disjoint Borel sets E, C S. To simplify the notation we write 
Var A (S’) = Var A and assume that A is of bounded variation Var A < oo.

If e is a simple function given by (4.1), the integral of e over S with respect to A 
is defined to be

/e(.)iA(a) = £(A(f!i),irj). 

s •=»
Basing on the inequality

e(»)JA(«)| < ||«|JS Var A 

s

one can easily demonstrate that for every sequence of simple functions {e„} satisfying
(4.2) with a fixed function x € G(S,B) there exists the unique limit

*(«) <»(«)=I»™ y «»w <&(•),

s

which is by definition taken as the integral of x with respect to A over S. The obtained 
integral is a special case of the general Bar tie [1] integral, constructed for a larger 
class of A-integrable functions on an arbitrary measurable space (S, a) with a field a.

A vector measure A : 8(S) —> B* is countably additive if and only if for every 
sequence (Bn) of pairwise disjoint Borel subsets of S the series J3A(J5„) converges 

in the norm of B* and
£a(£?„) = A(U2M-

n "

I
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Let us observe that the series A(Un) is then unconditionally convergent, i.e. for 
n

each subsequence {nr } the subseries £) ^(En,) converges strongly in B* to A(1J En,).
r r

A vector measure A : 3(5) -♦ B* is called regular, if for each x € B the real set 
function (A(-),x) : B(S) R is regular, so that for arbitrary e > 0 and A e 3(5) we 
can select an open set Gx 2 A and a compact set Kt C A, such that

|(A(A),x) — (A(A'),x)| <e

whenever A' € 8(5) and Kx C A' C Gt .
Singer [18] proved that the topological dual space G*(5,J?) conjugated to 

<7(5, B) is isometrically isomorphic to the space of countably additive regular vec
tor measures A : 3(S) —» B* of bounded variation with the norm Var A, and every 
continuous linear functional £* € <7* (5, B) possesses the integral representation

(I*,») = [ x(t)d\(») ,

s '

where A <-» L is the mentioned isomorphism.
We are going to describe besides a special kind of the double integral that will 

appear in our further considerations, namely

(4.3) 11 j(<,»)(dA(i),djt(®)) ,

s s

where S is, as before, a compact (Hausdorff) topological space and A,/» : 3(5) —» B* 
are vector measures embedded by the isomorphism • into the Hilbert space H C B, 
being the generator of the Wiener measure in a separable Banach space B. The last 
integral can be defined (at least) for all bounded completely measurable functions 
g : S X S —» R, i.e. functions which are uniformlimits cf sequences of simple functions.

A function f : 5 x 5 -+ R is called now simple, if it may be represented in the 
form

p *
(*•<) /(*,»)

f !=>1 J = 1 ‘ 3

where {Di, 1 < » < p) and {2?y, 1 < j < k} are arbitrary finite partitions of 5 into 
disjoint Borel sets and ftjy 6 R. The double integral (4.3) of any simple function (4.4) 
we define by the formula

p *
/(<,») (¿A(t),</£(«)> = £ <A(P0,A(£?,)>.

»si y=i

The above integral satisfies then the inequality

(4.5) \f f f{t,.){d\{t),dfi{,))\ < C* sup |/(t,»)| Var A Var p
s s ’

n



166

with a positive constant G such that ||x|| < <7|x| for x € B, and consequently 
|y| = sup{(y*,x) : |x| < 1, x € B} < <7||jr*|Jjs- provided y‘ € B*. On the basis 
of (4.5) we infer immediately that for every bounded completely measurable function 
g : S X S —► R, there exists the limit

IJ iO.») = 11 «#(»)),

S S S3

and is unique for all sequences of simple functions {/„} convergent uniformly to g. 
Therefore the above equality will be treated as the definition of the integral (4.3). One 
can easily observe that every real continuous function f : S x S —* R is the uniform 
limit of a sequence of simple functions {/„}, thus it can be used as the integrand in
(4.3). Obviously, the described integral is well-defined too for p = A.

5. Covariance operators of Brownian sheets. The covariance operator of 
a second order in the weak sense random element with expectation zero in a Banach 
space Z is in general a mapping Z* —» Z**, but it is well-known that covariance 
operators of Gaussian distributions map Z* into Z C X** (c.£ Vahania [20], 
Ch.4). Obviously all the measures Wm are Gaussian as Wiener measures.

Theorem 6.1. For each m € NT the covariance operator Tm : —»
C(Tm,B) o/Wm satisfies the formula

(5.1) (rmr,AT)= I {L*,x)(M*,x)Mm(x) = J J \t*s\(dX(t),dp(s)) ,

r.r.

where L*,M* € G*(Tm,B) and X,p : B(Tm) —» B* are countably additive regular 
vector measures with bounded variation associated with L* ,M* and embedded into B 
by the isometric isomorphism •: B* C. H* —► B.

Proof. To simplify the notation let us put Qm(n) = {k2~n € Tm : k € Nr}, 
n = 1,2,... . It can be easily seen that

(5.2) | £ (A(n),x(*))>(Fy),xO-))|<

< Mm’ £ IIA(V*)||s. ||/.(Fy)||s. < ||x||m’ Var A Var „ ,
*j€Q.(n)

and by Femique’s [6] theorem,

(5.3) f?||Xm||m’= I ||x||m’dWm(x)<oo,

because Wm is a Gaussian measure in G(Tm, B). Moreover, with probability 1,

(5.4) £ (X(Vk),Xm(k)) (p(Vj),Xm(j)) f Xm(t)dX(t) f Xm(s)dp(i).
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Hence, on account of (5.2)-(5.4), the Lebesgue dominated convergence theorem and
(2.7) we conclude that

\ '
(5.5) E J Xm(t)dX(t) I Xm(»)dp(«) = 1

r. r„

= E lim (A(Vt),Xm(*))

= Um £ I* A/I WWW» =/ / 1« A a| <rfA<i),rfA(»)> - 

*,i€Q-(n) rmTm

Corollary 5.2. The measure W it Gaussian with mean zero and covariance 
operator T : G*(Ty B) —» C(TyB) determined by the equation

(5.6) . (ri’,AT) = J (£*,«) (AT,x)diV(x) = y j \t*,\(dX(l),dp(s)) ,

C(T,B) TT

where the last integral reduces to the integral over the product Tm x Tm with 
m = (rank L*) V (rankM') for L',M* € C' (T, B).

9
Proof. Since C(T,B) is a Bo “space, each continuous linear functional 

L* G G*(T,B) has some rank m € Nr, i.e. there exists a constant G , 0 < G < oo, 
such that for all » € G(Ty B)

(5-7) |(I\*)|<C|Mm

and (5.7) is no longer true if m' < m , m' m , m' € Nr . Then it can be proved 
that there can be found a oountably additive regular vector measure A : B(T) — B* 
with bounded variation having support contained in the set Tmy such that

(5.8) (L*,x) = J x(t)dX(I) for all x € C(T, B) .

T

Indeed, if srmx = xmy for some x, y G G(Ty3), then |(£*,s-y)| < G ||x-y||m = 0 and 
hence (£*,*) = (£*,y). Therefore the restriction ¿X, — L* oxm of L* to C(Tmy B) 
determines completely L* in the unique manner and G G*(Tm,B)., Applying 
again Singer’s result [18] we see that there exists a countably additive regular 
vector measure At : B(Tm) —> B* with bounded variation such that

(L*m,z) = J z(t)dA,(t) fcr all j G G(TmyB) .

T„

Let A : B(T) —♦ P* be an extension of Ai defined as follows: A(G) = Ai(<?0 Tm) if 
CGB(T), so that A(<?) = 0 provided G C T \ Tm and G G B(T). Then we have

(£*,») = (L*m,xmx) = I jrmx(f)dAi(t) = x(t)dX(t) .

T„ T
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Moreover, we observe that for an arbitrary number a € R,

IV[x € C(T,B):(£*,*)<«] = TV[* € C(T,B): (L*m,xmx) < «] =
= Wm\z e G(Tm,B): (£„,») < «1 = ,

where
S = J J |t A .| (dA,(t), ^»(s)) (c£ (5.5) ) .

r«r-

Thus TV is a Gaussian measure. Finally, by analogy to (5.5) we obtain

E(L*,X) (M*,X) = E(L*m,xmX) (M*m,KmX) = E(L*m,Xm) (M'm,Xm) =
=y y itA«i (¿Ai(t),rfAi(»))=yyi<A»i <aa(o, <*/»(»)>, 

r-r. r r

where and /t are defined similarly as Im,li and A.

6. Expansion of Brownian sheets in B into a series of real processes. 
Suppose 7 is a Gaussian measure in a real separable (infinite dimensional) Banach 
space (X, || • || x )- FYom Theorem 3.1 given by Kuelba [12] we know that there exists 
then a real separable Hilbert space )l C X such that 7 (If) = 1, where ? denotes the 
closure of 1/ in (X, || • ||x), and for an arbitrary CONS {«„} C H for 7-a.e. x € X, 
we have x N

U“||* ~ °*||x = ° •

Note that according to the definition of functions (•,: X —► R they are 
independent standard normal random variables on (X,B(X), 7) (cf. also Kuo [15]). 
This observation can be formulated in other words as follows: the measure 7 on 
cylindrical subsets of X, and hence on the whole <r-field S(X) is determined by the 
canonical Gauss measure 71 in If with mean zero and variance parameter 1. Moreover, 
on the basis of Theorems 2 and 3 given by Dudley , Feldman and LeCam [5], 
|| • ||x is a measurable norm with respect to 71 in the serfse of Gross [8], thus 7 is 
the Wiener measure.

Jain and K alii an pur [10] employed to the same problem the well-known 
Banach-Mazur theorem asserting that each real separable Banach space X is iso- 
metrically isomorphic (congruent) to some closed subspace Go of the space <7(0,1) 
with the usual supremnm norm. Investigating next Gaussian measure on Go they 
obtained some other description of If. Kallianpur [11] has shown besides that ¥ 
is the topological support of 7, that is 7 (?) = 1 and for any open set G such that 
G D ? / 0, the inequality 7(G D ?) > 0 holds. The approach proposed by Jain and 
Kallianpur possesses rather theoretical meaning.

Perhaps the most natural and simple characterization d the Hilbert space If 
being the generator of a Gaussian measure 7 in a Banach space X was found by 
LePage [17]. Assume for a moment that the space X consists of real functions on a 
parameter set A, such that distinct elements of X are distinct functions (it is always 
possible to take A = K* or A = X* and to define »(«) = (0,») for a € A C X*). In
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addition, suppose that all the projections xa : X R , a € A, are continuous in the 
norm of I, so that jro(x„) — *n(<*) -* *(«) = *<»(*) whenever ||i„ - x||x -» 0. Let 
L be the smallest closed subspace of the space £J(X, containing the family
of projections {tra, a € A}. Then the space £ is isometrically isomorphic to )f and a 
congruence between these spaces is given by the Boehner integral

i =
X

where y € £ and $ e IL Scalar products in both spaces are connected by the equality

X

x (y,x) d'»(r) (convergent strongly in X)

and the closure J? of If in (X, || • ||x) is the topological support of 7. Moreover, for 
an arbitrary CONS {yjt, k > 1} in £ the functions y* : X —♦ R are independent 
standard normal random variables such that

|x - 53(yt,«) —* 0 for 7 - a.e. x € X ,

and for each p > 0 ,

From our construction of Brownian sheets Xm it fellows directly that all the 
above results are true for Wm, only the last statement may be regarded as a corollary 
to LePage theorem. We denote by the Hilbert space generating Wm-

Remark . It is worth to mention that if we treat y, obtained from y* € X*, as 
elements of X, then for an arbitrary y* € X* we have y = y. In fact, since the scalar 
product (•,•)# is normalized so that the canonical Gauss distribution in H generates 
7, for each z* € X* we get

(At) = J(z*,x) (,',x)<h(x) = (x,y)y = (x*,y) ,

X

and this gives the desired conclusion.

The space may be described in a more detailed way by means of the Hilbert 
space H c B and the space G'(Tm) c C(Tm). The space C'(Tm) being the generator 
of the Wiener measure in G(Tm) consists of such functions f 6 G(Tm) which are 
absolutely continuous with respect to the Lebesgue measure on Tm and satisfy the 
condition

J {A7(t)}’dt<oo,
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K = «—dimensional closed cubs.where we have put A'f(t) — limnm
vol(K)—»0 vol(/fj ’

K-)t
The next theorem is a generalization of Lemma 4 given by Kuelbs and 

LePage [14]. ,

Theorem 6.1. Let L : Tm —» B be an arbitrary function and let {jj, j > 1} 
form a CONS in H. Then L € Xm if and only if L(t) € E for each t 6 Tm, 
L\r^naT — 0, all the mapping a. (jj,L(-)), j > 1, belong to the apace G'(Tm) and

£ f {A' dt < oo .
j r-

The scalar product in is given by the formula \

= E / {A' &,£(<)>} {a' .
i r-

Moreover, __
a) Xm = Lin {|t A-1* =*€ Tm , y»€P*} , 

where the closure is taken in the norm induced by the scalar product in Mm. In 
addition, for all f,j € <7'(Tm) and#,# &S, we have

{/ V , i - (j , i)c'(Tm) (#»*)>

in particular {|i A -| j , |» A -| 0>Xm = |< A #| {$ , ■
b) For each L 6 Hm , ft 6 E and teTm, ¿(t) € E

(y , ¿(f)) = <|C A -| # , L)p„ and j£(t)| < |£|x’„ VKi • 

e) For arbitrary elements f e G'(Tm), $ € S and L € 6 C'(Tm),

((#,£( ))> /}c'(rm) ==(£, /f)#,. and |(i , ¿(-))lc'(rm) < lil •

d) Let {yy, j > 1} be any CONS »n H. Then for each Lc J/m we have

j

where the series converges in the norm | • .

e) If {iji 1^1} « a CONS in H such that y* &B*, j>i, then for VFm-a.e. 
x 6 C(Tm,P) we have

and the last series cdnverges in the norm [| • [Jm.

Proof. As an example of methods exploited for the proof of this theorem we 
present here only the proof of the last statement, because the demonstration of the

(
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analogous assertion was omitted by Kuelbs and LePage [14]. The other parts of 
our theorem follow easily from the construction of Brownian sheets in a Banach space.

At the beginning we quote some basic facts concerning convergence of double 
series in a Banach space that are applied in a further fragment of the proof.

Let N be a collection of all finite subsets of the product N x N ordered partially 
by inclusion. We say that a double series

E •'
(ij)€JVx/V

of elements of a Banach space I converges strongly with respect to the family AZ to 
an element x € I and write

lim > 
Den

Xi, = X

iff given any e > 0 there is a set D € AZ such that for every ZX 2 D , D' € AZ,

<w)€P'

It can be shown that if lim *•/ = thenDen

OO 00 OO 00
EE^EE 1̂
iwl ¿«1 ;=l •=!1 ■ * ■ ' ' \

strongly in X. The proof of this result may be obtained by a slight modification of 
arguments used by Singer [19] - Ch. II, Lemma 16.1 p. 45&-461.

Let now {/y, j > 1} be a CONS in G'(Tm) and let {$„, » > 1} be a CONS in H. 
Obviously {/, j„, j,n > 1} forms then a CONS in AZm. Suppose that f* € G*(Tm) 
and jr* € B*. If x e C(Tm, B), then the map (jr*, »(•)} : Tm —■ R is an element of 
C(Tm), lor |)-(,*,*(»)) j < ||jf,||B.||x(t)-x(«)|| and (y\*(t)) = (y\0) =0 
provided ( € Tm D5T. Thus we can define the functional (/jf)v 6 C*(Tm,B) by the 
formula ((/f)v,x) = (/*>(»’,*))• Note that (/f)v = / #. Indeed, to see this it is 
enough to show that for each x* 6 B* and t &Tm, (/jr)v) = (G?» j),
where Gg», t = <?*», y for V of the form (0, t). Evidently, we have

(«•!) (<?*•,«»/*) = «/(<)*) = /(<) <M> ,

and on the other aide

(6.2) (Gs.it,(/f)V) = I (M<™m(x) = (/»,<?,•,<) =

C(T.3)
= (/», 1« a -i 2) = (r ,(rM< a i <)) = (/, it a i>c-(rm)<#,i>=/(<) <i,*>, 

because = Gg»t = |t A -| i .
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It can be proved moreover that (y*, •) : G(Tm, B) —► G(Tm) is a Gaussian random 
element. Clearly

sup |(jf,«(<))! < ||y’||B-i!xl!m •
<€T«

Hence we conclude that the mappping (y*, •) : G(Tm,B) —♦ G(Tr„) is continuous, 
and consequently it is a random element defined on (G(Tm,B), B(0(Tm, B)),Wm) 
with values in (<7(Tm), B (G(Tm))). This is a Gaussian random element since for an 
arbitrary f* € G*(Tm) ,

Wm [x e G(Tm,B) : (/*, (y\x)) < «] = Wm [x € G(Tm,B) : (/ y,x) < a] =

Let Wmo(y*)~l denote the distribution of (y’, •) . Assume now that y* € B* and 
e G*(Tm), where /*y —♦ /, in G'(Tm). The scalar product of two functions (/*, •) 

and (?*, •) , r,y’ e G*(Tm), in the space B(C(Tm))tWm o (y’)~‘) is
equal to

(6.3) I (/*,«) (0*?«)dH'mo(y‘)_1(«) = y (/ y,x) (g y,x)dWm(x) =

C(rm)
= = |i|* •

Therefore the mapping / —* (/*, •) defined on the dense subset {/:/*€ C*(Tm)} 
of G'(Tm) with values in L2 (C(Tm), B (G(Tm)),Wm o (y*)-1) preserves the scalar 
product up to the positive factor |y|J. Since fkj —» /y in <7'(Tm), the sequence of 
random variables (/Jy, •) converges in L2 (G(Tm),B(G(Tm}},Wm o (y*)-1) to a r.v. 
denoted by (/y, This r.v. is determined Wm o (y*)_l - a-e. on C(T,„),
hence Wm - a-e. on G(Tm,B) the r.v. (fj,(y*, -))c'(r„) is defined as well. On 
the other side, to each functional f* € B* there corresponds the r.v. (/y, •) being 
an element of the space L2(G(Tm,B),B(G(Tm, 2?)),lYm) and (6.3) implies that the 
mapping / —» (/y, •) also preserves the scalar product up to the positive factor |$|*. 
Since fkj fj in and consequently (fkjyf fj$ in )tm, it follows that
(fW, ) - (/yi, •)*. L2(G(Tm,B),B(C(Tm,B)),Wm). However, (/’,(?*,*)) =
(/y,x) for all x € C(Tm,B), thus Wm - ae. on G(Tm,B) we have the equality 

(6-4) </y .(»*.*) >0» (Tm) *} X- •

We observe next that on the basis of our construction the double series

$2 /y in
(j,n)eNxN

converges strongly with respect to the family M to x € G(Tm,B) Wm - ae. . Hence, 
taking into account the quoted already result concerning double series we conclude 
that for Wm - ae. x € G(Tm, B) ,

oo oo
12 22<Zf #»>*)*.. fj in = » •
n=I y=i

(6.5)
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Applying a. very well-known expansion into a series of real Brownian sheet (c£ 
Knelbs [12] Theorem 3.1) we see that Wm o (y*)-1 - a-e. in the usual sup norm of 
O(Tm)

oo
(6 •«) 12 .

r-l

However ||/ i||m - ||/||c(Tm)|]$ 11» so ¡a view of (6.4) and (6.6), Wm - a-e. strongly on

(c-7) $2(/r ii *)*- fi i = (>*1 x))c'(T.) fj i = (y‘, «) i.

i-1 i-1

Neglecting a set of Wm - measure zero determined by {y*, n > 1], on account of 
(6.5) and (6.7) we obtain

OO

IWl

and the proof is complete.
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. STRESZCZENIE

W artykule przedstawiona została elementarna metoda konstrukcji wieloparametrowego procesu 
Wienera o wartościach w rzeczywistej nieskończenie wymiarowej przestrzeni Banacha. Opisano też 
podstawowe własności tego procesu, np. strukturą kowariancji, mocą* własność Markowa i.t.p. . 
Ponadto scharakteryzowana została przestrzeń Hil berta generująca rozkład procesu w przestrzeni jego 
ciągłych trajektorii i wyprowadzono rozwiniecie procesu w szereg niezależnych jednowymiarowych 
powierzchni brownowskich.

SUMMARY

This paper deals with an elementary construction of a multiparameter Wiener process with 
values in a real separable infinitely dimensional Banach space. Basic properties of this process such 
as covariance structure, strong Maikov property, etc. are described. Moreover, a Hilbert, space



Brownian Sheet* with Veiue* in a Banach Space 175

generating the distribution of the process in the space ol it« trajectone* was cbaractehzed and the 
expansion of the procès* in a serie* of one dimensional independent Brownian sheets was given.
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. STRESZCZENIE

W artykule przedstawiona została elementarna metoda konstrukcji wieloparametrowego procesu 
Wienera o wartościach w rzeczywistej nieskończenie wynżarowej przestrzeni Banacha. Opisano też 
podstawowe własności tego procesu, np. strukturę kowariancji, mocna własność Markowa i.t.p. . 
Ponadto scharakteryzowana została przestrzeń Hilberta generującą rozkład procesu w przestrzeni jego 
ciągłych trajektorii i wyprowadzono rozwiniecie procesu w szereg niezależnych jednowymiarowych 
powierzchni brownowskich

SUMMARY

This paper deals with an elementary construction of a multiparareeter Wiener process with 
values in a real separable infinitely dimensional Banach space. Basic properties at this process such 
as covariance structure, strong Markov property, etc. are described. Moreover, a Hilbert space
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generating the distribution ai the process in the space ot it* trajectories was characterized and the 
expansion of the procès* in a sene* of one dimensional independent Brownian sheets was given.
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