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On a Method to Deal with Convex Functions of Bounded Type

Pewna metoda badania funkcji o ograniczonej wypukloéa

Convex functions of bounded type were introduced by Goodman in (1] and [2} in
the fallowing way:

For f regular and locally univalent in the unit disc D = {z| |z| < 1}

o= g Re(14 ) - o<k=e<t,
is the curvature of f({z| |2| = r}) at the paint f(z). f is said to be a member of the
dass CV(R,, Ry) if f is regular and convex in D, normalized by f(0) = f'(0)-1=0
and
0<R < h'n'lu:f 1/x(2z) < limsup 1/xy(2) S Ry < o0 .
Glinad |5|—=1

In (1] and [2] a lot of problems concerning CV(R;,Rj) are discussed among
them the coeffident problem and the question of the existence of a “nice” variational
formmla for CV (R,, Ra). In this paper we shall derive a simple method which enables
us to get old and new inequalities for CV (R;, R3) by similar operations. In fact, in
these considerations we only use part of the conditions valid for CV(R;. Ra) and sc
we get results for the bigger class C(1/R;) defined below (compare [6]).

Definition 1. Let K > 0 and f be regular and locally univalent in D. Then f
is said to belong to the class C(K) if and only if

liminf x¢(z) > K .

|af==1

Remark 1. As it was proved by Peschl in [3] and again discussed in (6] &/
cannot have a local minimmm in D\ {0} if f € C(K) and so we see that the following
assertion is valid: f € C(K) , K > 0, if and only if x¢y(2z) > K for z € D\ {0}.
Another consequence of this fact needed in the sequel is as follows: If f € C(K) ,
K >0,and f,(2) = f(rz) ,0 < r < 1, then f, € C(K') c O(K) for a K' > K
(compare [6]).
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Theorem 1. Let K > 0, f € C(K) be regular and locally univalent in a disc
=(z||s|<1+¢€} forane>0 andt: {z] |s| = 1} = R continuous, nonnegative
and not vanishing identically. Then for any & € D the inegquality

- j " K0 -2 () b <

1 & 1)

(1)
=} R..-(H—F,—)u ac!| 1(c*) do

is valid and equality occurs if and only if

i—a

(2) (z)—fI—(—l_M-rc, ceC,deR.

Proof.

" i ; _ : an - ‘
@) |% R0 - e i) oy < % fo K| ()] 1 - 2|22 () af

and equality occurs if and only if argi f'(¢*?)(1 — a¢'?)?) is constant for # € (0, 2x].
Under the conditions of our theorem this implies according to the Schwarz reflection
principle that f/(z)(1 — 8z)? is the restriction to D, of a bounded entire function and
tkerefore a constant.

& i 'f‘{c“) €
Epies) = — Re{ 1+ ¢ . > K for 6 € |0, 2x [

€)= ey Pel1 + ) r 8 Sl0sday
and (3) imply that (1) is valid. If we insert f'(z) = d/(1 — 82z)? into (1) we see that
equality can occur if and only if K|d| = 1 - lal’. This proves the rest of the assertion.

Remark 2. The procedure to get inequalities concerning C(K) from Theorem 1
is the following: If f € C(K) then f, € C(K) for U < r < 1 and fulfills the conditions
of Thearem 1. Now we choaose

. : l-a.)(z—a, ey
(4) t(z) = H—J—(l_ T aj,b; € D

and evaluate the left side of (1)

Laf) = [ K I -8 )2

ra

by the Residue Theorem. The nght side denoted by R,(f,) in the sequel can be
computed in many cases by use of the orthogonality of the tngonometric functions.
As the last step let r — 1. Naturally any of the inequalities got in this way is sharp
for the functions (2) for any choice of aj, bj. At the end of the considerations one may

]
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choose special values for the parameters or conaider the whole variety. We give some
examples for this procedure.

> o0
Corollary 1. Let K > 0 and f(3) = ). exs* € C(K). Fora € D\ {0} and any
k=m0
b € D the inequality

a—b
a

®. Klf@a-leha-t o] <14 B - 2Res

is valid. Fuqality is attasned if f is of the form (2).

Proof. We take
(s) = (1-8z)(z - b)
(1—az)(z —a)
and evaluate
Lalf) = Kle f(a)1 = o)1 = 30) 22 4 rer

and

Ra(fe) =148 —2Rerb:—: .
The limiting process r — 1 delivers (5).

Remark 3. Fuor fixed values of ¢,¢3 and § (5) describes a disc D(b), wherein
f'(8) can be situated, so f’(a) has to lie in the intersection of the discs D(b) , b € D
, for fixed ¢; and ej.

Now we choose spedal values for b :

Corollary 2. Let K >0, f € (:'(K). Then for each a € D
(6) K|f'(@|(t=la) < 1.

Equality occurs for functions of the form (2). .

Corollary 2 is an immediate consequence of (5) with 8 = 0 and was proved by
Goodman in [2] by means of an area theorem.

Corollary 3. Let K > 0 and f(z) = E enz* € C(K) . Then
o 1

2
M 12 < 1-Klal -
€1
Equality occurs for any function of type (2).
Proof. Let b= a ip (5) and choose a € D \ {0} such that a? 2> 0. Then (5)
implies ' ;

(8) F!'I( 1+ |af? = K]ey)

ol S %a] = F(lal) .
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If1- Kja|>0, o-&iﬁur(lcl) = F(/1-Kla|) = V1 -Kle1| .

K 1- Kje| =0, F(|a]) = |a|/2 80 that (8) implies [ea/e;)| = 0. Inequality (7) was
conjectured by Goodman for f € CV (R;, R3) (see [1]) but in fact proved eadier by
Raupach ([5]) using a method due to Peschl (see [4]). In [6] a proof of (7) may
be found which is based on a minimnm principle for locally univalent functions. We
want to prove at this place that this inequality may serve to characterize C(K) as the
‘linear invariant” family which fulfills (7):

ao

Theorem 3. Let K> 0. f(z) = Y eaz* € C(K) if and oniy if

k=0
i) f(l'_-:z)EO(K) foranya €D

i) lea/er]? < 1=Kley| .

Proof. One direction of the proof is an immediate consequence of Corallary 3
and the geometric meaning of Definition 1. The other direction is proved as follows:

Let X
() =L o .
(1 1]

Then according to i) and ii)

Ca(a))?
G| <1- Ko
This implies
Lt L@y 1 @ s
[f'(a)} Re(l+ f'(c)) i) | (e | (1-laf)2 K.
Hence

lﬁ!'m:f &/(a) 2 K

(compare [5] and [6]).
As an example involving Taylor coefficients of higher order we prove:'

Corollary 4. LetK >0, n 2 2, f(.):é0 exs® € C(K), l+z[);l(§=§:oEu"
anda = \/1— Kle,|. Then
) ch. —§n~1enja® +ncpa-L(n+ 1)¢n+l| <
S1+44d'—aReE, - }(1+a®) ReEn + }a Re(En-y + Ent1) -
E‘;uality occurs for all functions of type (2) uitha € [0, 1).

Proof. Take t(z) =1- }(z"+:7")

Remark 4. Inequalities of type (9) seem to be typical for the application of
Theorem 1. Since Goodman proved in [1] and [2] that the sharp bound for |ex| in
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]

general is not attained for functions of type (2), it is clear that cne cannot get the
full information about the coefficient problem in this way. Nevertheless it may be
worthwhile to try to get a good approxdmation varying the functions (4). We leave
this for further investigations, since our aim in this paper was only to give an outline
of the method.
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STRESZCZENIE
Niech K > 0 i mech f bydsie funkcjy regularns, lolainie jednalistng w kole jednostkowym D.
Méwimy, 30 f naleiy do klassy C(K') funkcji o ogramcaanej wypukioda, jedli hlnlm:f Ky(2) 2 K,
|—
gduie £7(3) omnacsa krsywisne w punkce f(z) warstwicy w0 = f(lzle“) ,0< 0 < 2x.
o0
Dia funkdi f(2) = L eas* Kasy C(K) antor otrayrmuje pewna mieréwnodé catkows (tw.1),
h=0

ktéra ma saereg interesujacych konsekwencji. Wylkasano min., #e rodsing O(K) moina scharaktery-
sowaé jako rodsing liniowo niesmiennicss funkcji speiniajacych maréwnodé [ea/fey |2 € 1 — Kleq|.
4

SUMMARY

Suppose X > 0 and let f be regular and locally umvalent in the unit disk D. The function
f is said to balang to the dass C{K) of functions of bounded convexity, u!ﬁm:f xs(z) 2 K,
5|—
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where & ¢(z) denotes the curvature at f(z) of the level Line w = f{|[¢'’) ,0 < 0 < 2w,
20
For f(z) = Z c.:“ in C(K) an integrai nequality (Thm 1) has been derived and some
k=m0
interesting consequences are given. E.g the dass C(K') can be characterized as the lineady invanans

. family of functions satisfying |c,/c.|’ < 1- Kleyl.
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