ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA
 LUBLIN-POLONIA

Inotytut Mhearntybio
Unimaseytet Mazii Cuno-Sidodonitiog

2. RADZISZEWSKI

Geometrical Interpretation of the Frame Field dong a Curve in the Space $P(p, q)$

Interpretacja geometrycana pola reperów wadłuz kaywej w prestrzeni $P(p, g)$

In (5) we have constracted a linear orthonormai frame field along a curve ir: the space $P(p, q)$ of p-dimensional planes in the $(p+q)$-dimensional euclidean spane $E p+q$. The aim of the present paper is to prove some properties of vector fields of the constructed linear frame field and to give a geometrical interpretation of the striction line of a curve in $P(p, q)$.

Let ns recall the thearem abont the frame field along a curve in $P(p, q)$ and the definition of the striction line that are contained in $\$ 5 j$.

Theorem 1. Given an admissibie oriented parametrized curve (a.o.p.c.) I in $P(p, q)$

$$
\Sigma: t \rightarrow\left[Y(t):\left(\lambda^{\prime}\right) \rightarrow x(t)+\lambda^{i} e_{i}(t)\right] . \quad i=1, \ldots, p
$$

that is assumed to be neither r-cylindric for any $r=1, \ldots, p-1$ nor orthogonally - cylindric for any $=1, \ldots, q-1$.
($\mathrm{T}, 1$) There exists a linear orthonormal frame field in E^{p+q}

$$
A(0)=\left[a_{1}(0), \ldots, a_{q}(0), c_{1}(0), \ldots, \epsilon_{p}(0), x(0)\right]
$$

such that a parametrized curve (p.c.)

$$
\bar{\Sigma}: \theta \rightarrow\left[\bar{Y}(\theta):\left(\lambda^{\prime}\right) \rightarrow \varepsilon(\theta)+\lambda^{\prime} \varepsilon_{i}(\theta)\right]
$$

and Σ determine the same curve $[\bar{\Sigma}]=[\Sigma]$ in $P(p, q)$.
($\mathrm{T}, 2$)
$e_{1}:=e_{0}$ - the orienting directional vector of Σ
$d_{1}:=\omega_{0}$ - the normal orienting directional vector of Σ
$\epsilon_{2}:=\left[\left(\dot{c}_{1}\right)^{2}-\left(\dot{c}_{1}, a_{1}\right)^{2}\right]^{-1 / 3}\left(\dot{c}_{1}-\left(\dot{c}_{1}, a_{1}\right) \dot{c}_{1}\right)$
$\dot{a}_{2}:=\left[\left(\dot{a}_{1}\right)^{2}-\left(\dot{a}_{1}, \dot{b}_{1}\right)^{2}\right]^{-1 / 2}\left(\dot{a}_{1}-\left(\dot{a}_{1}, \dot{\varepsilon}_{1}\right) \dot{c}_{1}\right)$

$\varepsilon_{a}:=\left[\left(\dot{a}_{a-1}\right)^{2}-\left(\dot{a}_{a-1}, a_{a-2}\right)^{2}\right]^{-1 / 2}\left(\dot{a}_{\alpha-1}-\left(\dot{a}_{\alpha-1}, a_{a-2}\right) a_{a-2}\right), a_{a}=3, \ldots, q$
E is the only generating line of Σ that satisfies

$$
\begin{align*}
& \left(a_{1}, d x\right)=0 \tag{1}\\
& \left(c_{r}, d x\right)=0 \quad \text { ior } 1 \leq p<p
\end{align*}
$$

$(T, 3)$ The equations of the linear orthonormal frame field \bar{A} are of the form

$$
\begin{array}{ll}
\dot{c}_{1}=a_{1}+F_{1}^{2} c_{2} \\
\dot{c}_{k}=F_{k}^{k-1} d_{k-1}+F_{k}^{k+1} c_{k+1}, & k=2, \ldots, p-1 \\
\dot{c}_{p}=F_{p}^{p-1} c_{p-1} & , \quad F_{k}^{k+1}=-F_{k+1}^{k} \\
\dot{\mathrm{a}}_{1}=-c_{1}+f_{1}^{2} d_{2} \\
\dot{\mathrm{a}}_{\beta}=f_{\beta}^{\beta-1} a_{\beta-1}+f^{\theta+1} a_{\rho+1} & , \quad \beta=2, \ldots, q-1 \\
\dot{a}_{q}=f_{q}^{q-1} a_{q-1} & \quad, \quad f_{\beta}^{\beta+1}=-j_{\beta+1}^{\beta} \tag{a}
\end{array}
$$

$$
\begin{align*}
& \dot{i}=f^{a} c_{c}+F c_{p} \quad, \quad a=2, \ldots, g \tag{x}\\
& \left(\dot{x}=F c_{p} \quad \text { when } \quad g=1\right)
\end{align*}
$$

where the parametrization $\bar{\Sigma}$ of $[\Sigma]$ has the property

$$
\begin{equation*}
\left(\dot{c}_{1}, d_{1}\right):=\left(\frac{d c_{1}}{d_{0}}, a_{1}\right)=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{array}{ll}
F_{i}^{i+1}(0)>0 & \text { for } i=1, \ldots, p-2 \\
f_{\gamma}^{7+1}(0)>0 & \text { for } \gamma=1, \ldots, q-2
\end{array}
$$

Definition 1. The vector fields ϵ_{i} and $\boldsymbol{\epsilon}_{a}$ in $(T, 2)$ are called the i-th directional vector of Σ and the or-th normal directional vector of Σ respectively. The only generating line of Σ that satisfies (1) is calied the striction line of Σ or of $[\Sigma]$.

Let $[\Sigma$] be a curve in $P(p, q)$ given with the aid of an aa.p.c.

$$
\begin{equation*}
\Sigma: 0 \rightarrow\left[Y(0):\left(\lambda^{i}\right) \rightarrow z(0)+\lambda^{i} \varepsilon_{i}(0)\right] \tag{4}
\end{equation*}
$$

that satisfies the assumptions of Theorem 1, where, in advance, c_{i} and I are the vectors and the atriction line determined for Σ by $(T, 2)$ and the parametrization Σ of $[\Sigma \mid$ has the property (3).

Let us consider the sequence of carves $\left\{\left|\Sigma_{k}\right|\right\}$ given by the sequence of p.c. $\left\{\Sigma_{k}\right\}$, ($b=0, \ldots, p$) defined as follows
a) $\Sigma_{k}: \bullet \rightarrow\left[Y_{k}(0):\left(\lambda^{k+1}, \ldots, \lambda^{p}\right) \rightarrow z(0)+\lambda^{k+i} z_{k+i}(0)\right]$ when $k=0, \ldots, p-1 \quad\left(\Sigma_{k}\right.$ is a p.c. in $\left.P(p-k, q+k)\right)$
b) $\Sigma_{p}: a \rightarrow z(s)$
when $k=P$
(Σ_{p} is a carve in E^{p+q})

From the equations (2)(e) it follows that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{lin}\left(c_{n+1}, \ldots, c_{p}, \dot{c}_{n+1}, \ldots, \dot{c}_{p}\right)\right)=p-k+1 \tag{6}
\end{equation*}
$$

i.e. Σ_{k} is admissible for $k=0, \ldots, p-1$.

Moreover

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{lin}\left(e_{k+1}, \ldots, e_{p}, i_{k+2}, \ldots, i_{p}\right)\right)=p-k \tag{7}
\end{equation*}
$$

50

$$
\begin{equation*}
z_{k+1}:=e_{.}^{k} \tag{8}
\end{equation*}
$$

is the 1-th directional vector of $\Sigma_{k},(k=0, \ldots, p-1)$. It can be assumer that e_{k+1} is the 1-th orienting directional vector of Σ_{k}. From (2)(e) and (2)(a) it follows that the 1 -th normal directional orienting vector a_{*}^{k} of Σ_{k} is of the form

$$
a_{*}^{k}= \begin{cases}e_{k}, & k=1, \ldots, p-1 \tag{9}\\ a_{1}, & k=0\end{cases}
$$

The formulas ($\mathrm{T}, 2$) for Σ_{k} take a form

$$
\begin{align*}
& e_{1}^{k}=e_{*}^{k}=e_{k+1} \tag{10}\\
& e_{1}^{k}=a_{c}^{k}= \begin{cases}e_{k}, & k=1, \ldots, p-1 \\
a_{1}, & k=0\end{cases} \\
& e_{2}^{k}=e_{k+2} \\
& e_{j}^{k}=e_{k+j}, j=3, \ldots, p-k \\
& a_{2}^{k}= \begin{cases}a_{2} & , k=0 \\
a_{1} & , k=1 \\
e_{k-1}, & k=2, \ldots, p-1\end{cases} \\
& a_{\theta}^{k}=\left\{\begin{array}{ll}
a_{\theta-k} & , \beta>k \\
e_{k-\beta+1} & , \beta \leq k
\end{array}, \beta=3, \ldots, q+k\right.
\end{align*}
$$

From the above formolas it follows that each p.c. $\Sigma_{k}, k=0, \ldots, p-1$, is neither reylindric nor orthogonally ocylindric for any r and θ.

Then we have obtained
Theorem 2. If Σ is an a.o.p.c. in $P(p, q)$ that satisfies the assumptions of Theorem 1 and $\varepsilon_{1}, \ldots, c_{p}$ are succeeding directional vectors of Σ and a_{1}, \ldots, a_{q} are succeeding normal directional vectors of Σ then each p.c. Σ_{k} is also an a.o.p.c. that satisfies the assumptions of Theorem 1 and E_{k+1}, \ldots, c_{p} are succeeding directional vectors of Σ_{k} and $\bar{E}_{k}, \bar{c}_{k-1}, \ldots, \bar{\epsilon}_{1}, \bar{a}_{1}, \ldots, \bar{a}_{q}$ are succeeding normal directional vectors of Σ_{k}.

We shall prove a certain property of the sequence $\left\{\left[\Sigma_{k}\right]\right\}$, that will explain a geometrical sense of the striction line of [$\Sigma]$.

Let us introdece the following notation. If 0 is a vector in E^{p+q}, then

$$
\begin{equation*}
v^{o k(o)}:=v-\sum_{i_{k}=k+1}^{p}\left(v, z_{i_{k}}(s)\right) z_{i_{k}}(o) \tag{11}
\end{equation*}
$$

It is easy to verify that

$$
\begin{equation*}
\lim _{h \rightarrow 0}\left(v(s+h)^{o k(o+h)}\right)=v(\theta)^{o k(\theta)} \text {, where } \theta \rightarrow v(s) \text { is a vector field } \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla^{o k(o)}, \nabla^{\circ}\right)=\left(v^{o k(\theta)}, \nabla^{o k(\theta)}\right) \tag{13}
\end{equation*}
$$

Let $\Sigma_{k}: \theta \rightarrow\left[Y_{k}(s)\right]$ be the k-th ao.p.c. of the sequence $\left\{\Sigma_{k}\right\}$.
Let

$$
\begin{equation*}
y_{0}=x(0)+\sum_{i_{k}=k+1}^{p} \lambda^{i_{k}} e_{i_{k}}(0) \tag{14}
\end{equation*}
$$

be an arbitrary point of the plane $\left[Y_{k}(s)\right]$ for which there exists a point $y_{1} \in\left[Y_{k}(0+h)\right]$, such that

$$
\left|y_{1}-y_{0}\right|=\operatorname{dist}\left(\left[Y_{k}(\theta),\left[Y_{k}(0+k)\right]\right) .\right.
$$

It is obvious that the vector $y_{1}-y_{0}$ is perpendicular to both of $\left[Y_{k}(0)\right]$ and $\left[Y_{k}(\bullet+h)\right]$. Then for any point

$$
\begin{equation*}
y_{2}=x(0+h)+\sum_{i_{k}} \mu^{i_{k}} \varepsilon_{i_{k}}(0+h) \in\left[Y_{k}(0+h)\right] \tag{15}
\end{equation*}
$$

the vector $\left(y_{2}-y_{0}\right)^{o k(0+h)}$ is perpendicular to both of $\left[Y_{k}(0)\right]$ and $\left[Y_{k}(0+h)\right]$, i.e.

$$
\begin{equation*}
\left(\left(y_{2}-y_{0}\right)^{o k(o+h)} \cdot c_{j_{k}}(0)\right)=0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left(y_{2}-y_{0}\right)^{o k(o+h)}, c_{j_{k}}(0+h)\right\}=0 \quad \text { for } j_{k}=k+1, \ldots, p \tag{17}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\left(\left(y_{z}-y_{0}\right)^{o k(0+h)}, \varepsilon_{j_{k}}(0+h)-\varepsilon_{j_{k}}(\theta)\right)=0 \tag{18}
\end{equation*}
$$

The last equality can be written down iu the form

$$
\begin{equation*}
\left(\left(x(0+h)-x(\theta)+\sum_{i_{k}} \lambda^{i_{k}}\left(\bar{e}_{i_{k}}(0+h)-e_{i_{k}}(0)\right)\right)^{o k(0+h)}, \bar{c}_{j_{k}}(0+h)-e_{j_{k}}(0)\right)=0 \tag{19}
\end{equation*}
$$

We have obtained the system of equations on $\lambda^{i_{k}}, i_{k}=k+1, \ldots, p$. The solutions of (19) determine by (14) the admissible positions of y_{0} on $\left[Y_{k}(0)\right]$ for fixed $\left[Y_{k}(0+h)\right]$. Let us compute the values of $\lambda^{i k}$ when $h \rightarrow 0$. We have

$$
\begin{gather*}
\lim _{h \rightarrow 0}\left(\left(\frac{1}{h}(z(\theta+h)-x(s))+\sum_{i_{k}} \lambda^{i_{k}} \frac{1}{h}\left(\varepsilon_{i_{k}}(\theta+h)-\varepsilon_{i_{k}}(s)\right)\right)^{o k(o+h)},\right. \tag{20}\\
\left.\frac{1}{h}\left(\varepsilon_{j_{k}}(0+h)-c_{j_{k}}(o)\right)\right)=0 .
\end{gather*}
$$

In virtue of (12), (20) takes a form

$$
\begin{equation*}
\left(\left(\dot{i}(0)+\sum_{i_{k}} \lambda^{i_{k}} \dot{\varepsilon}_{i_{k}}(0)\right)^{o k(0)}, \dot{c}_{j_{k}}(0)\right)=0 \tag{21}
\end{equation*}
$$

Then in virtue of (13), (21) takes a form

$$
\begin{equation*}
\left(\dot{\dot{x}}^{o k}, \dot{c}_{j_{k}}^{o k}\right)+\sum_{i_{k}} \lambda^{i_{k}}\left(\dot{c}_{i_{k}}^{o k}, \dot{c}_{j_{k}}^{o k}\right)=0 \quad, \quad k=0, \ldots, p-1, j_{k}=k+1 \ldots, p . \tag{22}
\end{equation*}
$$

Using (2)(e)(a)(x) we compute coefficients of the above system of equations, and obtain

$$
\left\{\begin{align*}
\lambda^{k+1} G_{n+1}=0 & \text { (the } \left.1-t h \text { equation, i.e. } j_{k}=k+1\right) \tag{23}\\
0=0 & \text { (the next equations, i.e. } \left.j_{k}>k+1\right)
\end{align*}\right.
$$

where

$$
G_{k+1}= \begin{cases}1 & , k=0 \\ \left(F_{k+1}^{k}\right)^{2} & , k>0\end{cases}
$$

The solution of (23) is of the form

$$
\begin{equation*}
\lambda^{k+1}=0, \quad \lambda^{k+2} \ldots \ldots \lambda^{p} \text { - arbitrary }, \tag{24}
\end{equation*}
$$

so the set of all considered points $\eta_{0} \in\left[Y_{k}(0)\right]$ coincides with the plane $\left[Y_{k+1}(o)\right]$.
We have obtained the following theorem that gives the geometrical inerpretation of the striction line.

Theorem 3. Given an a.o.p.c. E, that satisfies the assumptions of Theorem 1. The set of all points so of the plane $\left[Y_{k}(0)\right]$ of the a.o.p.e. $\Sigma_{k} k=0, \ldots, p-1$; for which there exists a poins η_{1} of the approaching plane $\left[Y_{k}(0+h)\right](h \rightarrow 0)$ such that $\left|y_{0}-y_{1}\right|=\operatorname{dist}\left(\left[Y_{k}(0)\right],\left[Y_{k}(0+h)\right]\right)$
a) coincides with the plane $\left[Y_{k+1}(0)\right]$ of the a.o.p.c. Σ_{k+1} when $k<p-1$
b) contains exactly one point and it is a point $£(0)$ of the striction line of $[\Sigma]$ when $k=p-1$.

The above theorem explains, that a notion of the striction line of a curve in $P(p, q)$ is the simple generalization of a notion of the striction line of a raled surface
in E^{3} understood as a curve in $P(1,2)$. (see [6] or [4]). The following corollary is a consequence of Thearem 3.

Corollary. The striction line of a curve $[\Sigma]$ is simmltaneously the striction line of each curve $\left[\Sigma_{k}\right](k=0, \ldots, p-1)$ of the sequence defined for $[\Sigma]$ by (5).

A curve in $P(p, q)$ can be considered as a surface in P^{p+q}. Let us introduce the following definition.

Definition 2. A surface $S \mid \Sigma]$ of a curve $\left[\Sigma \mid\right.$ in $P(P, q)$ is a set in p^{p+1} that consists of all points of all planes of [$\Sigma]$.

When $\Sigma: t \rightarrow\left[Y(t):\left(\lambda^{i}\right) \rightarrow \Sigma(t)+\lambda^{i} e_{i}(t)\right]$ is a p.c. in $P(p, q)$ then

$$
\begin{align*}
S \Sigma: R^{p+1} & \rightarrow E^{p+q} \tag{24}\\
\left(t, \lambda^{1}, \ldots, \lambda^{p}\right) & \rightarrow \Sigma\left(t, \lambda^{1}, \ldots, \lambda^{p}\right)=\Sigma(t)+\lambda^{\gamma} \psi(t)
\end{align*}
$$

is a parametrization of the surface $S|\Sigma|$ of the corve $|\Sigma|$. We shall prove the following theorem.

Theorem 4. The surface $S\left[\Sigma_{k+1}\right]$ of the curve $\left[\Sigma_{k+1}\right]$ of the sequence (5) is the set of singularities of the surface $S\left|\Sigma_{k}\right|$ of the curve $\left|\Sigma_{k}\right|$ for $k=0, \ldots, p-2$. The strietion line z of Σ is the set of singularities of the surface $S\left|\Sigma_{p-1}\right|$.

Proof. Let us consider the parametrization

$$
S \Sigma_{k}:\left(0, \lambda^{k+1}, \ldots, \lambda^{p}\right) \rightarrow y\left(0, \lambda^{k+1}, \ldots, \lambda^{p}\right)=s(0)+\sum_{i_{k}=k+1}^{p} \lambda^{i_{k}} \epsilon_{i_{k}}(0)
$$

of $S\left[\Sigma_{k}\right]$. A tangent space of $S\left[\Sigma_{h}\right]$ is spanned by vectors

$$
\begin{align*}
& \frac{\partial S \Sigma_{k}}{\partial s}=\dot{i}+\sum_{i_{k}}=\sum_{k+1}^{p} \lambda^{i_{k}} \dot{i}_{i_{k}} \tag{25}\\
& \frac{\partial S \Sigma_{k}}{\partial j_{i k}}=\varepsilon_{j k} \quad, \quad j_{k}=k+1, \ldots, p .
\end{align*}
$$

Then

$$
\begin{equation*}
\dot{i}^{o k}+\sum_{i k} \lambda^{i k}\left(\dot{i}_{i k}\right)^{\alpha k}=0 \quad(\sec (11)) \tag{26}
\end{equation*}
$$

is an equation on singularities of $S\left[\Sigma_{k}\right]$. The above vectorial equation is equivalent to the following system of scalar equations

$$
\begin{equation*}
\left(\dot{z}^{\circ k}, \dot{c}_{j_{k}}{ }^{o k}\right)+\sum_{i_{k}} \lambda^{i_{k}}\left(\dot{c}_{i_{k}}{ }^{o k}, \dot{c}_{j_{k}}{ }^{o k}\right)=0 \tag{27}
\end{equation*}
$$

that is similar to (22).

REFERENCES

[1] Bereaina, L. Straight line-plane manijolde in E_{n}, Itv. Vyus. Ucebr. Zaved. Maternatilon, \& (111) (1971) 11-15, (in Funsaian).
[2] Lumiste, Yu. . Mfultidimensional raled rabspaces of esclidean space, Mas. Sb., 35(97) (1961), il1-420, (in Russian).
[3] Radziesowaki, K. , Specialszasion of oframe and its geometricai inserpretation, An几. Polon Math, XXXV (1978), 229-246.
[4] Radziszowski, Z. Specialization of a frame along a carve in the spnce $P(p, q)$ of p dimensional planes in the $p+q$-dimenoional esclidean space p^{p+q}. Thesis, Maria CurieSidodowita Universisy, Lublin, 1983.
[5] Radsiszewski, Z. , The frame field along a curve in the space $P(p, q)$ of p-dimensionai planes in the $p+q$-dimensional euclidean space, Ann. Univ. Mariao Curie-Sldodowita Sect. A, 39 (1985).
[6] Sčerbakow, R.N., Reled differensial geometry of threodimensional space, Itogi Nauioi-Seriya Matematila (1965), 265-321, (in Ruesian).

STRESZCZENIE

W pracy [5] shonatruowaro pole ortonommainych reperów liniowych wadtus krywof w prieetrzeni $P(p, q)$ ptaszcayzn p-wymiarowych $w(p+q)$-wymiarowej prreatrmeni ouldidesomej. W miniejazej pracy przedstawiany powne wtannóá wektonów otrzymanego pols reperów i wyainiamy sens geometryczay pojpás linii atrylbai lazywej w $P(p, q)$.

SUMMARY

In [5] the linear orthonomal frame field along a curve in the apece $P(p, q)$ of p-dimenionai planes in the $(p+q)$-diroensional eudidean epace has been constructed. In this paper sorm properties of vector fields of the constructed frame rield are presented and a geomotrical interpretation of the atriction line of a curve in $P(p, q)$ is given.

