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«■—Projective Curvature Tfensors 

x-projektywne tensory krzywizny

1. Introduction. Let Vj" be an »-dimensional space with, a linear connection T 
riven with the aid of components I*’k in each local map U co a differentiable manifold 
V„. Let ns consider a fixed differentiate tensor Reid x of the type (0,2) on V„. It 
will be called non-singular if there exists an atlas A on V„ such that det(x,,) / 0 in 
each local cart of A.

K.Radziszewski introduced [7] following notions:
A vector field w‘ is called x-geodesic if

V *(xu«a)«* = Ax<«»a

where V* denotes the covariant derivative with respect to the connection T. 
Integral curve of x-geodesic vector fields is called x-geodesic.
K-Radziszewski obtained the differential equations of x-geodesics in the form

+ (V*x„x»" +1”*,) — — = A —
it di it

where A = A(x*), and xp* is defined by xp,xp< = These equations show that 
x-geodesics in a space are geodesics in ordinary sence in the space V„, where 
connection G is given by

(i-i) <4. = r’*. + (Vtxp.)x>.

In [7] some theorems concerning tensor x or tensors x and x are proved such that 
x-geodesics be geodesics in ordinary sence or such that x- geodesics and x-geodesics 
are the same curves in Vn. A. Bucki [2] considered x— geodesics with respect to the 
third and fourth fundamental tensors of hypersurfaces.

The object of the present paper is the investigation of the x-projective transfor­
mations.

In §2 we find a change of I* t which does not change the system of x- geodesics 
and define x-projective transformation of T.
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Supposing that the connection T is symmetric and that the tensor * is sym­
metric and satisfies the condition (2.4), we find in §3 the first and in §4 the second 
«-projective curvature tensor. In §5 we discuss the case of Riemannian space whose 
«-projective curvature tensor vanishes.

2. «-projective transformations. We have to find a change of F which does not 
change the system of «•-geodesics. We have seen in §1 that «-geodesic is a geodesic in 
ordinary sence with respect to the connection (1.1). Assuming that G*t, is asymmetric 
connection, a change of G‘A, which does not change the system ctf geodesics is given
by

(2.1) T*f = <?k, + (¡irf, + ,

where is an arbitrary covector field. As for n. it is also symmetric connection 
and must determine «-geodesics too, i.e. it must have the form

(2.2) M n. = r*.+(vfc«p.)F*.

We have from (2.2) and (1.1)

I*. ~ ~

Gi. = ^r** = rSp»..^-

Therefore
I*. - ci, = -(Hp - rip)»..** •

Transvecting this equation with »<>«** , we find

-r*/ +r*y = (F*. - Gi,)»i/«*‘ 

from which, using (2.1), we obtain

(2.3) rl,=riy-«^.«’‘-^i;.

Conversely, let us suppose that (2.3) holds good. We then can express the con­
nection

i"*«=r;<+ (?*«„,)«*

in the form
+ (^*»p<)»* + iMj + .

This showB that the space V& and V\ where

ri,=r*, + (V*«pt)«* and Git=rit + (V*«pt)«*

have the same geodesics, or, equivalently, that the spaces and V? have the same 
«-geodesics.
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Thus we have

Theorem. Condition (2.3) where ii>* is an arbitrary eoveetor field, ii necessary 
and sufficient for the spaces and to have the same x-geodesics.

Definition . A change (2.3) is called x- projective transformation.

In the above consideration we have supposed that both connections G and F are 
symmetric. In the suite, we supoose that the connection PjJk and the tensor field x<y 
are symmetric too. The symmetry of the connections T and G implies the following 
condition

(2.4) V*jr0 - = 0 .

3. First »-projective curvature tensor. Let us compute the curvature tensor 
ofF*.:

p* - 4. F* F^ - F* F*

By straightforward computation we find

(3.1) Rhkj = J?fcjty + (VyX** — V*ry*)i**tP» + ¿t(Vy^fc - V*^y)+

+ xy*[jr°’V*lfr. ~ V*(^,x")] - <**[»“’ifry^a - Vy(^,x")] ,

where R^ are the components of the curvature tensor of the connection Tyt. Thking 
account of (2.4), we rewrite (3.1) in the form

(3-2) Rfdtj — ^kk} + *kh?j

where we have put

(3.3.) V>y* = Vy^t - V*fy , fll = i“^.-V*(^.i*’)

Contracting (3.2) with respect to» and r we get

(3.4) Ratj — R^kj + n <py* + Xyo0J “ »ta^y •

On the other hand, from
x xJ0 — Oj

we have
^(V*X-)xy. = X-(V*Xy.) .

We then obtain

«■,«0* = +k4j ~ Vktj ~ = Mi ~ V„i>j + ^.(V*Xyo)x* .

Consequently

»,«** - *ka*y = Vy^fc - V k1>j + iM’“(Vt*,a - VyXfc«)
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or using (2.4) and (3.3)
*jo&k ~ ^katf — 'fijk • 

Substituting this into (3.4), we find

(3-5) f>jk = ~ Rakj) •

Contracting (3.2) with respect to« and / , we get

(3-6) . ^kk = Rhk + f>kk + *0*0* - ***0? ■

where
Rkk = Rhlca 1 Rkk — Rhka •

Tensor ¡fihk being skew-symmetric and tensor ikk symmetric, we have <Phk*hk = 0. 
Thus, transvecting (3.6) with xAi, we find

tfa« = -J_(i»X*-iO6Bo») .
n — l

Substituting this and (3.5) into (3.6) and then transvecting with r,A we obtain

(3.7) ^Rab-^Rat+JL- i">R.b----i_ *“(7^-^).
n — 1 n — 1 n + 1

Taking account of (3.7) and (3.5), we can write (3.2) in the form

- *,*(*”£,* - —-^Rak - 777*^^**)+

+ *** (itaRa, - - —7^) =

= Riki ~ ~ ^(i^Rak ~ --^Rak ~ -~iibKkk)+

+ ***(*“*., - jr^**«* - •

Therefore, the tensor

(3.8) - -£•«*, " +

+ ***(iiaH«, - ^77^*a‘^* "

is invariant under a r-projective change (2.3).
We call the tensor (3.8) the first jt-projective curvature tensor.

4. The second »--projective curvature tensor. Although condition Py* is symmet­
ric, connection (2.3) is not. Denoting by V the operator of covariant differentiation 

with respect to fy*, we define the second one by the equation
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where X and i’ are arbitrary vector Adds. Then we can prove ((5], [6]) the existence 
of four curvature tensors:

R(X,Y)Z =VxVyZ -^y^xZ »

R(X.Y)Z = VXVYZ -Vy^xZ -V[x,Y]Z ,

-R(X,Y)Z^x^yZ-^XZ + ^yXZ-^xYZ ,
R(X,Y)Z = Vx^yZ- VYVXZ + V?YxZ - V?xyZ ,

In the coordinate system of a local map of V„, these tensors have the components 
as fallows:

+’»A" r»1“ ■

+r-r» - I«r“+,w'- - r‘-> •

+r*-r‘- - r«r“+(r-‘

The tensor appearing in §2 is, in fact, tensor -Rk*y. We shall show in this 

paragraph that we can construct, using the tensor R the new »—projective curvature 
tensor.

In fact, taking account of (2.4) we can easily verify that

^Uy = *i*y + ***(Vy(»"*,) - »"‘tfr.^y] - *yk[V*(»Mtfr.) - »a,^«*t]+

+ “ ^(V*^J + + **k**P^»1>),

or

(4.1) l?hkj = JrMj - tu?, + »,*#* + - f'jfikk,

where, as in §3, we have put

#’=»«^#-Vi(^»«),

, are the components of the curvature tensor of the connection r* t , and

(4.2) 3,k = Vyrfrk + + »yk»“M. •

Contracting (4.1) with respect tot and ;, we have

- Rhh - *kh»aa + **<»** + 3k* - " 3*k •(4.3)



128 M. Prvanovjc

On the other hand, contracting (4.1) with respect to i and r, we And 

(4-4) Sj*/ = + * #,* — A, •

Transvecting (4.3) with r** and (4.4) with r*J , we get i

- («-1)*; - (» - i)far*,

i^abe = (« ~ •

Adding the last two equations, we obtain

#: = +^,3

where we have put

(4.5)

R' = «•»«(n-1)

Substituting into (4.3), we have

(4-5) Rkka ~ Rhk + »** (-S’ + U*) - + &* “ » 3**

I

On the other hand, transvecting (4.1) with and taking into account that the 
tensor R?hki is skew-symmetric with respect to k and /, we find 

(4-7) ?*«*»“ = fa i“4 - iiafa ,

from which, contracting with respect to» and r, we get

r'fa = —SLr*‘
(»-!)»

Substituting this into (4.7), we obtain

or

(4-8) fa = -*rffi#4Sa^ + -—»/*»•*$.* •
3 fl — 1 3

Substituting into (4.6), we find

- ^hka + rW*°4Sfco4 “ ” ~ ^r** “ (^** ~ &*hk)
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where we have put

Transvecting the preceding equation with «*' , we obtain

(4.9) n = i“Eta + «“‘PU* - n «td“i"£?ol - EP* - («“P,* - .

Substituting (4.8) and (4.9) into (4.1), we And

f At, + + *a4$a6 " » ^«**‘'**‘‘^'«6 ~

- *iA(*i*^*a + t^R'kab - » »»rf»-*«“®?«» - P^)-

- + TZY*04^«*) + iy(-’r<<*i<,4^A«4 + 7Zi*‘4^a6) =

= R^, + *„>(** - R'tf) - *ik{i*R», - R'6i) •
Thus, the tensor on the left hand side is invariant under «-projective change

(2.3). We call it the second «-projective curvature tensor and denote it by 
Therefore, we have

(4.10) Pl*, = PJ.*, + «**(i«P»y -R^)- ijh(i«P** - tfij) •

Remark . We may use, instead of and ^hkj the tensors P***,- and P**,. 

In that case, we have to use instead of operator V the operator V and proceeding in 
a similar manner as in §2, we And

Fl,.=ri,-«*,^«“-^i

instead of (2.3). By straightforward computation we obtain

Comparing to (3.1), we see at once that the tensor P leads to the Arst «-projective 

curvature tensor In the similar manner, starting from P, w get P^ty

5. Riemannian space whose «-projective curvature tensor vanishes. We shall 
now consider the case when is a Riemannian space, i.e. when T’* are Christaffel 
symbols with respect to metric tensor of the Riemannian space. Denoting by P**, 
the components of Riemannian curvature tensor, we have

R*hk} — Kkkj » R-akj — 0 •

Thus we have

f**y = -P’A*y.= ^!*y = + »**(***»y - RSÜ ~ - Rfy
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where we have put

R = ,» - 1
and A'i,- is the Ried tensor of a Riemannian space. ,

It is easily to see that the tensor is skew-symmetric with respect to k and
/ and satisfies the conditions

Rhkj + Rkjk + /y** = 0 , Pak„ = 0 .

If the Rica tensor of a Riemannian space satisfies the condition 

(5.1) V*K„ - V,Kk, = 0 ,

then we can choose = Kij. In that case the tensor P reduces to the form

rkk, = - ¡M •

The condition (5.1) being equivalent with the condition 

(5-2) VaK°hkj = 0 ,

we have

, Theorem . For the Riemannian space satisfying the condition (5.2) tensor P^ 
with respect to the Ricci tensor reduces to the ordinary projective curvature tensor.

Now we suppose that this jr-projective curvature tensor vanishes. Then we have 

K'hk] = ^kj^Kkk -RPk)- -Rfy,

• or, raising the indice« ,

(5.3) Kihkj — *hjSik ~ *hk&ij ,

where we have put
<5>* = giai^Kki, - Rgik .

The tensor Kihkj being skew-symmetric in » and r, we find 

*kjSik ~ *khSjj + *ijShk ~ *kiShj = 0 .

Transvecting this with ih) , we get

Sik = Sitik where S = -Sasiah • 
ft

This means that (5.3) reduces to

(5-4) Kihkj = S(xhj*ik - *kk*ij) •
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Conversely, if (5.4) is satisfied, we have

R = = ~St„9”

Si* = Sft.i4* (j’”+ SjMSp,/’ = Stu •

Therefore

Pihkj = KiM,j + fftk&y - XjhSifc = S(tkjtik - <ht<o) + S(»*6»<, - »(,,»**) = 0. 

Thus we have

Theorem . t-projective curvature tensor of a Riemannian space vanishes if 
and only if its curvature tensor has the form (5.4).

It is easy to see that scalar S in (5.4) is a constant. In fact, using the identity of 
Bianchi and (2.4), we find

dS , . dS , . dS , ,
~ *kj*ik) + - »»*««,') + (*i*»<* - tkktU) = 0 .

35
Transvecting with if** and t*1 and supposing n > 2, we get = 0.

Consequently we have

Theorem . If t -projective eurvature tensor of a Riemannian spac n (n > 2), 
vanishes, then

t,l‘ial>{t,aKkk------l—rVikKab) = const .
A — 1

Let us now suppose that Riemannian space V„ is a hypersurface of an Euclidean 
space £n+i. Then the equations of Gauss and Codazzi have the forms [4):

Kikkj = 0»**^*, “ fiijfifc*
(5.6) V»n,y - VyO« = 0 .

If we choose the tensor »<, such that

(5.7) »jj = y/s di, , S = CCO8t .

the condition (2.4) is satisfied, and equations of Gauss have the form (5.4). Therefore, 
we obtain

Theorem . t -projective eurvature tensor of a hypersurf ace of an Euclidean 
tpaee En+i (n > 2) , where tensor t has the form (5.7), vanishes. In the other 
Words: a hypersurface of an Euclidean space En+i (” > 2) admits such K-projective 
transformation that t-projective eurvature tensor vanishes.

Conversely, if the curvature tensor of the Riemannian space has the form (5.5) 
Snd the equation (5.6) is satisfied, it is of class one, i.e. it can be immersed in a flat 
space of n + 1 dimensions ([4], p.198).
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Thus we have

Theorem . IJ a Riemannian tpaee admits ic-projeetive transformations such 
that r-projective eurvalure tensor vanishes, and constant S = Satiab is positive, it 
is of class one and its second fundamental tensor has the form

1
" ÿS*' •
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STRESZCZENIE

Autor okreila zrriany koneksji T na rozmaitości różniczkował nej, które zachowują układ 
IT-geodetyk — pojecie to określił on we wcześniejszej pracy [5] — oraz określa przekształcenie T- 
projektywne.

Przy założeniu symetrycznoed koneksji T i tensora 1 spełniającego warunek (2.4) znaleziono 
jierwszy i drugi X—pro jekty wiry tensor krzywizny

Jt
' \

SUMMARY

The author defines the transformations of a connection T on a differentiable manifold which 
preserve the system of X-geodesics as defined in [5] and introduces X-projective transformations
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Under the assumption of symmetry of the connection T and for the tensor Jr satisfying (2.4) the first 
and the second JT-projective curvature tensor has been found.

I
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