ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

> LUBLIN-POLONIA

Inatitute of Matbomation
Univeraity of Novi Sed, Belgrada

M. PRVANOVIC
n-Projoctive Curvature Tensors
-projeltywne tensory lazywizny

1. Introduction. Let V_{n}^{Γ} be an n-dimensional space with a linear connection Γ given with the aid of components $\Gamma_{j k}^{i}$ in each local map U an a differentiable manifold V_{n}. Let us consider a fixsd differentiable tensor field π of the type $(0,2)$ on V_{n}. It will be called non-aingular if there exists an atlas A on V_{n} such that $\operatorname{det}\left(x_{i j}\right) \neq 0$ in each local cart of A.
K.Radziszewski introduced [7] following notions:

A vector field $\boldsymbol{0}^{\circ}$ is called π-geodesic if

$$
\nabla_{k}\left(\pi_{i e} \nabla^{a}\right) v^{b}=\lambda \pi_{i e} v^{a}
$$

where ∇_{k} denotes the covariant derivative with respect to the connection Γ.
Integral carve of π-geodesic vector fields is called π-geodesic.
K.Radriazewslo obtained the differential equations of π-geoderics in the form

$$
\frac{d^{2} x^{i}}{d t^{2}}+\left(\nabla_{k} x_{p o} x^{p i}+\Gamma_{h o l}^{i}\right) \frac{d x^{k}}{d t} \frac{d x^{v}}{d t}=\lambda \frac{d x^{i}}{d t}
$$

where $\lambda=\lambda\left(x^{j}\right)$, and $\tilde{\pi}^{p i}$ is defined by $x_{p o x} \bar{x}^{p r}=\delta_{0}^{0}$. These equations show that π-geodesics in a space V_{n}^{T} are geodesios in ordinary sence in the space V_{n}^{G}, where connection G is given by

$$
\begin{equation*}
G_{k \theta}^{\prime}=\Gamma_{k,}^{\prime}+\left(\nabla_{k} x_{p 0}\right) \pi_{x}^{p i} . \tag{1.1}
\end{equation*}
$$

In [7] some thearems concerning tensor π or tensors π and $\hat{\pi}$ are proved such that π-geodesios be geodesics in ordinary sence or such that π-geodesics and $\bar{\pi}$-geodesics are the same carves in V_{n}. A. Bucki [2] considered π-geodesios with respect to the third and fourth fundamental tensors of hypersurfaces.

The object of the present paper is the investigation of the π-projective transformations.

In $\S 2$ we find a change of $\Gamma_{j k}^{i}$ which does not change the syatem of π - geodesics and define π-projective transformation of Γ.

Supposing that the connection Γ is symmetric and that the tensor π is symmetric and satisfies the condition (24), we find in §3 the first and in §4 the second π-projective curvature tensor. In §5 we discuss the case of Riemannian space whose π-projective curvature tensor vanishes.
2. x-projective transformations. We have to find a change of Γ which does not change the system of π-geodesics. We have seen in $\$ 1$ that π-geodesic is a geodesic in ordinary sence with respect to the connection (1.1). Assuming that G, is a symmetric connection, a change of G in, which does not change the system of geodeaics is given by

$$
\begin{equation*}
F_{k}=G_{k}+\delta_{k}^{i} \phi_{0}+\delta_{0}^{i} \psi_{k}, \tag{2.1}
\end{equation*}
$$

where ψ_{p} is an arbitrary covector field. As for $\bar{\Gamma}_{k}$ it is also symmetric connection and must determine π-geodesics too, i.e. it mast have the form

$$
4 \quad \Gamma_{k t}=\bar{\Gamma}_{k t}+\left(\bar{\nabla}_{k \pi_{p o}}\right) \tilde{x}^{p i} .
$$

We have from (2.2) and (1.1)

$$
\begin{aligned}
& \bar{\Gamma}_{k 0}^{i}=\frac{\partial \pi_{p p}}{\partial x^{k}} \pi^{p i}=\bar{\Gamma}_{k p}^{a} \pi_{a v} \pi^{p i} \\
& G_{k \theta}^{i}=\frac{\partial \pi_{p q}}{\partial x^{k}} \pi^{p i}=\Gamma_{k p} \pi_{a} \nabla^{p i}
\end{aligned}
$$

Therefore

$$
\Gamma_{k p}^{i}-G_{k \phi}^{\dot{i}}=-\left(\Gamma_{k p}^{a}-\Gamma_{k p}^{a}\right) x_{a \rho} \bar{\pi}^{\bar{p}}
$$

Transvecting this equation with $\bar{\pi}_{i j}{ }^{n 0 t}$, we find

$$
-\vec{\Gamma}_{k j}^{\prime}+\Gamma_{k j}^{t}=\left(\vec{\Gamma}_{k p}^{\prime}-G_{k \theta}^{i}\right) x_{i j}{ }^{20 \theta}
$$

from which, asing (2.1), we obtain

$$
\begin{equation*}
\vec{\Gamma}_{k j}=\Gamma_{k j}^{l}-\pi_{k j} \phi_{0} \tilde{\pi}^{0!}-\phi_{k} \delta_{j}^{l} . \tag{2.3}
\end{equation*}
$$

Conversely, let us suppose that (2.3) holds good. We then can express the connection

$$
\vec{\Gamma}_{k t}=\vec{\Gamma}_{k t}+\left(\bar{\nabla}_{k \bar{x}_{p t}}\right)^{\bar{x}}
$$

in the form

$$
\vec{\Gamma}_{k t}=\Gamma_{k t}^{i}+\left(\nabla_{k} \pi_{k t}\right)^{\pi^{p i}}+\psi_{t} \delta_{k}^{i}+\psi_{k} \delta_{k}^{i} .
$$

This shows that the space V_{n}^{G} and $V_{n}^{\bar{T}}$ where

$$
\vec{\Gamma}_{k t}^{i}=\bar{\Gamma}_{k t}^{i}+\left(\bar{\nabla}_{k} \pi_{p t}\right)^{k p i} \text { and } G_{k t}^{i}=\Gamma_{k t}^{i}+\left(\nabla_{k \pi_{p t}}\right)^{\bar{\pi} p i}
$$

have the same geodesics, or, equivalently, that the spaces V_{n}^{Γ} and $V_{n}^{\bar{T}}$ have the same π-geodesics.

Thas we have
Theorem. Condition (2.3) where ϕ_{k} is an arbitrary covector field, is necessary and sufficient for the spaces V_{n}^{Γ} and V_{n}^{Γ} to have the same π-geodesics.

Definition . A change (2.3) is called x-projective transformation.
In the above consideration we have supposed that both connections G and $\bar{\Gamma}$ are symmetric. In the suite, we supoose that the connection $\Gamma_{j h}^{j}$ and the tensor field $\pi_{i j}$ are symmetric toa. The symmetry of the connections Γ and G implies the following condition

$$
\begin{equation*}
\nabla_{k} \pi_{i j}-\nabla_{j} \pi_{i k}=0 . \tag{2.4}
\end{equation*}
$$

3. First π-projective curvature tensor. Let as compute the carvature tensor of $\bar{\Gamma}_{h o}$:

$$
\bar{R}_{h k j}=\frac{\partial \bar{\Gamma}_{j h}^{i}}{\partial x^{k}}-\frac{\partial \bar{\Gamma}_{k h}^{i}}{\partial x^{j}}+\vec{\Gamma}_{k q}^{i} \Gamma_{j p}-\Gamma_{j q} \bar{\Gamma}_{k p}
$$

By straightfarward computation we find

$$
\begin{align*}
& \vec{R}_{h k j}=R_{h k j}^{j}+\left(\nabla_{j \pi k h}-\nabla_{k} \pi_{j h}\right) \pi^{\pi i} \phi_{0}+\delta_{h}^{j}\left(\nabla_{j} \phi_{k}-\nabla_{k} \phi_{j}\right)+ \tag{3.1}
\end{align*}
$$

where $R_{h k j}^{i}$ are the components of the curvature tensor of the connection $\Gamma_{j k}^{i}$. Tabing account of (2.4), we rewrite (3.1) in the form

$$
\begin{equation*}
\bar{R}_{h k j}=R_{h k j}^{i}+\delta_{h}^{i} \varphi_{j k}+\pi_{j h} \theta_{k}^{i}-\pi_{k h} \theta_{j}^{i} \tag{3.2}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\varphi_{j k}=\nabla_{j} \phi_{k}-\nabla_{k} \phi_{j}, \quad \theta_{k}^{\prime}=\bar{x}^{a i j} \phi_{k} \phi_{a}-\nabla_{k}\left(\phi_{0} \tilde{x}^{\circ i}\right) \tag{3.3.}
\end{equation*}
$$

Contracting (3.2) with respect to i and r we get

$$
\begin{equation*}
\bar{R}_{a k j}^{a}=R_{a k j}^{a}+m \varphi_{j k}+\pi_{j \sigma} \theta_{k}^{a}-\pi_{k a} \theta_{j}^{a} . \tag{3.4}
\end{equation*}
$$

On the other hand, from

$$
\tilde{\pi}^{* a} \pi_{j a}=\delta_{j}^{*}
$$

we have

$$
-\left(\nabla_{k} \tilde{\pi}^{\bullet \infty}\right) \pi_{j \Theta}=\bar{x}^{\bullet 0}\left(\nabla_{k} \pi_{j ब}\right) .
$$

We then obtain

$$
\pi_{j a} \theta_{k}^{a}=\phi_{k} \phi_{j}-\nabla_{k} \phi_{j}-\psi_{k}\left(\nabla_{k} \tilde{\pi}^{2 a}\right) \pi_{j a}=\phi_{k} \phi_{j}-\nabla_{k} \phi_{j}+\phi_{0}\left(\nabla_{k} \pi_{j a}\right)^{\pi^{\infty a}} .
$$

Consequently

$$
\pi_{j a} \theta_{k}^{A}-\pi_{k a} \theta_{j}^{a}=\nabla_{j} \phi_{k}-\nabla_{k} \phi_{j}+\phi_{0} \tilde{\pi}^{\theta a}\left(\nabla_{k} \pi_{j a}-\nabla_{j} \pi_{k a}\right)
$$

or using (2.4) and (3.3)

$$
\pi_{j a} \theta_{k}^{a}-\pi_{k \in} \theta_{j}^{a}=\varphi_{j k} .
$$

Substituting this into (3.4), we find

$$
\begin{equation*}
\varphi_{j k}=\frac{1}{n+1}\left(\bar{R}_{a k j}^{a}-R_{a k j}^{a}\right) \tag{3.5}
\end{equation*}
$$

Contracting (3.2) with respect to i and j, we get

$$
\begin{equation*}
\bar{R}_{h k}=R_{h k}+\varphi_{h k}+\pi_{a h} \theta_{k}^{a}-\pi_{k h} \theta_{a}^{a} \tag{3.6}
\end{equation*}
$$

where

$$
\bar{R}_{h k}=\bar{R}_{h k \epsilon}^{a} \quad, \quad R_{h k}=R_{h k \epsilon}^{a}
$$

Tensor $\varphi_{h k}$ being skew-symmetric and tensor $\tilde{\pi}^{h k}$ symmetric, we have $\varphi_{h k} \bar{\pi}^{h k}=0$. Thus, transvecting (3.6) with $\pi^{h k}$, we find

$$
\theta_{a}^{a}=\frac{1}{n-1}\left(\tilde{x}^{a b} \bar{R}_{a b}-\tilde{\pi}^{a b} R_{a b}\right)
$$

Substituting this and (3.5) into (3.6) and then transvecting with $\pi^{\text {ih }}$ we obtain

$$
\begin{equation*}
\theta_{k}^{i}=\tilde{\pi}^{i a} \bar{R}_{a k}-\frac{\delta_{k}^{i}}{n-1} \tilde{\pi}^{a b} \bar{R}_{a b}-\tilde{\pi}^{i a} R_{a k}+\frac{\delta_{k}^{i}}{n-1} \tilde{\pi}^{a b} R_{a b}-\frac{1}{n+1} \tilde{\pi}^{i b}\left(\bar{R}_{a b k}^{a}-R_{a b k}^{a}\right) \tag{3.7}
\end{equation*}
$$

Taking acoount of (3.7) and (3.5), we can write (3.2) in the form

$$
\begin{aligned}
& \vec{R}_{h k j}-\frac{1}{n+1} \delta_{h} \bar{R}_{a k j}^{a}-\pi_{j h}\left(\tilde{\pi}^{i a} \bar{R}_{a k}-\frac{1}{n-1} \delta_{k}^{j} \tilde{\pi}^{a b} \bar{R}_{a b}-\frac{1}{n+1} \bar{\pi}^{i b} \bar{R}_{a b k}^{a}\right)+ \\
&+\pi_{k h}\left(\tilde{\pi}^{i a} \bar{R}_{a j}-\frac{1}{n-1} \delta_{j}^{j} \pi^{a b} \bar{R}_{a b}-\frac{1}{n+1} \tilde{\pi}^{i b} \bar{R}_{a b j}^{a}\right)= \\
&=R_{h k j}^{i}-\frac{1}{n+1} \delta_{h}^{i} R_{a k j}^{a}-\pi_{j h}\left(\tilde{\pi}^{i a} R_{a k}-\frac{1}{n-1} \delta_{k}^{j} \pi^{a b} R_{a b}-\frac{1}{n+1} \tilde{\pi}^{i b} \bar{R}_{a b k}^{a}\right)+ \\
&+\pi_{k h}\left(\tilde{\pi}^{i a} R_{a j}-\frac{1}{n-1} \delta_{j}^{i} \tilde{\pi}^{a b} R_{a b}-\frac{1}{n+1} \tilde{\pi}^{i b} R_{a b j}^{a}\right) .
\end{aligned}
$$

Therefore, the tensor

$$
\begin{align*}
P_{1}^{i} i k j & =R_{h k j}^{i}-\frac{1}{n+1} \delta_{h}^{i} R_{a k j}^{a}-\pi_{j h}\left(\tilde{\pi}^{i b} R_{a k}-\frac{1}{n-1} \delta_{k}^{i} \tilde{\pi}^{a b} R_{a b} \frac{1}{n+1} \tilde{\pi}^{i b} R_{a b k}^{a}\right)+ \tag{3.8}\\
& +\pi_{k h}\left(\tilde{\pi}^{i a} R_{a j}-\frac{1}{n-1} \delta_{j}^{i} \tilde{\pi}^{a b} R_{a b}-\frac{1}{n+1} \bar{\pi}^{i b} R_{a b j}^{a}\right)
\end{align*}
$$

is invariant under a π-projective change (2.3).
We call the tensor (3.8) the first π-projective curvature tensor.
4. The second π-projective carvatare tensor. Although condition $\Gamma_{j k}^{\prime}$ is symmetric, connection (2.3) is not. Denoting by $\overline{\bar{\nabla}}$ the operator of covariant differentiation with respect to $\bar{\Gamma}_{j k}^{i}$, we define the second one by the equation

$$
{\underset{\nabla}{2}}^{x} Y-\bar{\nabla}_{1} X=[X, Y]
$$

where X and Y are arbitrary vector fields. Then we can prove ($[5],[6]$) the exastence of forr carvature tensors:

$$
\begin{aligned}
& \bar{R}(X, Y) Z=\nabla_{1} x \nabla_{1} Z Z-\nabla_{1} \nabla_{1} x Z-\bar{\nabla}_{1}(x, Y \mid Z, \\
& \underset{2}{R}(X, Y) Z={\underset{2}{2}} X \overline{7}_{2} Y Z-{\underset{2}{2}}_{Y} \nabla_{2} x Z-\bar{\nabla}_{2}(X, Y)^{Z}, \\
& \underset{3}{\bar{R}}(X, Y) Z=\nabla_{2} x \bar{\nabla}_{1} Z Z-\bar{\nabla}_{y} \bar{\nabla}_{2} x^{Z}+\bar{\nabla}_{2} \bar{\nabla}_{r} x^{Z}-\bar{\nabla}_{1} \bar{\nabla}_{x} y^{Z}, \\
& \underset{i}{R}(X, Y) Z=\nabla_{2} x \nabla_{1} y Z-\nabla_{1} \nabla_{2} x Z+{\underset{2}{2}}_{\nabla_{r}} x^{Z}-\nabla_{1} \nabla_{1} y^{Z} \text {, }
\end{aligned}
$$

In the coordinate system of a local map of V_{n}, these tensors have the components as follows:

$$
\begin{aligned}
& \bar{R}_{i}^{i}{ }_{h k j}=\frac{\partial \vec{\Gamma}_{h j}}{\partial x^{k}}-\frac{\partial \vec{\Gamma}_{h k}^{\prime}}{\partial x^{j}}+\vec{\Gamma}_{q k} \vec{\Gamma}_{h j}-\vec{\Gamma}_{q j} \vec{\Gamma}_{h k},
\end{aligned}
$$

$$
\begin{aligned}
& \bar{R}_{6 k j}^{i}=\frac{\partial \bar{\Gamma}_{h j}}{\partial x^{k}}-\frac{\partial \bar{\Gamma}_{k h}^{i}}{\partial x^{j}}+\vec{\Gamma}_{k a}^{j} \bar{\Gamma}_{h j}-\vec{\Gamma}_{c j} \bar{\Gamma}_{k h}^{0}+\bar{\Gamma}_{j k}^{a}\left(\bar{\Gamma}_{o h}^{j}-\bar{\Gamma}_{h a}\right) \text {. }
\end{aligned}
$$

The tensor $\vec{R}_{h k j}$ appearing in $\S 2$ is, in fact, tensor $\bar{R}_{3} h k j$. We shall show in this paragraph that we can construct, using the tensor $\frac{\bar{R}}{3}$ the new π-projective curvature tensor.

In fact, taking account of (2.4) we can easily verify that

$$
\begin{aligned}
& R_{i}^{0}{ }_{h b j}=R_{h h j}^{i}+\pi_{k h}\left[\nabla_{j}\left(\tilde{\pi}^{\infty} \phi_{0}\right)-\pi^{\infty i} \phi_{0} \phi_{j}\right]-\pi_{j h}\left[\nabla_{k}\left(\pi^{\infty} \phi_{0}\right)-\pi_{\pi}^{\infty i} \phi_{0} \phi_{k}\right]+
\end{aligned}
$$

or

$$
\begin{equation*}
\bar{B}_{3}^{i} h_{k j}=R_{h k j}^{i}-\pi_{k h} \theta_{j}^{\prime}+\pi_{j h} \theta_{k}^{i}+\delta_{h}^{i} \beta_{j k}-\delta_{j}^{i} \beta_{k h}, \tag{4.1}
\end{equation*}
$$

where, as in §3, have pat

$$
\theta_{j}^{0}=\bar{x}^{00} \phi_{j} \phi_{0}-\nabla_{j}\left(\phi_{0} \tilde{\pi}^{0 i}\right),
$$

$R_{h k j}$ are the components of the curvature tensor of the connection $\Gamma_{j k}^{i}$, and

$$
\begin{equation*}
\beta_{j h}=\nabla_{j} \phi_{h}+\phi_{h} \phi_{j}+\pi_{j h} \pi^{\bullet a} \phi_{0} \phi_{0} . \tag{4.2}
\end{equation*}
$$

Contracting (4.1) with respect to i and j, we have

$$
\begin{equation*}
\bar{R}_{3}^{\mathrm{a}} \mathrm{hka}=R_{h k}-\pi_{k h} \theta_{\mathrm{c}}^{0}+\pi_{h a} \theta_{k}^{c}+\beta_{h k}-n \beta_{k h} . \tag{4.3}
\end{equation*}
$$

On the other hand, contracting (4.1) with respect to i and r, we find

$$
\begin{equation*}
\bar{R}_{3}^{a}{ }_{a k j}=R_{a k j}^{a}-\pi_{k a} \theta_{j}^{a}+x_{a j} \theta_{k}^{a}+\pi \beta_{j k}-\beta_{h j} . \tag{4.4}
\end{equation*}
$$

Transvecting (4.3) with and (4.4) with and $^{A k j}$, we get

$$
\begin{aligned}
& \tilde{\pi}^{b c} R_{3}^{a}=\tilde{\pi}^{b c} R_{b c}-(n-1) C_{c}^{a}-(n-1) \beta_{a b} \pi^{a b}, \\
& \tilde{x}^{b c} \frac{R^{a}}{\frac{R}{a b c}}=(n-1) \beta_{a b} \tilde{\pi}^{a b} .
\end{aligned}
$$

Adding the last two equations, we obtain

$$
\theta_{a}^{a}=-\overline{R_{3}}+R^{\prime}
$$

where we nave put

$$
\left\{\begin{array}{l}
\bar{R}_{3}^{\prime}=\frac{1}{(n-1)} \bar{\pi}^{n t}\left(\bar{R}_{3}^{a}{ }^{a t a}+\bar{R}_{3}^{a}{ }_{a t t}\right) \tag{4.5}\\
R^{\prime}=\frac{1}{(n-1)} \bar{n}^{n t} R_{0 t}
\end{array}\right.
$$

Substituting $\theta_{\mathrm{a}}^{\mathrm{g}}$ into (4.3), we have

$$
\begin{equation*}
\bar{R}_{3}^{a}{ }_{h k a}-R_{h k}+\pi_{k h}\left(-\bar{R}_{3}^{\prime}+R^{\prime}\right)=\pi_{h a} \theta_{k}^{a}+\beta_{h k}-\pi \beta_{h h} . \tag{4.6}
\end{equation*}
$$

On the other hand, transvecting (4.1) with $\tilde{\pi}^{k j}$ and taking into accoont that the tensor $R_{h k j}^{\prime}$ is skew-symmetric with respect to k and j, we find

$$
\begin{equation*}
\bar{R}_{\frac{8}{i}}^{i a b} \bar{x}^{a b}=\delta_{h}^{i} \beta_{a b} \dot{\pi}^{a b}-\bar{x}^{i c} \beta_{a h} \text {. } \tag{4.7}
\end{equation*}
$$

from which, contracting with respect to i and r, we get

$$
\tilde{x}^{a b} \beta_{a b}=\frac{1}{(n-1)} \frac{R}{8}_{d a t}^{d a b}
$$

Substituting this into (4.7), we obtain

$$
\tilde{\pi}^{i a} \beta_{a h}=-\frac{\bar{R}_{3}^{i} h a b}{\tilde{\pi}^{a b}}+\frac{\delta_{h}}{n-1} \bar{R}_{3}^{d} d a b \tilde{\pi}^{a b}
$$

or

$$
\begin{equation*}
\beta_{j h}=-\pi_{d j} \dot{\pi}^{c b}{\frac{R_{n}}{3}}_{d a b}^{d}+\frac{1}{n-1} \pi_{j h} \tilde{x}^{a b}{\underset{3}{3} d a b}_{d}^{d} \tag{4.8}
\end{equation*}
$$

Substituting into (4.6), we find
where we have pat

$$
\frac{\bar{R}}{3}=\bar{R}-\tilde{\pi}^{a b} \frac{\bar{R}_{3}^{d}}{d} d a t
$$

Transvecting the preceding equation with $\bar{\pi}^{n i}$, we obtain

$$
\begin{equation*}
\theta_{k}^{i}=\bar{\pi}^{b i} \bar{R}_{36 k a}^{a}+\bar{\pi}^{e b} \bar{R}_{k}^{i}{ }_{k a b}-n \pi_{k d} \tilde{\pi}^{e b} \bar{\pi}^{c b} \bar{R}_{3}^{d}-\frac{R}{3} \delta_{k}^{i}-\left(\bar{\pi}^{i a} R_{a k}-R^{\prime} \delta_{k}^{i}\right) . \tag{4.9}
\end{equation*}
$$

Substitating (4.8) and (4.9) into (4.1), we find

$$
\begin{aligned}
& =R_{h h j}^{i}+\pi_{k h}\left(\tilde{\pi}^{b i} R_{\Delta j}-R^{\prime} \delta_{j}^{i}\right)-\pi_{j h}\left(\tilde{\pi}_{\sigma}^{b i} R_{b k}-R^{\prime} \delta_{k}^{i}\right) .
\end{aligned}
$$

Thus, the tensor on the left hand side is invariant under π-projective change (2.3). We call it the second π-projective curvature tensor and denote it by $P_{2}^{i} h k j$. Therefore, we have

$$
\begin{equation*}
{\underset{2}{2}}_{i}^{i}=R_{h k j}^{i}+\pi_{k h}\left(\tilde{x}^{b i} R_{b j}-R^{\prime} \delta_{j}^{i}\right)-\pi_{j h}\left(\tilde{x}^{b i} R_{b k}-R^{\prime} \delta_{k}^{i}\right) . \tag{1.10}
\end{equation*}
$$

Remark. We may use, instead of ${ }_{2} \bar{R}_{h k j}^{i}$ and $\bar{R}_{3}^{i}{ }_{h k j}$ the tensors \bar{R}_{1}^{i}, and ${\underset{4}{i}}_{i}^{i}{ }_{h k j}$. In that case, we have to use instead of operator $\bar{\nabla}$ the operator $\bar{\nabla}$ and proceeding in a similar manner as in §2, we find

$$
\vec{\Gamma}_{k j}=\Gamma_{k j}^{l}-\pi_{k j} \phi_{0} \bar{x}^{0 l}-\phi_{j} \delta_{k}^{l}
$$

instead of (2.3). By straightforwand computation we obtain

$$
\bar{R}_{1}^{i} \bar{R}_{k j}=R_{h k j}^{i}+\delta_{h}^{i}\left(\nabla_{j} \psi_{k}-\nabla_{k} \psi_{j}\right)+\pi_{h j}\left[\psi_{k} \psi_{,} \pi^{n i}-\nabla_{k}\left(\psi_{0} \pi^{n i}\right)\right]-\pi_{h k}\left[\psi_{j} \psi_{i} \bar{\pi}^{n i}-\nabla_{j}\left(\psi_{,} \bar{\pi}^{n}\right)\right] .
$$

Comparing to (3.1), we see at once that the tensor \bar{R} leads to the first π-projective corvature tensor $P_{1}^{i} A k j$. In the similar manner, starting from \bar{R}, we get $P_{2}^{i} i k j$.
5. Riemannian space whose π-projective curvature tensor vanishes. We shall now consider the case when V_{n}^{Γ} is a Riemannian space, i.e. when $\Gamma_{j k}^{i}$ are Christoffel symbols with respect to metric tensar $g_{i j}$ of the Riemannian space. Denoting by $K_{h k j}^{i}$ the components of Riemannian curvature tensor, we have

$$
R_{h k j}^{i}=K_{h k j}^{i}, \quad R_{a k j}^{a}=0
$$

Thas we have

$$
{\underset{1}{n k j}}_{0}=P_{2}^{i} i k j 0=P_{h k j}^{i}=K_{h k j}^{i}+\pi_{k h}\left(\tilde{x}^{b i} K_{b j}-R \delta_{j}^{i}\right)-\pi_{j h}\left(\tilde{x}^{b i} K_{b k}-R \delta_{j}^{i}\right)
$$

where we have put

$$
R=\frac{1}{n-1} \tilde{\mathrm{r}}^{\mathrm{ab}} K_{\mathrm{cb}}
$$

and $K_{i j}$ is the Rioci tensor of a Riemannian space.
It is easily to see that the tensor $P_{h k j}^{\prime}$ is skew-symmetric with respect to k and j and satisfies the conditions

$$
P_{h k j}^{i}+P_{k j h}^{i}+P_{j h k}^{\prime}=0 \quad, \quad P_{h k e}^{a}=0 .
$$

If the Ricci tensor of a Riemannian space satisfies the condition

$$
\begin{equation*}
\nabla_{k} K_{j i}-\nabla_{j} K_{k i}=0, \tag{5.1}
\end{equation*}
$$

then we can choose $\pi_{i j}=K_{i j}$. In that case the tensor P reduces to the form

$$
P_{h k j}^{i}=K_{h k j}^{\prime}-\frac{1}{n-1}\left(\delta_{j}^{j} K_{k h}-\delta_{j}^{j} K_{j h}\right)
$$

The condition (5.1) being equivalent with the condition

$$
\begin{equation*}
\nabla_{a} K_{h k j}^{a}=0, \tag{5.2}
\end{equation*}
$$

we have
, Theorem. For the Riemannian space satisfying the condition (5.2) tensor Pikj with respect to the Ricei tensor reduces to the ordinary projective eurvature tensor.

Now we suppose that this π-projective curvature tensor vanishes. Then we have

$$
K_{h k j}^{i}=\pi_{h j}\left(\pi^{b i} K_{b k}-R \delta_{k}^{i}\right)-\pi_{k h}\left(\pi^{B i} K_{b j}-R \delta_{j}^{i}\right),
$$

- or, raising the indice i,

$$
\begin{equation*}
K_{i k k j}=\pi_{h j} S_{i k}-\pi_{h k} S_{i j}, \tag{5.3}
\end{equation*}
$$

where we have put

$$
S_{i k}=g_{i \Delta} \bar{x}^{b \omega} K_{b k}-R_{g_{i k}} .
$$

The tensor $K_{i n h j}$ being skew-symmetric in i and r, we find

$$
\pi_{h j} S_{i k}-\pi_{k h} S_{i j}+\pi_{i j} S_{h k}-\pi_{k i} S_{h j}=0 .
$$

Transvecting this with $\tilde{\boldsymbol{x}}^{h j}$, we get

$$
S_{i k}=S_{\pi_{i k}} \quad \text { where } S=\frac{1}{n} S_{a b} \tilde{\pi}^{a h}
$$

This means that (5.3) reduces to

$$
\begin{equation*}
\AA_{i n k j}=S\left(\pi_{h j} \pi_{i k}-\pi_{k A} \pi_{i j}\right) . \tag{5.4}
\end{equation*}
$$

Conversely, if (5.4) is satisfied, we have

$$
\begin{aligned}
& R=\frac{1}{n-1} \pi^{h k} K_{h k}=-S_{\pi_{p q} g^{p Q}} \\
& S_{i k}=S_{g_{i d} \pi^{i d}}\left(g^{p \pi_{k q} \pi_{p k}}-\pi_{b h} \pi_{p q} g^{p q}\right)+S_{g_{i k} \pi_{p q} g^{p l}}=S_{\pi_{i k}} .
\end{aligned}
$$

Therefore

$$
P_{i h k j}=K_{i n k j}+\pi_{h n} S_{i j}-\pi_{j h} S_{i k}=S\left(\pi_{h j} \pi_{i k}-\pi_{h k} \pi_{i j}\right)+S\left(\pi_{k h} \pi_{i j}-\pi_{h j} \pi_{i k}\right)=0 .
$$

Thas we have
Thearem. -projective curvature tensor of a Riemaniaian space vanishes if and only if its curvature tensor has the form (5.4).

It is easy to see that scalar S in (5.4) is a constant. In fact, using the idencity of Bianchi and (2.4), we find

$$
\frac{\partial S}{\partial x^{j}}\left(\pi_{h k} \pi_{i j}-\pi_{h j} \pi_{i k}\right)+\frac{\partial S}{\partial x^{k}}\left(\pi_{j h} \pi_{i t}-\pi_{\mid h} \pi_{i j}\right)+\frac{\partial S}{\partial x^{j}}\left(\pi_{1 h} \pi_{i k}-\pi_{k h} \pi_{i l}\right)=0 .
$$

Transvecting with $\dot{\pi}^{k N}$ and $\bar{\pi}^{i j}$ and supposing $n>2$, we get $\frac{\partial S}{\partial x^{i}}=0$.
Consequently we have
Theorem. If x-projective eurvature tensor of a Riemannian space in $(n>2)$. vanishes, then

$$
\bar{\pi}^{a k} \tilde{\pi}^{a b}\left(g_{i G} K_{b k}-\frac{1}{n-1} g_{i k} K_{a b}\right)=\text { const } .
$$

Let us now suppose that Riemannian space V_{n} is a hypersurface of an Euclideart space E_{n+1}. Then the equations of Ganss and Codarwi have the forms [4]:

$$
\begin{align*}
& K_{i h k j}=\Omega_{i k} \Omega_{h j}-\Omega_{i j} \Omega_{h k} \tag{5.5}\\
& \nabla_{k} \Omega_{i j}-\nabla_{j} \Omega_{i k}=0 . \tag{5.6}
\end{align*}
$$

If we choose the tersor $x_{i j}$ such that

$$
\begin{equation*}
\pi_{i j}=\sqrt{S} \Omega_{i j}, \quad S=\text { const } \tag{5.7}
\end{equation*}
$$

the condition (2.4) is satisfied, and equations of Gauss have the form (5.4). Therefore, we obtain

Theonem . π-projective eurvature tensor of a hypersurface of an Euclidean space $E_{n+1}(n>2)$, winere tensor π has the form (5.7), vanishes. In the other words: a hypersurface of an Euctidean space $E_{n+1}(n>2)$ admits such x-projective transfomiation that π-projective curvature sensor vanishes.

Conversely, if the curvature tensor of the Riemannian space has the form (5.5) and the equation (5.6) is sausfied, it is of class one, i.e. it can be immersed in a flat space of $n+1$ dimensions ($[4]$, p. 198).

Thus we have

Theorem. If a Riemannian space admits π-projective transformations such that π-projective curvature tensor vanishes, and constant $S=S_{a b} \tilde{x}^{a b}$ is positive, it is of class one and its second fundamental tensor has the form

$$
\Omega_{i j}=\frac{1}{\sqrt{S}} x_{i j}
$$

REFERENCES

[1] Bucki, A., Miernowski, A. , Geometric interpretation of the π-geodesics, Ann. Univ: Mariae Curie-Sldodowsta, Sect. A 28(1972), 3-15.
[2] Bucki, A., π-Geoderics on Hyperserfaces, Ann. Univ. Marice Curie-Sldodowelo, Sect. A 33(1979), 29-44.
[3] Bucki, A. On the existence of a linear connection so as a given tersor field of type (1.1) is parallel with respect to this connection, Ann. Univ. Mariae Curie-Sldodowion, Sect. A 33(1979), 13-21.
[4] Eisenhart, L. P. , Riemannian Geometry, Princoton Univ. Press., Princeton 1948.
[5] Prvanowit, M. On two Tensors in a locally decomposable Riemannian spaces, Zborrik radova Prirodno-matematickog fakulteta, knjiga 6, Novi Sad 1979, 49-57.
[6] Prvanowice, M. ,Four Cervature Teneors of Non-aymmetric Connection (in Rumsian), Proceodings of the Conference "150 Years of Lobachovali Geometry", Kazan 1976, Moscow 1977.
[7] Radziszewski, K., x-Geodesice and Linee of Shadow, Colloquium Mashematicura, val. XXVI, 1972, 157-163.

STRESZCZENIE

Autor okrefla mriany honekaj̈ Γ na roamnitofai rósmicakowalnej, które zachowuja uktad x-geodetyk - pojecie to olrefit on we wczefriejazoj pracy [5] — oras okrefla prseksztatoenie π projektywne.
 pienwszy i drugi π-projoltyway tensor krzywizny

SUMMARY

The author defines the tranaformations of a connection Γ on a differentiable manifold which preserve the syatern of π-geodesian a defined in [3] and introducee π-projective tranformations.

Under the asumption of eymmetry of the connection Γ and for the tensor I eatiafying (2.4) the first and the second π-projective curvature tensor has been found.

