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s—Projective Curvature Tensors

r—projektywne tensory krzywizny

1. Introduction. Let V{ be an n—dimensional space with a linear connection T
given with the aid of components I'}, in each local map U cn a differentiable manifcld
Va. Let us conmider a fixad differentiable tensor field & of the type (0,2) on V,. It
will be called non-singular if there exists an atlas A on V,, such that det(x;) # 0 in
each local cart of A.

K.Radziszewski introduced [7] following notions:

A vector field ©* is called x—geodesic if

Vi(Tiew®)w® = Axiq0°

where V; denotes the covariant derivative with respect to the connection I'.

Integral curve of x—geodesic vector fields is called x—geodesic.

K Radziszewski obtained the differential equations of x—geodesics in the form
io et de? 4o
() =g

where A = A(#'), and %* is defined by Kpek™ = §i. These equations show that
x—geodesics in a space V! are geodesics in ordinary sence in the space VS, where
connection G is given by

(1.1) Gho =Thy + (Vaxpe)®®™ .

In (7] some theorems concerning tensor & or tensors x and & are proved such that
x—geodesics be geodesics in ordinary sence aor such that x— geodesics and x¥—geodesics
are the same curves in V,,. A. Buck [2] considered x— geodesics with respect to the
third and fourth fundamental tensors of hypersurfaces.

The object of the present paper is the investigation of the x—projective transfor-
mations.

In §2 we find a change of I'y, which does not change the system of x— geodesics
and define g—projective transformation of I'.
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Suppoaing that the connection I' is symmetric and that the tensor r is sym-
metric and satisfies the condition (2.4), we find in §3 the first and in §4 the second
x—projective curvature tensar. In §5 we diacuss the case of Riemannian space whase
w—projective curvature tensor vanishes.

2. x—projective transformations. We have to find a change of I' which does not
change the system of x—geodesics. We have seen in §1 that x—geodesic is a geodesic in
ordinary sence with respect to the connection (1.1). Assuming that G}, is a symmetric
connection, a change of G}, which does not change the system of geodesics is given
by

(2.1) Ko = Gl + 8300 + 894

where ¥, is an arbitrary covector field. As for ﬂ, it is also symmetric connection
and most determine x—geodesics too, i.e. it mmst have the form

(2.2) - r‘h ] 1"2. + (vb‘p-)i"' .
We have from (2.2) and (1.1)

R

ox

Cho = 35+

Fkn = Gio o "(r:p = P:p)’“*ﬁ .
Transvecting this equation with x;;#* , we find

I‘:Pta,i" .

Therefore

-T% + T, = (T, - GL) i
from which, using (2.1), we obtain
(2:3) T =Thj = ma9ef® — haé! .
Conversely, let us suppose that (2.3) halds good. We then can express the con-

nection

=T+ (Vixp)#™ £

in the form . ] _
Tt =Tl + (Vamp )8 + 916} + ¥ad] .

This shows that the space V,¢ and V,r where
P = ﬂt + (Vaxp)# and Gy =T}y + (Vaxp )™

have the same geodesics, or, equivalently, that the spaces VI and V.,,.F have the same

x—geodesnics.
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Thus we have

Theorem. Condition (2.3) where ¢ is an arditrary covector field, is necessary
and sufficient for the spaces VX and V:- to have the same x—geodesics.

Definition . A change (2.3) is called x— projective transformation.

In the above consideration we have supposed that both connections G and IF are

symmetric. In the suite, we supoose that the connection I}y and the tensar field x;;

are symmetnc too. The symmetry of the connections I' and G implies the following
condition

(2.4) VQI’."‘ = v,'l'u =0.

3. Fimt x—projective curvature tensor. Let us compute the curvature tensor
afr,,, : _
— ar‘. 31“ ] U}
g = ﬁ*'ﬁ*‘n«ﬂp‘r}cr»-
By straightforward computation we find
(3.1)  Ru,j = Risj + (Vimea = Vamin) "9, + & (V0 — Vas;)+

+a [ $uve = Va($eR™)] - man (#9590 - V(0457

where R}, ; are the components of the curvature tensor of the connection s Taking
account of (2.4), we rewrite (3.1) in the form

(3:2) R, = Riwj + Gipie + minlh = zanb}
;vhem we have put
(3.3) pik=Vitn—Vag; , 0 =i%peve = Va($sE")
Contracting (3.2) with respect tos and r we get
(3.4) Ek;‘ = R3; + 8 pju + sk — Taaly .
On the other hand, from

%je =8
we have
—(Vak")xje = £%(Vanje) -
We then obtain

X500t = V¥ — Vag; — €, (Vak ™ )xje = u¥; — Vad; + 9,(Vaxjo) 2™ .
Consequently

jaft — *hal] = Vivn — Vi + 907" (Vaxja = Vaa)
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or using (2.4) and (3.3)
Tialk — Tuali =y .

Substituting this into (3.4), we find

@) pit = g Ry = Roay)
Contracting (3.2) with respect to and 5 , we get

(3:6) . Bax = Rax + onn + %o} — 1ia 02 .
where

Fu=FRe , Ru=R,,.

Tensor pax being skew—symmetric and tensor #** symmetric, we have pp#** = 0.
Thus, transvecting (3.6) with #**, we find

I = =a
—1 (!“R.b - % bRﬂb) .
Substituting this and (3.5) into (3.6) and then transvecting with #** we obtain

#(Ropu—Ru)-

(3.7) 0, = & “R..,——-—L— 70 Rap— 7' ¢k+ﬁ‘—
Taking account of (3.7) and (3.5), we can  write (3.2) in the form

ab = '—'*"’Eu)

Fm:, et 15.\}:&; —g,—,,(i-‘"ﬁ

= l 5
n- 15}'“]!“' “agit Re)=

J:iabRgb 0 ii'bmbb)+

+ Ria (*mﬁay .

. ) 2] 1
= Ry - m‘iﬂ:s,- = %jn (K" Rok = —
i’“R:”) -

k/ T 1
+ x4p (¥*° Ry ; - ;:-f"}!“Ru Tawt

Therefore, the tensor

T e = | 1,
(3.8) Phuy=Ria; - m‘imk,‘ - min (¥ 'Rcl" ‘ii'iﬂu “+l:"'R:,,)+

l

clj)

+ %en (#*° Rqj —

is invariant under a x—pmjective change ( 2.3).
We call the tensor (3.8) the first x—projective curvature tensor.

4. The second x—projective curvature tensor. Although condition I'}, is symmet-
ric, connection (2.3) is not. Denoting by V the operator of cova.na.nt differentiation

with respect to K’ jks we define the second one by the equation

ny—?rl'= [x, ¥],
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where X and Y are arbitrary vector fields. Then we can prove ([5], [6]) the existence
of four curvature tensars:

?(X,Y)Z = Yx‘?r 2 - YvaZ - ?lx.nz )

?(X-Y)Z = YnyZ & YvaZ = Y(x.nz s

B2 = Fxe2 =TTz o a2 - To 2
?(X,Y)Z = Yx?yz - YnyZ + vaxz — va,,z f

In the coardinate system of a local map of Vj,, these tensors have the components
as follows:

1 ar* ! “”
o,  of, :
By = 55 = 3t + ulin =Tl

_ ar, -
?Mj’=ﬁ_%ﬁ+rlcm: r' k+r ;(r rln)v

FM, 8ar_’h[z' ﬁh +nar:y r‘lyrbh + r;h (r.cll == r‘k-) ]

The tensor R‘u, appearing in §2 is, in fact, tensor ?ﬁ.,’. We shall show in this

pamgraph that we can construct, using the tensor ? the new x—projective curvature
tensor.

In fact, taking account of (2.4) we can easily verify that

Boaj = Riay +5aa [V (#79,) = #%9a95] = 1ia [Va(#790) = #¥arn]+
+ 8 (V9% + oav; + xa;¥79,05) — §(Vaw; + $adj + T i’Po,v,),
ar
(4.1) ?ju,- = Ry, = a0y + x50y + 8 85x — 8 Bun
where, as in §3, we have put
= %09, — V(0. 5"),

R},; are the components of the curvature tensor of the connection I'}, , and
(4.2) Bin = Vion + 99 + Tt " $o¥a .

Contracting (4.1) with respect to¢ and j, we have

(4.9) ?:h = Ry — 2un 03 + aafi + Bar — n Bn -
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On the other hand, contracting (4.1) with respect tos and r, we find

(4.4) ’u, = Rauj = ®nal] + %005 + 8 Bja = By .

Transvecting (4.3) with #** and (4.4) with #*7 , we get '
i“}'l‘m =Ry, - (n = 1)02 — (» — 1)Bas®** ,
5“1'2:“ = (n = 1)Ba%* .

Adding the last two equations, we obtain

where we nave put

iy (."'i " (B + o)

(4.5) .
i & el
R' = (ﬂ—l)' R.g .
Substituting #3 into (4.3), we have
(4.8) Bheo - R + tu(-?’ + R') = mnaf} + Bak — » Bun .

On the other hand, transvecting (4.1) with #*/ and taking into account that the
tensor R),, . is skew-symmetric with respect to k and j, we find

(4.7 Fuasd® =6} fas #% - #*Bun ,
from which, contracting with respect tos and r, we get
=abd . ad
B = e l)?‘ml’
Substituting this into (4.7), we obtain
“B.. = _P“.i“ + _l_ruill

or

X ) 1
(4.8) Bin = —l";t'.g“ + == ia’nl’"?ﬁ,, ;

Substituting into (4.6), we find

Thalf = ?]’u. + l’ui’“lﬂ.g -n 'u"f"g.. - ?I’n = (Rax = R'saz)
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where we have put
F-F-+Fu.

Transvecting the preceding equation with #* , we obtain
(4.9) A= '“m&, l"°R,,.,, - n 0 i i 71“ ?6’,, (F*°Roe - R'S}) .
Substituting (4.8) and (4.9) into (4.1), we find .

R,,,, +xa (RS RYye + x“ﬁ, b — M Xjgh® t"ﬁ‘ R&')-—

- xn (8" B} fCoka + # qub -n l’kd’“*"k 7,55;:)—

X . B 'y =
— i (~rg i Bl + 257 o) + 6 (-rad* Bl + 4R, ) =
= Ry + mun (R Raj — R'S}) — min (%% Ros — R'S}) .

Thus, the tensor on the left hand side is invariant under x—projective change
‘(2.3). We call it the second x—projective curvature tensor and denote it by I:‘u,-.
Therefore, we have

(4.10) }:‘,'.” = Rjy; + tu.(i’“Rb,' - R’&;) - l’jh(i“Ru - R‘G;) d

Remark . We may use, instead of ?.u,' and ]a?’-"‘f the tensors ?‘“,— and 1‘5‘“,.

In that case, we have to use instead of operator ? the operator 7 and proceeding in
a similar manner as in §2, we find

Tij =Ti; - miwo®* - ;6
instead of (2.3). By straightforward computation we obtain
By =Ry 05 (V90T )+, (900,78 -V (925" )] -mna [ 9790579, (9,77)].
Comparing to (3.1), we see at once that the tensor ? leads to the firat x—projective
curvature tensor ﬁ.,—. In the similar manner, starting from ?. we get I:'M.,..

5. Riemannian space whose x—projective curvature tensor vanishes. We shall
now consider the case when ¥! is a Riemannian space, i.e. when I, ‘i are Christoffel

symbals with respect to metric tensor g;; of the Riemannian space. Denot.mg by K},
the components of Riemannian curvature tensor, we have

Ry, =Kjyy ,» Ray=0.

Thus we have

Iﬁu’. = }:.Ihkj-= P";*i = K‘;*J + Txp (i’“Kgi - R&;) - Ij.(i“K& - R&;)
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where we have put
1

—— Ky, |

R=

and K;; is the Ricc tensor of a Riemannian space. |
It is casily to see that the tensor P, ; is skew-symmetric with respect to k and
7 and satisfies the conditions
P+ P+ P =0 , Poa=0.
If the Ricd tensor of a Riemannian space satisfies the condition

(5.1) ViKji - ViKyi =0,

then we can chocse my; = Kjj. In that case the tensor P reduces to the form
Py = Byuy = — (6K = G Kja) -

The condition (5.1) being equivalent with the condition

(5-2) V.K,‘:‘,’ = 0 Y

we have

. Theorem . For the Riemannian space satisfying the condition (5.2) tensor P";kj
unth respect to the Ricei tensor reduces to the ordinary projective curvature tensor.

Now we suppase that this x—projective curvature tensor vanishes. Then we have
Khij = 7ai (% Kot — R 8) — xua (¥ Ky; — R 8}) ,
or, raising the indice s ,
(5.3) Kinng = x2jSiz — xpaSij

where we have put
Sik = gia®* Kox — Rgis .

The tensor Kias; being skew—symmetric in ¢ and », we find
TajSik — TuaSij + TisSpx — TpiSh; = 0.
Transvecting this with #*/ | we get
Sik = Sxix where S = %S.bi"b :
This means that (5.3) reduces to

(5.4) Kinaj = S(xajmia — muamis) .
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Conversely, if (5.4) is satisfied, we have
i

n=-1

Sis = Sgiek™ (§7 XegXpt — ToATped”™") + Sgirnpeg™ = Sxr .
Therefore

R=

MK = —Sxpeg™

Pinkj = Kinns + 2aaSig = xinSie = S(xa%ix = tae%ij) + S(xeaxi; — wayxi) = 0.
Thus we have

Theorem . s -projective curvature tensor of a Riemannian space vanishes if
and only if its curvature tensor has the form (5.4).

It is easy to see that scalar S in (5.4) is a constant. In fact, uaing the identity of
Bianchi and (2.4), we find

(x r--—t-t»)+as' i — % :--)+§-§—(t ik — Xka%y ) =0
5;'( Wk %y niXik a"lxnm IN®i§ a7 \ KAk A%y ) =0.

Trans as
vecting with #¥* and #*/ and suppcaing » > 2, we get 32 =0.
Consequently we have
!

Theorem . Ifx—-projective curvature tensor of a Riemannian spac ' (n > 2),
vanishes, then

ok A 1
 a? (’uKbk ES ;‘T‘i‘ﬁhxob) = const .

Let 18 now suppose that Riemannian space .V,. is a hypersurface of an Euclidean
space E,,;. Then the equations of Gauss and Codazzi have the forms [4}:

(5.5) Kines = QiaOay — 0550k
(5.6) Vellij - V;0=0.

If we choose the tersor x;; such that
(5.7) ;= Vs Qi; , S=const.

the condition (2.4) is satisfied, and equations of Gauss have the form (5.4). Therefore,
We obtain

Theorem . x—projective curvature tensor of a hypersurface of an Euclidean

®pace Eqyy (n > 2) , where tensor & has the form (5.7), vanishes. In the other
words: a hypersurface of an Euclidean space Enyy (n > 2} adnuts such x—projective
transformation that s —projective curvature tensor vanishes.

Conversely, if the curvatare tensor of the Riemannian space has the form (5.5)
and the equation (5.6) is sausfied, it is of class one, i.e. it can be immersed in a flat
Space of n + 1 dimensions ({4}, p-198). :
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Thus we have

Theorem . If a Riemannian space admits x —projective transformations such
that x —projective curvature tensor vanishes, and constant S = Ss° is positive, it
ts of class one and its second fundamental tensor has the form

1
ni; = Fi, .
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STRESZCZENIE

Autor okrefla amiany koneksji I' na roamaitodc rédmiczkowalnej, ktére zachowuja ukiad
X -geodetyk — pojede to okredlit on we wczedniejszej pracy [5] — oraz okrefla prazeksztalcenie ¥—
projektywne.

Pray aaloseniu symetrycznoéc konelsji I' i tensora & speiniajacego warunek (2.4) znalemono

perwszy i drugi f—projeldywny tensor krzywizny.
o

SUMMARY

The author defines the transformations of a connection I' on a differentiable manifold which
preserve the system of £—geodesias as defined in [S] and introduces X -projective transforrmations.
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Under the assumption of symmetry of the connection I' and for the tensor ¥ satisfying (214) the first
and the second X—projective curvature tensor has been found.
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