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On The Univalent Holomorphic Maps of the Unit Polydisc in C®
Which Have the Parametric Representation :
II - the Necessary Conditions and the Sufficient Conditions

O odwzorowaniach jednokrotnych palicylindra jednostkowego w C™ majacych
przedstawienie parametryczne II - warunki konieczne i warunki dostateczne

In this paper we produce the necessary conditions and the suffident conditions
which guarantee that a univalent holomorphic map of the unit pdydisc in C™ have
the parametric representation.

Let C™ be the space of s complex variables z = (z{,...,2q4) 4 2; € C ,
J = 1,...,n. For 2'= (23,...,2s) € C" we define ||z|| = 1?,%““"" Let P"(r) =
= {z € C":||z{| < r} and P" = P"(1).

By I, we shall denote the identity map on C™. .

The class of holamorphic maps of a domain 3 (contained in C") into C" is
denoted by H ().

Let M(P"(r)) be the dlass of maps A : P"(r) — C™ which are halomorphic and
satisfy the following conditions:' A(0) = 0 , DA(0) = I and re(h;(z)/z;) 2 0 when
“z“ =|z;| >0 (1< <'n), where k = (Ay,...,Aq) (compare (2, (@8])-

We shall say that the function f fram [s,c0) (where ¢ 2 0) into C" is almost
abeolutely continuous on (s, 0o) if it is absalutely continuous on every bounded closed
interval contained in {o, o).

In this paper we shall study relations between the classes S(P™) and S°(P").

Deflnition.1. We shall say that,f € S{P”) if and only if f € H{P") , f(0) =0,
Df{0)=1I and f is univalent on P".
Definition 2. We say that f € S°(P") i and only if there exists a function
A = &(z.t) from P™ x [0, 00) into C™ which satisfies conditions:
(1) for every t €[0.00), &( ,¢) € M(P")
(i1) for every z € P , h{z,-) is a measurable funcmon on P™ such that
]

IIL% eon(z,t) = f(2) for z€ P
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where 09 = 0g(2,t) (for s € P", ¢t 2 0) is such a salution of the equation

(1) % = —A(vo,8) forae $E€]0,00), vo(3,0)=13

that for every 3 € P®, 0y(s,-) is an almost absalutely continuous function on [0, oo).

In [6] it is shown that for s > 2 S°(P™) is proper subdass of the dass S(P™).
In this paper we produce the necessary conditions and sufficent conditions which
guarantee that a map f from S(P") belongs to the class S°(P™).

Definition 8. Let 3 be an open subset of C™ such that 0 € (3. The set () will
be called asymptotically starlike if and only if there exists a map & from 01 x [0, co)
into O™ such that

1° ®(0,¢) =0 for ¢t € [0,00) ,

2° for every t € [0,00) , &(,¢) is holamorphic on 0} and D®(0,t) = I
3° foreverya €}, &(a,-) is measurable on [0,00) ,

4° for every a € ) and ¢ 2 0, the differential equation

v'(t)=-8(w,t) forae t29,w0(0)=0

possesses exactly one almost absalutely continucus solution on [0, 00) (which farther
we shall denote by w = w(a, #,¢) ) and differentiable with respect toa on 0,

5° w(a,0,t) = e~far+ 04(2)
where Em ¢'04(t) = 0 and this convergence is almost uniform on Q.

Definition 4. Let O be an open subset of O™ such that 0 € f). The set 3 will be
called smoothly asymptotically starlike if and only if it is asymptotically starlike and
the map w = w(a, s,¢) from the definition 3 i is, for all @ € ) and s > 0, differentiable
in the paint ¢t = e.

Remark 1. Let ) € C" be an open set induding 0. If (3 is a starlike set, then
it is emooothly asymptotically starlike.

Theorem 1. If f € S°(P™), then f(P"™) is an asymptotically starkike set.

Proof. Since f € S°(P™) therefore there exists a fanction A : P" x [0,00) — C
satiafying conditions (i)(ii) from definition 2 and such that lim elvo(z,t) = f(z) for
z € P™, where for every z € P™ , vo(2,-) is an almost absolutely continuous on [0, co)
salution of equation (1)

Now, define a function v = v(z,s,¢), for z € P® , ¢t > ¢ 2 0 as that in lemma 2
from [6]. It is easy to see that v(s,0,t) = vo(z,t) for 2 € P" and ¢ € |0, 00). Next,
let us introduce a function

®(a,t)=Df(f " (@) o A(f"(a),t) fora€f(P") andt20.

We shall show that such defined function ® is a looked up function. It is not difficult
to see that P fulfils conditions 1° and 2° from definiticn 3. Since for every z € P" the
function A(z,-) is measurable on |0, o0), therefore for every a € f(P") &(a,-) is also
measurable on [0, 00). Let @ € f(P") and s 2 0. The function w = f(v(f~"(a), s,¢)),
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for ¢ 2 e, is almoat absclutely continuous on [s,00). It is not difficult to show that
such defined function v = w(a, s,¢) fulfils the differential equation

v'()=—-®(w,t) forae t2s,v(s)=0a.

Since ‘l_i‘% e‘va(z,t) = f(2) , for 2 € P" (and this convergence is almost uniform
on P") and Df(0) = I, therefore

Jim to(a,0,t)=a for a€f(P"),

and this convergence is also almost uniform on f(P").
Hence we showed that the function @ : f(P™) x [0, c0) — C™ satisfies conditions
1° — 5° from definition 3 . Consequently, f(P") is an asymptotically starlike set.

Corollary . Let 1 € C and 0 € (0. If Q is a simply connected domain (the
definition of the simply connectedness, see e.g. |7]) then there exists R > 0 such that
k0 is an asymptotically starkike set.

Proof. At first let us consider the case when (3 = C. Then as the map 3,
appearing in definition 3, we can put #(a,t) = a for @ € C and t € [0, 00). When
'y S O is a simply connected domain then by Riemann theorem (see theorem 14.5

from (7] and chapter XII, §11 from [3|) there exists such a function F mapping unit
palydisc P! into 3 that F(0) = 0 and FY(0) = R, where R is some positive number.
Next, let us introduce map f = }F. Such defined function f belongs to S(P!).
Since S(P') = S°(P') (compare [6]) therefore in virtue of theorem 1, f(P!) is an
asymptoﬁ;ally starlike set. Hence *Q is also an asymptotically starlike set because
f(PY) = £0.

Theorem 3. [f f € S(P™) and f(P™) is a smoothly asymptotically starbke set
then f € S°(P™).

Proof. Since f(P") is asymptoticaily starlike, therefore there exists a function
® irom f(P™) x [0,00) into C" satisfying conditions 1° — 5° from definition 3. Let
v = v(a,s,t) for a € f(P") ,t 2 o 2 0 be a function defined in 4° of defini-
tion 3. Of course, w(a,s,t) € f(P") for any @ € f(P") andt 2 # 2 0. Let us
introduce a function » = v(z,0,¢) for 1 € P" and ¢t 2 # 2 0 in the following way
o(z,9,t) = £~} (w(f(2),8,t)). For any z € P" and ¢ 2 0 the function v(z,s,") is
almost absclutely continuous on [, 00). Heace for almost every t € (s, 00) we have

(2) " g(x, 8,t) = —h(v(z,8,¢),t) , o(z,0,0) =z

where A(z,t) = (Df~')(f(z)) o ®(f(s)) for s € P" and t > s. By definition 3 and
from the definition of v, it follows that for any z € P™ and ¢ 2 0, the function v(z, s, -)
is differentiable in paint ¢ = s. Hence from equality. (2) we have

(3) %(x.-,o):-b(z,c) fors€P” ande20.
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Let ¢ 2 0. Define an auxiliary function

o(z,7) =v(s,0,0+r) fors€P" andr20.

Py
For any 3 € P™ the function #(z,-) is differentiable in paint £ = 0 and é(z,O) =

= ‘;‘-—u(z,n, 8). On the other hand from the definition of the function A we have that
Dh(0,0) = I for ¢ 2 0. By the above facts, lemma 1 from (8] and equality (3) it
fallows that A(-,9) € M(P™) for ¢ 2 0. Also from the definition of the function A it
appears that for every z € P™ the function A(s,-) is measurable on {0, ).

Since ‘lilgo ¢'w(a,0,t) = a for any a € f(P") and Df~!(0).= I, therejore

ll_i.xgoc‘o(z,o,t) = 'l_i.leo ¢ (w(f(2),0,8)) = f(s) -

for z € P™. Hence f € S°(P").

Remark 2. I f is a starlike map (i.e. f is univalent, f € H(P") , £(0) = 0,
Df(0) = I and f(P™) is a starlike set) then f has a parametric representation i.e.
f € S°(P").

1t follows immediately from remark 1 and theorem 2.

Definition 8. A normalized univalent subordination chain is called a map
f: P" x [0,00) = C" such that ¢

1) for every £ 2.0, £(.,) € H(P"), £(0,) =0 , DI(O,0) = S-0,6) =T ,

2)forevery t 2 0, f(-,¢) is univalent on P" ,

3) for every 2 € P™ , f(2,-) is almost abeolutely continuous on [0, oo) , .

4) for (s,¢) such that 0 < s < ¢ < oo there exists a Schwarz function v = o(s, s,¢)
for z € P such that

f(z,0) = f(v(z,0,8),t) forzeP".

Definition 6. We shall say that the normalized univalent subordination chain is
smooth if for any z € P" and s 2 0 the function v(z, s, -) has the continuocus derivative
in a certain right—hand neighbourhood of the paint ¢ = s.

Theorem 8. [f fo € S°(P™) then there exists a normabized univalent subordi-
nation chain f such that fo is the first element of this chain (i.e. f(3,0) = fo(z) for
zEeP”)

Proof. Since fo € S°(P") therefore there exists a map A from P" x {0, o0) into
C" satisfying conditions (i) — (i) from definition 2 and such that -

(4) ‘Exg eoo(z,8) = fo(z) frzeP”,

where for every s € P, vg(3, ") is the almost absolutely continuous on [0, 00) salution
of equation (1).
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Let f = f(s,9) , for 3 € P" and # 2 0, be defined as that in lemma 3 from [6]. In
virtue of lemma 4 from [6] the map f(s, ) is almost absalutely continuous on [0, co)
for every 5 € P™ and the fallowing equality takes place

f(x,a):!(v(z,o,t),t) fors€ P" andt>020,
where v = o(s,8,¢) for s € P" and ¢ 2 » 2 0 is such a salution of differential equation

%:-h(o,l) forae t29, 9(s,0,0)=2

that for £ € P" and ¢ > 0 the function o(s, ,-) is almost abealutely continnous cn
[0, co). s 7

Consequently, by lemmg 3 from (6] f is a normalized univalent subordination
chain.

Since v (2,t) = v(z,0,¢) for s € P" and ¢ 2 0, therefore it is visible at once that
/(2,0) = fo(3) for s € P". .

Remark 3. The normalized univalent subordination chain which is constructed
in the proof of the above theorem fulfils the inequality

“f(‘v.)uSG'(—l—_nqu—“F fors€P" ande20.

This fact follows from corollary 2 and lemma 3 from (6]

Theorem 4. Let f de a smooth normalized univalent subordination chain such
that there exist§ € (0,1) , 8o > 0 and L > 0 such that || f(z,0)|| £ L-¢* for z € P"(§)
and o > ty. Then the first element of this chain belongs to S°(P™).

Proof. By definition of the amooth normalized univalent subordination chain it
follows that there exists a fanction o = v(s,s,t) for s € P" ,t 2 ¢ 2 0 such that

(5) f(s,8) = f(v(s,8.8),¢) fors€P™, andt2e20

and that for any z € P™ and ¢ 2> 0 the function o(s, o, -) has the continuous derivative
in a certain right-hand neighbourhood of the paint ¢ = s.
Next let

h(x.o):—%(:,.c,c) " fors3€P™,820.

Since Df(0,2) = e‘I, therefore by equality (5) we get that Dv(0,0,t) = ¢*~'I , ie.
Dv(0,0,0) = I for t 2> » 2> 0. Behaving analogously as in the proaf of theorem 2 we
conclude that A(-,s) € M(P") for any ¢ 2 0.

Differentiating equality (5) with respect to the parameter t, we obtain for z € P™,
e>0andt=0¢

(6) Df(s,0) oh{z,0) = %’(x, s .
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Let 2 € P", ¢ 2 0 and 5(z,s,-) be an almast absolutely continuous solution of
the equation

(7) %‘i =—h(g,t) forae t29, 0(z0,0)=2z.

Consider an auxiliary fanction

9(t) = f(6(s,0,¢),¢) fort2.

Such defined the fanction g is almost absalutely continuous on [¢,00) and ¢’(¢) = 0
for a.e. ¢ 2 s on the ground of equality (6). Hence g is constans on [s, 00), so

(8) f(z,8) = f(v(z,9,8),¢) forz€P” andt2s.

Since || f(z,0)|]]| S L - ¢* for 3 € P"() and ¢ > to, where § is a certain number
from (0,1) therefore prooeeding analogously as in the proof of theorem 2 from [5] we
get that there exists & > 0 such that for ¢ € P"(&) and ¢ > ¢ ‘

(9) g "% D*f(a,0)(s,3)| < %;—- fz)]? forzeC™.
0

By Taylor formmmla (see [1]) we have
(10) f(s,09)= c'z+fl(l —1)D?f(1z,0)(z,3) dr forz€P", ¢20.
0

Taking (8), (9) and (10) into account, we obtain that there exists ¢; 2 o such
that for ¢ > ¢; and 1 € P"

1(5(2,0,0),0) = ’0(3,0,8) +r(5,3) ,

where
“'(69')“ SL 'e'“;’("o)‘)" fora>t, .

In virtue of this, corollary 2 and lemma 3 from [6] and by equality (8) we get
that
f(2,0) = ‘lixgo ¢$é(z,0,0) forz € P" .
Hence f(-,0) € S°(P") and this ends the proof.

Remark 4. Let f be a cdlose-to-starlike function relative to the starlike function
g. Then, in accordance with theorem 1 from [4], the map

F(z,8)= f(z) + (' —1)g(z) wherez€P", ¢20

is univalent subordination chain satisfying the assumptions of theorem 4. Hence the
function f being the firat element of this chain has the patayetric represesitation.
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STRESZCZENIE
W pracy tej zostaly podane pewne warunki konieczne i pewne warunki dostateczne na to, aby

jednokrotne holomorficane odwzorowanie policylindra jednostikowego w C" posiadalo przedstawienie
parametryczne.

SUMMARY

In this paper some necessary and some sufficient conditions for umvalent holomorphic mappings
of the unit polydisk in C” into C™ to have a parametric representation are given.
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