ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL XLL 15

SECTIO A

1987

Instytut Kestalosma Nauczycieli Piotrków Trybunalski

T.POREDA

On The Univalent Holomorphic Maps of the Unit Polydisc in Cⁿ Which Have the Parametric Representation II – the Necessary Conditions and the Sufficient Conditions

O odwzorowaniach jednokrotnych policylindra jednostkowego w \mathbb{C}^n mających przedstawienie parametryczne II - warunki konieczne i warunki dostateczne

In this paper we produce the necessary conditions and the sufficient conditions which guarantee that a univalent holomorphic map of the unit polydisc in C^n have the parametric representation.

Let \mathbb{C}^n be the space of n complex variables $z = (z_1, \ldots, z_n)$, $z_j \in \mathbb{C}$, $j = 1, \ldots, n$. For $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ we define $||z|| = \max_{1 \leq j \leq n} |z_j|$. Let $P^n(r) = z \in \mathbb{C}^n$; ||z|| < r and $P^n = P^n(1)$.

By I, we shall denote the identity map on Cⁿ.

The class of holomorphic maps of a domain Ω (contained in \mathbb{C}^n) into \mathbb{C}^n is denoted by $H(\Omega)$.

Let $M(P^n(r))$ be the class of maps $h: P^n(r) \to \mathbb{C}^n$ which are holomorphic and satisfy the following conditions: h(0) = 0, Dh(0) = I and $re(h_j(z)/z_j) \ge 0$ when $||z|| = |z_j| > 0$ $(1 \le j \le n)$, where $h = (h_1, \ldots, h_n)$ (compare [2], [8]).

We shall say that the function f from $[o, \infty)$ (where $o \ge 0$) into \mathbb{C}^n is almost absolutely continuous on $[o, \infty)$ if it is absolutely continuous on every bounded closed interval contained in $[o, \infty)$.

In this paper we shall study relations between the classes $S(P^n)$ and $S^0(P^n)$.

Definition 1. We shall say that $f \in S(P^n)$ if and only if $f \in H(P^n)$, f(0) = 0, Df(0) = I and f is univalent on P^n .

Definition 2. We say that $f \in S^0(P^n)$ if and only if there exists a function h = h(z,t) from $P^n \times [0,\infty)$ into \mathbb{C}^n which satisfies conditions:

(i) for every $t \in [0, \infty)$, $h(\cdot, t) \in M(P^n)$

(ii) for every $z \in P^n$, $h(z, \cdot)$ is a measurable function on P^n such that

$$\lim_{t \to \infty} e^t v_0(z,t) = f(z) \quad \text{for } z \in P^n$$

where $v_0 = v_0(z, t)$ (for $z \in P^n$, $t \ge 0$) is such a solution of the equation

(1)
$$\frac{\partial v_0}{\partial t} = -h(v_0, t)$$
 for a.e. $t \in [0, \infty)$, $v_0(x, 0) = x$

that for every $z \in P^n$, $v_0(z, \cdot)$ is an almost absolutely continuous function on $[0, \infty)$.

In [6] it is shown that for $n \ge 2$ $S^0(P^n)$ is proper subclass of the class $S(P^n)$. In this paper we produce the necessary conditions and sufficient conditions which guarantee that a map f from $S(P^n)$ belongs to the class $S^0(P^n)$.

Definition 3. Let Ω be an open subset of \mathbb{C}^n such that $0 \in \Omega$. The set Ω will be called asymptotically starlike if and only if there exists a map Φ from $\Omega \times [0, \infty)$ into \mathbb{C}^n such that

 $1^0 \ \Phi(0,t) = 0 \text{ for } t \in [0,\infty)$,

2⁰ for every $t \in [0, \infty)$, $\Phi(\cdot, t)$ is holomorphic on Ω and $D\Phi(0, t) = I$,

3⁰ for every $\alpha \in \Omega$, $\Phi(\alpha, \cdot)$ is measurable on $[0, \infty)$,

 4° for every $\alpha \in \Omega$ and $s \geq 0$, the differential equation

 $w'(t) = -\Phi(w,t)$ for a.e. $t \ge s$, $w(s) = \alpha$

possesses exactly one almost absolutely continuous solution on $[0, \infty)$ (which further we shall denote by $w = w(\alpha, s, t)$) and differentiable with respect to α on Ω , $5^{\circ} \qquad w(\alpha, 0, t) = e^{-t}\alpha + 0_{\alpha}(t)$

where $\lim_{t \to 0} e^t 0_{\alpha}(t) = 0$ and this convergence is almost uniform on Ω .

Definition 4. Let Ω be an open subset of \mathbb{O}^n such that $0 \in \Omega$. The set Ω will be called smoothly asymptotically starlike if and only if it is asymptotically starlike and the map $w = w(\alpha, o, t)$ from the definition 3 is, for all $\alpha \in \Omega$ and $o \ge 0$, differentiable in the point t = o.

Remark 1. Let $\Omega \subset \mathbb{C}^n$ be an open set including 0. If Ω is a starlike set, then it is smoothly asymptotically starlike.

Theorem 1. If $f \in S^0(\mathbb{P}^n)$, then $f(\mathbb{P}^n)$ is an asymptotically starlike set.

Proof. Since $f \in S^0(P^n)$ therefore there exists a function $h : P^n \times [0, \infty) \to \mathbb{C}^n$ satisfying conditions (i)-(ii) from definition 2 and such that $\lim_{t\to\infty} e^t v_0(z,t) = f(z)$ for $z \in P^n$, where for every $z \in P^n$, $v_0(z, \cdot)$ is an almost absolutely continuous on $[0, \infty)$ solution of equation (1).

Now, define a function v = v(z, s, t), for $z \in P^n$, $t \ge s \ge 0$ as that in lemma 2 from [6]. It is easy to see that $v(z, 0, t) = v_0(z, t)$ for $z \in P^n$ and $t \in [0, \infty)$. Next, let us introduce a function

$$\bar{\Psi}(\alpha,t) = Df(f^{-1}(\alpha)) \circ h(f^{-1}(\alpha),t) \quad \text{for } \alpha \in f(P^n) \quad \text{and } t \ge 0.$$

We shall show that such defined function Φ is a looked up function. It is not difficult to see that Φ fulfils conditions 1° and 2° from definition 3. Since for every $z \in P^n$ the function $h(z, \cdot)$ is measurable on $[0, \infty)$, therefore for every $\alpha \in f(P^n) \quad \Phi(\alpha, \cdot)$ is also measurable on $[0, \infty)$. Let $\alpha \in f(P^n)$ and $s \ge 0$. The function $w = f(v(f^{-1}(\alpha), s, t))$, for $t \ge e$, is almost absolutely continuous on $[e, \infty)$. It is not difficult to show that such defined function $w = w(\alpha, e, t)$ fulfils the differential equation

$$w'(t) = -\Phi(w,t)$$
 for a.e. $t \ge s$, $w(s) = \alpha$.

Since $\lim_{t\to\infty} e^t v_0(z,t) = f(z)$, for $z \in P^n$ (and this convergence is almost uniform on P^n) and Df(0) = I, therefore

$$\lim_{t\to\infty} e^t w(\alpha,0,t) = \alpha \quad \text{for} \quad \alpha \in f(P^n) ,$$

and this convergence is also almost uniform on $f(P^n)$.

Hence we showed that the function $\Phi: f(P^n) \times [0, \infty) \to \mathbb{C}^n$ satisfies conditions $1^\circ - 5^\circ$ from definition 3. Consequently, $f(P^n)$ is an asymptotically starlike set.

Corollary. Let $\Omega \subset \mathbb{C}$ and $0 \in \Omega$. If Ω is a simply connected domain (the definition of the simply connectedness, see e.g. [7]) then there exists R > 0 such that $\frac{1}{2}\Omega$ is an asymptotically starbke set.

Proof. At first let us consider the case when $\Omega = \mathbb{C}$. Then as the map Φ , appearing in definition 3, we can put $\Phi(\alpha, t) = \alpha$ for $\alpha \in \mathbb{C}$ and $t \in [0, \infty)$. When $\Omega \subset \mathbb{C}$ is a simply connected domain then by Riemann theorem (see theorem 14.8)

from [7] and chapter XII, §11 from [3]) there exists such a function F mapping unit polydisc P^1 into Ω that F(0) = 0 and F'(0) = R, where R is some positive number. Next, let us introduce map $f = \frac{1}{R}F$. Such defined function f belongs to $S(P^1)$. Since $S(P^1) = S^0(P^1)$ (compare [6]) therefore in virtue of theorem 1, $f(P^1)$ is an asymptotically starline set. Hence $\frac{1}{R}\Omega$ is also an asymptotically starline set because $f(P^1) = \frac{1}{R}\Omega$.

Theorem 2. If $f \in S(P^n)$ and $f(P^n)$ is a smoothly asymptotically startike set then $f \in S^0(P^n)$.

Proof. Since $f(P^n)$ is asymptotically starlike, therefore there exists a function Φ from $f(P^n) \times [0, \infty)$ into \mathbb{C}^n satisfying conditions $1^\circ - 5^\circ$ from definition 3. Let $w = w(\alpha, s, t)$ for $\alpha \in f(P^n)$, $t \ge s \ge 0$ be a function defined in 4° of definition 3. Of course, $w(\alpha, s, t) \in f(P^n)$ for any $\alpha \in f(P^n)$ and $t \ge s \ge 0$. Let us introduce a function v = v(z, s, t) for $z \in P^n$ and $t \ge s \ge 0$ in the following way $v(z, s, t) = f^{-1}(w(f(z), s, t))$. For any $z \in P^n$ and $s \ge 0$ the function $v(z, s, \cdot)$ is almost absolutely continuous on $[s, \infty)$. Hence for almost every $t \in [s, \infty)$ we have

(2)
$$\frac{\partial v}{\partial t}(z,s,t) = -h(v(z,s,t),t), \quad v(z,s,s) = z$$

where $h(z,t) = (Df^{-1})(f(z)) \circ \overline{\Phi}(f(z))$ for $z \in P^n$ and $t \ge s$. By definition 3 and from the definition of v, it follows that for any $z \in P^n$ and $s \ge 0$, the function $v(z,s,\cdot)$ is differentiable in point t = s. Hence from equality (2) we have

(3)
$$\frac{\partial v}{\partial t}(z,s,s) = -h(z,s) \quad \text{for } z \in P^n \text{ and } s \ge 0$$
.

Let $e \ge 0$. Define an auxiliary function

$$\tilde{v}(s,r) = v(s,s,s+r)$$
 for $s \in P^n$ and $r \ge 0$.

For any $z \in P^n$ the function $\tilde{v}(z, \cdot)$ is differentiable in point $\tau = 0$ and $\frac{\partial \tilde{v}}{\partial \tau}(z, 0) =$

 $=\frac{\partial v}{\partial t}(z, s, s)$. On the other hand from the definition of the function h we have that Dh(0, s) = I for $s \ge 0$. By the above facts, lemma 1 from [8] and equality (3) it follows that $h(\cdot, s) \in M(P^n)$ for $s \ge 0$. Also from the definition of the function h it appears that for every $z \in P^n$ the function $h(z, \cdot)$ is measurable on $[0, \infty)$.

Since $\lim_{t\to\infty} e^t w(\alpha, 0, t) = \alpha$ for any $\alpha \in f(\mathbb{P}^n)$ and $Df^{-1}(0) = I$, therefore

$$\lim_{t\to\infty}e^tv(z,0,t)=\lim_{t\to\infty}e^tf^{-1}(w(f(z),0,t))=f(z).$$

for $z \in P^n$. Hence $f \in S^0(P^n)$.

Remark 2. If f is a starlike map (i.e. f is univalent, $f \in H(P^n)$, f(0) = 0, Df(0) = I and $f(P^n)$ is a starlike set) then f has a parametric representation i.e. $f \in S^0(P^n)$.

It follows immediately from remark 1 and theorem 2.

Definition 5. A normalized univalent subordination chain is called a map $f: P^n \times [0, \infty) \to \mathbb{C}^n$ such that

1) for every $t \ge 0$, $f(\cdot, t) \in H(P^n)$, f(0, t) = 0, $Df(0, t) = \frac{\partial f}{\partial t}(0, t) = e^t I$,

2) for every $t \ge 0$, $f(\cdot, t)$ is univalent on P^n ,

3) for every $z \in P^n$, $f(z, \cdot)$ is almost absolutely continuous on $[0, \infty)$,

4) for (s,t) such that $0 \le s \le t < \infty$ there exists a Schwarz function v = v(z, s, t) for $z \in P^n$ such that

$$f(z, s) = f(v(z, s, t), t) \quad \text{for } z \in P^n .$$

Definition 6. We shall say that the normalized univalent subordination chain is smooth if for any $z \in P^n$ and $s \ge 0$ the function $v(z, s, \cdot)$ has the continuous derivative in a certain right-hand neighbourhood of the point t = s.

Theorem 3. If $f_0 \in S^0(P^n)$ then there exists a normalized univalent subordination chain f such that f_0 is the first element of this chain (i.e. $f(z,0) = f_0(z)$ for $z \in P^n$).

Proof. Since $f_0 \in S^0(P^n)$ therefore there exists a map h from $P^n \times [0, \infty)$ into \mathbb{C}^n satisfying conditions (i) - (ii) from definition 2 and such that

(4)
$$\lim_{t \to 0} e^t v_0(z,t) = f_0(z) \quad \text{for } z \in P^n$$

where for every $z \in P^n$, $v_0(z, \cdot)$ is the almost absolutely continuous on $[0, \infty)$ solution of equation (1).

Let f = f(s, e), for $s \in P^n$ and $e \ge 0$, be defined as that in lemma 3 from [6]. In virtue of lemma 4 from [6] the map $f(s, \cdot)$ is almost absolutely continuous on $[0, \infty)$ for every $s \in P^n$ and the following equality takes place

$$f(z,s) = f(v(z,s,t),t)$$
 for $z \in P^n$ and $t \ge s \ge 0$.

where v = v(z, o, t) for $z \in P^n$ and $t \ge v \ge 0$ is such a solution of differential equation

$$\frac{\partial v}{\partial t} = -k(v,t)$$
 for a.e. $t \ge s$, $v(s,s,s) = s$

that for $z \in P^n$ and $v \ge 0$ the function $v(z, v, \cdot)$ is almost absolutely continuous on $[0, \infty)$.

Consequently, by lemma 3 from [6] f is a normalized univalent subordination chain.

Since $v_0(s,t) = v(s,0,t)$ for $s \in P^n$ and $t \ge 0$, therefore it is visible at once that $f(s,0) = f_0(s)$ for $s \in P^n$.

Remark 3. The normalized univalent subordination chain which is constructed in the proof of the above theorem fulfils the inequality

$$||f(z, o)|| \le e^{o} \frac{||z||}{(1 - ||z||)^{3}}$$
 for $z \in P^{n}$ and $o \ge 0$.

This fact follows from corollary 2 and lemma 3 from [6].

Theorem 4. Let f be a smooth normalized univalent subordination chain such that there exist $\delta \in (0,1)$, $t_0 > 0$ and L > 0 such that $||f(z,s)|| \le L \cdot e^s$ for $z \in P^n(\delta)$ and $s > t_0$. Then the first element of this chain belongs to $S^0(P^n)$.

Proof. By definition of the smooth normalized univalent subordination chain it follows that there exists a function v = v(s, o, t) for $s \in P^n$, $t \ge o \ge 0$ such that

(5)
$$f(s,s) = f(v(s,s,t),t)$$
 for $s \in P^n$, and $t \ge s \ge 0$

and that for any $z \in P^n$ and $o \ge 0$ the function $v(z, o, \cdot)$ has the continuous derivative in a certain right-hand neighbourhood of the point l = o.

Next let

(6)

$$k(s, s) = -\frac{\partial v}{\partial t}(s, s, s) \quad \text{for } s \in P^n , s \ge 0 .$$

Since $Df(0,t) = e^t I$, therefore by equality (5) we get that $Dv(0, o, t) = e^{o-t} I$, i.e. Dv(0, o, o) = I for $t \ge o \ge 0$. Behaving analogously as in the proof of theorem 2 we conclude that $h(\cdot, o) \in M(P^n)$ for any $o \ge 0$.

Differentiating equality (5) with respect to the parameter t, we obtain for $z \in P^n$, $0 \ge 0$ and t = 0

$$Df(z,s) \circ h(z,s) = \frac{\partial f}{\partial t}(z,s)$$
.

Let $z \in P^n$, $s \ge 0$ and $\tilde{v}(z, s, \cdot)$ be an almost absolutely continuous solution of the equation

(7)
$$\frac{\partial \tilde{v}}{\partial t} = -h(\tilde{v}, t)$$
 for a.e. $t \ge v$, $\tilde{v}(z, v, v) = z$.

Consider an auxiliary function

$$g(t) = f(\tilde{v}(z, o, t), t) \quad \text{for } t \ge o$$
.

Such defined the function g is almost absolutely continuous on $[s, \infty)$ and g'(t) = 0 for a.e. $t \ge s$ on the ground of equality (6). Hence g is constant on $[s, \infty)$, so

(8)
$$f(z, s) = f(v(z, s, t), t)$$
 for $z \in P^n$ and $t \ge s$.

Since $||f(z, \bullet)|| \le L \cdot e^{\bullet}$ for $z \in P^{n}(\delta)$ and $\bullet > t_{0}$, where δ is a certain number from (0, 1) therefore proceeding analogously as in the proof of theorem 2 from [5] we get that there exists $\delta_{0} > 0$ such that for $\bullet \in P^{n}(\delta_{0})$ and $\bullet > t_{0}$

(9)
$$\left\|\frac{1}{2!} D^2 f(a, e)(z, z)\right\| \leq \frac{L e^e}{\delta_0^2} \|z\|^2 \quad \text{for } z \in \mathbb{C}^n$$

By Taylor formula (see [1]) we have

(10)
$$f(z, \theta) = e^{\theta}z + \int_0^1 (1-\tau)D^2 f(\tau z, \theta)(z, z) d\tau \quad \text{for } z \in P^n , \quad \theta \ge 0 .$$

Taking (8), (9) and (10) into account, we obtain that there exists $t_1 \ge t_0$ such that for $o > t_1$ and $z \in P^n$

$$f(\tilde{v}(z,0,s),s) = e^{s}v(z,0,s) + r(\tilde{v},s),$$

where

 $\|r(\tilde{v}, s)\| \leq L \cdot e^s \|\tilde{v}(z, 0, s)\| \quad \text{for } s > t_1.$

In virtue of this, corollary 2 and lemma 3 from [6] and by equality (8) we get that

$$f(z,0) = \lim_{t \to \infty} e^t \tilde{v}(z,0,t) \quad \text{for } z \in P^n .$$

Hence $f(\cdot, 0) \in S^0(\mathbb{P}^n)$ and this ends the proof.

Remark 4. Let f be a close-to-starlike function relative to the starlike function g. Then, in accordance with theorem 1 from [4], the map

$$F(z,t) = f(z) + (e^t - 1)g(z) \quad \text{where } z \in P^n, \quad t \ge 0$$

is univalent subordination chain satisfying the assumptions of theorem 4. Hence the function f being the first element of this chain has the parametric representation.

120

REFERENCES

- [1] Cartan, H., Calcul differentiel. Formes differentielles, Hermann, Paris 1967.
- [2] Gurganus, K. R., ∮ -like holomorphic functions in Cⁿ and Banach spaces, Trans. Amer. Math. Soc. 205 (1975), 389-406.
- [3] Leja, F., Teoria funkcji analitycznych, PWN, Warszawa 1957.
- [4] Pfaltzgraff, J.A., Suffridge, T.J., Close-to-starlike holomorphic functions of several variables, Pacific J. Math. 57 (1975), 271-279.
- [5] Poreda, T., On the univalent subordination chains of holomorphic mappings in Banach spaces, Comment. Math. Prace Mat., (to appear).
- [6] Poreda, T., On the univalent holomorphic maps of the unit polydisc in \mathbb{C}^n which have the parametric representation I the geometrical properties, in this volume.
- [7] Rudin, W., Real and complex analysis, McGraw-Hill, Inc. 1974, Polish transl., PWN, Warszawa 1986.
- [8] Suffridge, T.J., Starlike and convex maps in Banach spaces, Pacific J. Math. 46 (1973), 575-589.

STRESZCZENIE

W pracy tej zostały podane pewne warunki konieczne i pewne warunki dostateczne na to, aby jednokrotne holomorficzne odwzorowanie policylindra jednostkowego w \mathbb{C}^n posiadało przedstawienie parametryczne.

SUMMARY

In this paper some necessary and some sufficient conditions for univalent holomorphic mappings of the unit polydisk in \mathbb{C}^n into \mathbb{C}^n to have a parametric representation are given.

and the states

