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On the Univalent Holomorphic Maps of the Unit Polydics in C"
Which Have the Parametric Representation
I — the Geometrical Properties

O odwzorowaniach jednokrotnych palicylindra jednostkowego w C™
majacych praedstawienie parametryczne I - wlasnadci geometryczne

In this paper we consider univalent holomorphic maps of the unit polydisc in C”
into C™, having the parametric representation. It is shown that this cfiss of functions
have basic geometrical properties analogous to those of the class of univalent functions
of one variable.

Let C™ denote the space of # complex variables 3 = (21,...,2n) , 3j € C ,
7 =12,...,n. For (s1,...,2,) = z € C", define |z|| = |z,| Let P"(r)

= {z € C";||z|| < r} and P™ = P™(1). We shall denote by I the 1damty map on C".
The class of halomorphic maps of a domain () (contained in C™) into C” is denoted
by H(Q).

Let M(P"(r)) be the class of maps A : P*(r) — C™ which are holomorphic and
satisfy the following conditions: A(0) = 0, Dh(0) = I and re(h;(z)/z;) > 0 when
I3l = |aj] > 0 (1 £ j £ n), where A = (hy,...,hn) (see [6], [11]).

A mapping v € H(P") is called a Schwarz function if v(0) = 0 and ||v(z)|| < |Iz||
for z € P".

We shall say that the function f fram [s,00) (where s 2 0) into C" is almost
absolutely continuous on [e, 00) if it is abedlutely continuous on every bounded closed
. interval contained in [, c0).

By 6P"(r) we denote the boundary of the polydisc P™(r).

Lerrwrn 1. [f A € M(P"), then

IA(z) - 2| & z“‘l‘l' [ frzePn

Proof. Let h € M(P™). Then by the definition of the class M(P™), we have that
h(0), Dh(0) = I and re(hg(2)/2¢) 2 0 when z € P™ and ||z]| = |2:| > 0 (1 £ k < n),
where A = (hy,...,A,). Denote by

E:" = {z € P";||z|| < |sx| , where z = (z1,...,2n)}
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fork=1,2,...,n.
Fixk,1Sk<n IctF.(z):h—:j‘—)forzeE_"—{O}. It is easy to see that
&
reFy(z) 2 0 for z € Ex" — {0}). Now, we define a fanction Hj in the following way:

Hi(tsy--ytn) = Fa(tithy-.. th—tbhytisbhtibhy. .- lnlt)

for all ¢ = (¢y,...,8n) € P™ such that ¢; # 0. Since A; is a halomorphic function
on P™ and DA(0) = I, therefore we can represent it in the form of the absalutely

oonvergent power series

M(s)=z+ Y a®s forzepP"
lvl>1
vEN"™

(compare [2], chapter IX). Using this representation, we obtain that

H(@t)=1+ E a,{” Y CIOPISEY PRI P (T o LE PO Mo ) -t 5

lv|>1
vEN"®

(where v = (14,..5%0) , [W|=1 + - +vn ), forall t = (t1,...,tn) € P" such that
& #£0.
. Let us extend the function Hy to the entire polydisc P" by putting, for
= (1yeeeyli=1,0,Lh41,..-ytn) € P" , Hi(t) = 1. It is obvious that H; is holo-
morphic on P and satisfies the following conditions: Hy(0) = 1, reH,(¢) > 0 for
t € P". Taking the function H; as a function of one complex variable ¢; (with
other variables fixed) we obtain by Herglotz formmla (see (9], theorem 2.4 ) following
inequality

2
|Ba(ty, .- t0) = 1] € 1_";“ for (t1,...,8n) € P" .
Now, let z = (#,...,2,) be any fixed paint of E;" — {0}. Put ¢! = ? for
&

i#k,1<i< n andt] = z. It is obvious that ¢° = (¢3,...,£3) € P" and, since
H, (%) = Fiy(z), therefore

m(-)-usl’%‘l‘%[. :

By the free chaice of 2, we obtain that this inequality takes place for all z € E;" - {0}.
This implies that

" - |3
|b.(:)—alsf|T'Tz|:| for z € Es" — {0} .
Further, observe that (re'®*,...,re's) € Ex" — {0} for any r € (0,1) and

¥m €|0,2x] , m = 1,...,n. Hence, we have

[he(re'®, ... ,re'®=) —e'®r| < %
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for any r € (0,1) and pm €[0,2x] , m = 1,2,...,n.
Considering the form of the Bergman-Silov boundary for the polydiac P", we
obtain /

3
b -nls B oreep.

Fram the arbitrariness of k (1 < & s'a) we have

1
ﬂb(:)—:lls% forze P .

’
Fram the above lemma immediately arises
Corollary 1. [f h € M(P"), then

1
el sl P} orzepn.

Letramn 3. Let b = h(3,t) be a function from P™ x [0,00) into C" such that
@) for everyt€[0,00), &(-,t) € M(P"),

(ii) for every s € P* |, h(s,-) is a measurable function on |0, oo).
Then for any s 2 0 and 3 € P™ the equation

(1) % = —h(v,t) for ae t20, v(s) =z

posesses exactly one almost absolutely continuous solution v = v(z,s,-) on interval
[s,00). Moreover, for any t 2 s, the function v(-, 8,¢t) is a univalent Schwarz function
on P" and Do(0,s,t) = e*~*I. j

Proof. After introduction of semi—inner product in space C™ (for definition of
semi-inner product see [6] ) and after using lemma 1.3 from (7] and corallary 1, the
proof of this lemma runs similarly as that of the thearem 2.1 from (8].

With the assumption of lemma. the following corallary is true.

Corollary 2. Ifo = o(z,8,t) for s € P* ,0 < 0 <t < 0o satisfies equation (1)
then the follousing inequalities take place

e‘llo(z, 5, 0)] < |l =|l
@) J @ =Tlo(a,0,0)[)* = (1 - |Is])?
ezl cflo(s, 0,¢)|]
@ +1z* = (@ +flo(z,0,0)11)?

forz€ P® and0 < ¢ <t < co. ;
Using lemma 4 from [6] the proof of this carallary runs similary to that of lemma
2.2 from [3).
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Lemmna 8. Let A = A(s,¢t) e a function from P" x (0,00} into C™, which
satisfies auumptwm (i)-(ii) from lemma 2. Then there exists a limit

(3) ‘l_i.lonoc o(z,0,t) = f(3,9) , forz€P”, 020,

where v = v(z,0,t), for z € P® and 0 < ¢ < ¢, 15 a solution of cquation (1) such
that for any z € P™ and ¢ 2> 0 the function o(z,e,-) is almost absolutely continuous
on [s,00) and for any ¢ 2 0 the function f(-,e) s holomorphic and univalent on P",
and Df(0,s) = °I.

Proof. The fact that for any s > 0 the function f(-,e) is holomorphic on P"
can be proved similarly as in_the theorem 2 from [10].

From lemma 2 it fallows that D f(0, 8) = e°I for ¢ 2 0.

Since for any t 2 & (o 2 0 ) the function v(-,s,¢) is univalent and holomorphic
on P" and Df(0,s) = eI, thereiore the map f(-,s) is bihdomorphic as the limit of
bihalomorphisms (compare 5], theorem 20.2, p. 333).

Definition 1. We say that f € S(P") if and only if f € H(P") , j(O) =0,
Df(0) =1 and f is univalent on P"

Definition 2. We say that f € S°(P") if and only if there exists a function
h = h(z,t) from P™ x [0, 00) into C™ which satisfies conditions -

(i) for every t € [0,00), A(-,t) € M(P™)

(il) for every z € P® ,  h(s,-) is a measurahle function on P" such that

JBim do(s,t)=f(z) forzeP"

where v = v(z,¢) (for z € P* , t 2 0) is such a eolution of the equation

' dv

= —-h(v,¢) forae t€[0,00), v(s,0)=z

that for every z € P™ , v(s,-) is an almost abeclutely cantinuous fanction on [0, 0o).
Remmark 1. The correctness of definition 2 follows from lemma 3.

Remark 2. The class S°(P™) will be called the dass of functions which have
the parametric representation.

Remark 3. It is obvious that S°(P") c S(P").
Remark 4. On account of theorem 6.1 and 6.3 from [9] for n = 1 we have
S°(P') = S(P').

The example, which is in the latter part of this paper, shows that for n > 2, the
dass S°(P™) is a proper subclass of the class S(P™).

Theorem 1. If f € S°(P") then

L I ¥ :
7 T+ iap S VOIS e foree P
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Proof. If f € S°(P™), then there exists a map A = A(z,¢) from P™ x [0, c0)
into O™ satisfying conditions (i)(ii) of definition 2. Hence f(s) = ‘E.n&c‘v(:. t), for
2 € P", where v = v(s,t), for 3 € P and ¢ 2 0, is a solution of the equation

%:;-(z,l) = —h(o(s,t),t) forae C€[0,00), o(s,0)=3s.
By cordllary 2 we have the following inequalitiea

- etflo(s,t) < Isf
) (1=loGaR)® = (1-[1sl)?
e B
A+ loN)® = 1 +Hal)?° v
for 3 € P™ and ¢ 2 0. Since |lo(s,¢)|| £ 1 for 3 € P™ and ¢t 2 0, therefore from above
inequalities we obtain that ‘Exono llo(2,8)ll = 0. Taking this fact and inequalities (5)
into account we get that

: =
= VOl e

Now we shall prove a theorem which, with regard to remark 4, is a generalization
of Koebe thearem (compare (3], theorem 2.3).

Theorem 2. If f € S°(P™), then P*(}) c f(P™) .
Proof. Let f € S°(P"). Then from theorem 1 it follows that

©) Jlim inf 17(2)] 2

=) -

Let 5 be a fixed number from (0, 4). By (6) we get that there exists p € (0,1)
such that for w € f(6P™(p)) , |lw] > 9. Since §P™(p) cuts C®, therefore also
f(5P"(p)) cuts C™ in two disjint parts — one which is bounded and the other which
ia not bounded, and f(6P™(p)) is the boundary of these parts (see [4]). As f(P™(p))
is a connected set with the boundary f(6P"(p)), eo far any w such that |[w| = 4
the segment [0, w| does not cut f(&P"(p)). The point 0 € f(P"(p)), hence P™(n)
€ f(P™) for any g € (0, ). As a consequence we obtain that P*(4) c f(P").

The next theorem will be preceded by following lemmas.
Levrwrm 4. Let f = f(s,9) for 3 € P" and ¢ 2 0 be a map defined as that in

lemma 3. Then for any z € P" , f(s,-) is an almost absolutely continuous function
on [0,00). Moreover,

(M /(s,8) = f(o(z,0,7),7) for 3€P", 712820,

where v fulfils the assumptions of lemma 3.
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Proof. Equality (7) can be proved similarly to that in theorem 3 from [10].
- Now, let 29 be a fixed point of palydisc P", and ey, 83 — be any positive numbers.
We can assume that #; < #3 (in the contrary case the proof runs likewise). By the
definition of the function o we have '

o(20,83,83) — 30 = — [" h(o(zo,ol,t),t) dt .

rn
This and corollary 1 imply that
1+
®) . Tetenron, ) = 20l < I = el ol 15 =
{
Since |{f(z0.9)| < “—e_lh%:l—‘l-l)—, for & > 0, therefore by the Cauchy formula and by

the mean—value theorem it is not difficult to show that for every T > 0 and r € (0, 1)
there exists L > 0 such that !

(9) If(2108) = f(23,0)l| S L |21 = a3

for any zy,2z3 € P"(r) and ¢ €0, T}.
*  Next, notice that from (7), (8) and (9) it follows

-

1720, 00) ~ £(ao, el € L faof] 1EAEEL

: |ox — o2
i = ol |

for any 8y, 89 € {0,T).

From the above inequality it appears at once that for any fixed z € P" the
function f(z,-) is absolutely continuous on [0, T}, where T is any positive number.
Hence for any z € P" , f(z,-) is an almost abedlutely continuous function on [0, o0).

Lemuma 8. I[fh € M(P™), then

(10) . "51,- D*4(0)(z,2)]| 2  forzeP".

Proof. Let z be any fixed paint of P". Let us define a function H, in the
fallowing way :
H,())=Ah(2z) - Az for |A| < 1.
Such defined function is holomorphic in unit bail and
(11) B!(0) = D?h(0)(2.2) .

By theorem 5.2 from [1] it follows that

3 !
(12) H2(0) = 2-2; 5&-‘,-“—’,0 .

C.
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where C, (0 <r < 1) is poditively directed circle with center 0 and radius r. From
lemma 1 we have

2|'\l II'II :
H. Q)| < for|A|< 1.

Taking this inequality and equality (12) into account we get that

12 (0)]| < 2!1—2_“i_||1;—u forr€(0,1).

This immediately implies that || —H”(0)|| <2.
Hence from (11) and by the {ree chaice of z we get inequality (10).

Theorem 3. If fo € S°(P™), then
(13) Iz D@2 forlaliS .

Proof. By the definition of the dass S°(P") it follows that there exists a function
A from P™ x {0, 00) into C™ which fulfils assumption (i)(ii) from lemma 2 and such
that
fo(z) = lim e'vo(s,8) forz€P",
f—

where o is8 a solution of the equation
g _ s
-3-‘-(:,!) = —h(vo(z,8),t) forae tE€[0,00), vo(z,0)=z.
Let us observe that in accardance with lemma 2 for any ¢ > 0 and 3 € P” the equation
ov
g —h(o,t) forae. t€[0,00), v(s) =3

possesses exactly one almost absalutely continuous solution v = v(z,,¢) on interval
fs, 00). Next, let the function f = f(s, #) for (s, s) € P™ x [0, 00) be defined as that in
lemma 3. By lemma 4 the function f is differentiable with respect to the variable s for
almost all ¢ € [0, 0). Differentiating equality (7) and considering that v(z,s,9) = 2,
we get

(14) ?&—{(J,J)=pﬂ:,l)oi(1,o)

for 2 € P™ and ae. 02 0.
Let T be any positive number. Then we can write equality (14) in the form

T
(15) f(z,T) = f(2,0)= /0 Df(z,6) 0 h(z,0)de  forz€P".
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Now, let us introduce two functions G,,(A) = f{A2,T) — f(Az0,0) and
T
H,,(A) = f Df(Az0,8) o A(Azq,8) de for |A| < 1, where 2 is a fixed paint of pdydisc

]
P™. Such defined functions are holomorphic and map unit ball into C™ ; besides
oconsidering (16) G,, = H,,. Hence by lernma 3, corcllary 1 and the theorem about
the differentiation of integrals dependent cn parameter we obtain

H"(0) = /o " [2D3£(0, ) (50, 30) + ¢*D*h(0, ) 501 20)] ds
Hence at once we get
D?*£(0,T)(z0,20)—D?£(0,0)(z0, 20)= ,!; s [2D1(0, e)(20, 20)+¢" D*A(0, 8) (20, 20)] do.
By simple transformations this equality takes form

T
(16) ‘_,rsz(()!“(’Ot %) - D’f(0,0)(zo.zo) = '/o e"D’h(O, *)(20,20) do .

In virtue of corallary 2 and lemma 3 we have the inequality

DS golhs  eaepn,

hence nusing the Cauchy forrmla it is not difficult to show that
Tlin;o ¢~3TD3£(0,T)(20, 20) = 0. Next, making use of the inequality

1% DMO. (e, a)| S2  fore20

(compare lemma §) and considering the fact that f(2,0) = fo(z) for 3 € P™ and
equality (16) we obtain that

1
"E D? £0(0) (20, %0)|| € 2.
By the free chaice of 39 it follows inequality (13).
Example. Let 8 2 2 and f : P* — C” be defined by farmmla
J(z)=(n +381’,z,....,x,.). for 3 = (21,...,3,) EP" .

It is emlsy to see that f € S(P"). We shall show that f ¢ S°(P"). Let us obeerve
that ||-2-;D’f(0)(zo,=o)" = 8 for 29 = (0,1,0,...,0), hence the function f does not

satisly the necessary condition, so it does not betong to S°(P™). Hence for » > 2 the
class S(P") is essentially wider than the class S°(P™).
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STRESZCZENIE

W peacy tej wyréinione acstaly jednokrotne od ia holomorficane policylindra jednos-
thowego P" w C™ majace praedstawienie parametryczne. Olamuje siq, 30 ta klasa funkcji ma
podstawowe wiasncid geomstrycane analogicsno jak dasa fnkcj jednokrotnych jednej amienne;
ssspolone;.

SUMMARY

The author considers univalent halomorphic mappings of the unit polydisc in C” into C"
which have the pararmstric representation. He paints out an analogy between these mappings and
the univalent functions of one complex variable.
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