LUBLIN-POLONIA

Inotytut Keztaloemia Nevaycidi

Piotrabow Trybunalato

T.POREDA

On the Univalent Holomorphic Maps of the Unit Polydics in $\mathbf{C n}^{n}$ Which Have the Parametric Representation
 I - the Geometrical Properties

O odwrorowaniach jednokrotnych policylindra jednostlowego w $\mathbf{C n}^{n}$ majł̨cych preedstawienie parametrycane I - wlasnoáci geometrycane

In this paper we consider univalent holomorphic maps of the unit polydisc in \mathbf{C}^{n} into \mathbf{C}^{n}, having the parametric representation. It is shown that this chass of functions have basic geometrical properties analogous to those of the class of univalent functions of one variable.

Let \mathbf{C}^{n} denote the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right), z_{j} \in C$, $j=1,2, \ldots, n$. For $\left(z_{1}, \ldots, z_{n}\right)=z \in C^{n}$, define $\|z\|=\max _{1 \leq j \leq n}\left|z_{j}\right|$. Let $P^{n}(r)=$ $=\left\{z \in C^{n} ;\|z\|<r\right\}$ and $P^{n}=P^{n}(1)$. We ahall denote by I the identity map on C^{n}. The class of holomorphic maps of a domain Ω (contained in $\mathbf{C l}^{n}$) into \mathbf{C}^{n} is denoted by $\boldsymbol{H}(\Omega)$.

Let $M\left(P^{n}(r)\right)$ be the class of maps $h: P^{n}(r) \rightarrow C^{n}$ which are holomorphic and satisfy the following conditions: $h(0)=0, D h(0)=I$ and $\operatorname{re}\left(h_{j}(z) / z_{j}\right) \geq 0$ when $\|z\|=\left|z_{j}\right|>0(1 \leq j \leq n)$, where $h=\left(h_{1}, \ldots, h_{n}\right)$ (see [6], [11]).

A mapping $v \in E\left(P^{n}\right)$ is called a Schwarz function if $v(0)=0$ and $\|v(x)\| \leq\|x\|$ for $x \in P^{n}$.

We shall say that the function f from $[0, \infty)$ (where , ≥ 0) into $\mathbf{C l}^{n}$ is almost absolutely continuous on $(0, \infty)$ if it is abedutely continnous on every bounded closed interval contained in $(0, \infty)$.

By $\delta P^{n}(r)$ we denote the boundary of the polydiac $P^{n}(r)$.
Lemma 1. If $h \in M\left(P^{n}\right)$, then

$$
\|h(z)-z\| \leq \frac{2\|z\|^{2}}{1-\|z\|} \quad \text { for } z \in P^{n}
$$

Proof. Let $h \in M\left(P^{n}\right)$. Then by the definition of the class $M\left(P^{n}\right)$, we have that $h(0), D h(0)=I$ and $r\left(h_{k}(z) / z_{k}\right) \geq 0$ when $z \in P^{n}$ and $\|z\|=\left|z_{k}\right|>0(1 \leq k \leq n)$, where $h=\left(h_{1}, \ldots, h_{n}\right)$. Denote by

$$
E_{k}{ }^{n}=\left\{z \in P^{n} ;\|z\| \leq\left|z_{k}\right|, \text { where } z=\left(z_{1}, \ldots, z_{n}\right)\right\}
$$

for $k=1,2, \ldots, n$.
Fix $k, 1 \leq k \leq n$. Let $F_{k}(z)=\frac{h_{k}(z)}{z_{k}}$ for $z \in E_{i}^{\prime}{ }^{n}-\{0\}$. It is easy to see that re $F_{k}(z) \geq 0$ for $z \in E_{k}{ }^{n}-\{0\}$. Now, we define a function H_{k} in the following way:

$$
B_{k}\left(l_{1}, \ldots, l_{n}\right)=F_{k}\left(l_{1} l_{k}, \ldots, l_{n-1} l_{k}, l_{k}, l_{k+1} l_{k}, \ldots, l_{n} l_{k}\right)
$$

for all $t=\left(t_{1}, \ldots, t_{n}\right) \in P^{n}$ such that $t_{k} \neq 0$. Since h_{k} is a holomorphic function on P^{n} and $D h(0)=I$, therefore we can represent it in the form of the absolutely convergent power series

$$
h_{k}(z)=z_{k}+\sum_{\substack{\mid \nu>1 \\ \nu \in N^{*}}} \alpha_{\nu}^{(k)} z^{\nu} \quad \text { for } z \in P^{n}
$$

(compare [2], chapter IX). Uaing this representation, we obtain that

$$
B_{k}(t)=1+\sum_{\substack{|\nu|>1 \\ \nu \in \mathbb{N}^{N}}} \alpha_{\nu}^{(k)} \cdot t_{1}^{\nu_{1}} \cdot \ldots \cdot t_{k-1}^{\nu_{i}-1} \cdot t_{k+1}^{\nu p+1} \cdot \ldots \cdot t_{n}^{\nu_{\infty}} \cdot t_{k}^{|\nu|-1},
$$

(where $\left.\nu=\left(\nu_{1}, \ldots, \nu_{n}\right),|\nu|=\nu_{1}+\cdots+\nu_{n}\right)$, for all $t=\left(l_{1}, \ldots, t_{n}\right) \in P^{n}$ such that $t_{k} \neq 0$.

Let us extend the function \boldsymbol{B}_{k} to the entire polydiac P^{n} by putting, for $t=\left(t_{1}, \ldots, t_{k-1}, 0, t_{n+1}, \ldots, t_{n}\right) \in P^{n}, \boldsymbol{B}_{k}(t)=1$. It is obvious that E_{k} is holomorphic on P^{n} and satisfies the following conditions: $B_{k}(0)=1$, re $H_{k}(t) \geq 0$ for $t \in P^{n}$. Taking the function \boldsymbol{H}_{k} as a function of one complex variable \boldsymbol{l}_{k} (with other variables fixed) we obtain by Herglotz formula (see [9], theorem 2.4) following inequality

$$
\left|H_{k}\left(t_{1}, \ldots, t_{n}\right)-1\right| \leq \frac{2\left|t_{k}\right|}{1-\left|t_{k}\right|} \quad \text { for }\left(t_{1}, \ldots, t_{n}\right) \in P^{n}
$$

Now, let $z=\left(z_{1}, \ldots, z_{n}\right)$ be any fixed point of $E_{k}^{n}-\{0\}$. Pot $t_{i}^{0}=\frac{z_{i}}{z_{k}}$ for $i \neq k, 1 \leq i \leq x$, and $t_{k}^{0}=z_{h}$. It is obvious that $t^{0}=\left(t_{1}^{0}, \ldots, t_{n}^{0}\right) \in P^{n}$ and, since $B_{k}\left(\ell^{0}\right)=F_{h}(z)$, therefore

$$
\left|F_{k}(z)-1\right| \leq \frac{2\left|z_{k}\right|}{1-\left|z_{k}\right|}
$$

By the free choice of z, obtain that this inequality talces place for all $z \in E_{k}{ }^{n}-\{0\}$. This implies that

$$
\left|h_{k}(x)-z_{k}\right| \leq \frac{2\left|z_{k}\right|^{2}}{1-\left|z_{k}\right|} \quad \text { for } z \in E_{k}^{n}-\{0\}
$$

Forther, oboerve that ($\left.r e^{i \varphi_{1}}, \ldots, r^{i \varphi \bullet}\right) \in E_{k}^{n}-\{0\}$ for any $r \in(0,1)$ and $\varphi_{m} \in[0,2 \pi], m=1, \ldots, n$. Hence, we have

$$
\left|h_{k}\left(r e^{i p_{1}}, \ldots, r e^{i p_{=}}\right)-r e^{i p_{k}}\right| \leq \frac{2 r^{2}}{1-r}
$$

for any $r \in(0,1)$ and $\varphi_{m} \in[0,2 \pi], m=1,2, \ldots, n$.
Considering the form of the Bergman-Silov boundary for the polydisc P^{n}, we obtain

$$
\left|A_{k}(z)-z_{k}\right| \leq \frac{2\|z\|^{2}}{1-\|z\|^{2}} \quad \text { for } z \in P^{n}
$$

From the arbitrarines of $k(1 \leq k \leq \pi)$ we have

$$
\|s(x)-x\| \leq \frac{2\|z\|^{2}}{1-\|z\|} \quad \text { for } z \in P^{n}
$$

,
From the above lemma immodiately arises
Corollary 1. If $h \in M\left(P^{n}\right)$, then

$$
\|h(z)\| \leq\|z\| \frac{1+\|z\|}{1-\|z\|} \quad \text { for } z \in P^{n}
$$

Lenma 2. Let $h=h(x, t)$ be a function from $P^{n} \times[0, \infty)$ into C^{n} such that (i) for every $t \in[0, \infty)$, $h(\cdot, t) \in M\left(P^{n}\right)$,
(ii) for every $z \in P^{n}, h(z, \cdot)$ is a measurable function on $[0, \infty)$.

Then for any,≥ 0 and $z \in P^{n}$ the equation

$$
\begin{equation*}
\frac{\partial v}{\partial t}=-h(v, t) \quad \text { for e.e. } t \geq 0, \quad v(\theta)=z \tag{1}
\end{equation*}
$$

posesses exactly one almost absolutely continuous solution $v=v(z, 0, \cdot)$ on interval $(0, \infty)$. Moreover, for any $t \geq 0$, the function $v(\cdot, 0, t)$ is a univalent Sehwarz function on P^{n} and $D_{v}(0, e, t)=e^{0-t} I$.

Proof. After introduction of semi-inner product in space $\mathbf{C}^{\boldsymbol{n}}$ (for definition of semi-inner product see [6]) and after using lemma 1.3 from [7] and corollary 1, the proof of this lemms runs similarly as that of the theorem 2.1 from [8].

With the assumption of lemma the following corollary is true.
Corollary 2. If $\theta=0(z, n, t)$ for $z \in P^{n}, 0 \leq 0 \leq t<\infty$ satigfies equation (1) then the following inequalities take place

$$
\left\{\begin{array}{l}
\frac{e^{t}\|v(z, s, t)\|}{(1-\|v(z, t, b)\|)^{2}} \leq \frac{e^{2}\|z\|}{(1-\|z\|)^{2}} \tag{2}\\
\frac{e^{2}\|z\|}{(1+\|z\|)^{2}} \leq \frac{e^{t}\|v(z, s, t)\|}{(1+\|v(z, 0, b)\|)^{2}}
\end{array}\right.
$$

for $z \in P^{n}$ and $0 \leq 0 \leq t<\infty$.
Using lemma 4 from [6] the proof of this cordlary rans similaty to that of lemma 2.2 from [8].

Lemana 3. Let $h=h(x, t)$ be a function from $P^{n} \times(0, \infty)$ inso C^{n}, which satisfies assumptions (i)-(ii) from lemma 2. Then there exists a limit

$$
\begin{equation*}
\lim _{l \rightarrow \infty} e^{f} v(z, s, t)=f(z, s), \quad \text { for } z \in P^{n}, v \geq 0 \tag{3}
\end{equation*}
$$

where $v=v(z, 0, t)$, for $z \in P^{n}$ and $0 \leq \in \leq t$, is a solution of equation (1) such that for any $z \in P^{n}$ and,≥ 0 the function $v(z, \theta, \cdot)$ is almost absolutely continuous on $(0, \infty)$ and for any,≥ 0 the function $f(\cdot, 0)$ is holomorphic and univalent on P^{n}, and $D f(0,0)=e^{0} I$.

Proof. The fact that for any ≥ 0 the function $f(\cdot, 0)$ is holomorphic on $P n$ can be proved similarly as in the theorem 2 from [10].

From lemma 2 it follows that $D f(0, s)=e^{0} I$ for $\bullet \geq 0$.
Since for any $t \geq 0(0 \geq 0)$ the function $v(\cdot, 0, t)$ is anivalent and holomorphic on P^{n} and $D f(0,0)=e^{0} I$, thereiore the map $f(\cdot, 0)$ is biholomorphic as the limit of biholomorphisms (compare [5], theorem 20.2, p. 333).

Definition 1. We say that $f \in S\left(P^{n}\right)$ if and only if $f \in B\left(P^{n}\right), f(0)=0$, $D f(0)=I$ and S is univalent on P^{n}.

Definition 2. We say that $f \in S^{0}\left(P^{n}\right)$ if and only if there exists a function $h=h(z, l)$ from $P^{n} \times(0, \infty)$ into C^{n} which satisfies conditions ;
(i) for every $t \in[0, \infty), h(\cdot, t) \in M\left(P^{n}\right)$
(ii) for every $z \in P^{n}, h(z, \cdot)$ is a measurable function on P^{n} such that

$$
\lim _{t \rightarrow \infty} e^{f} v(z, t)=f(z) \quad \text { for } z \in P^{n}
$$

where $v=v(z, t)\left(\right.$ for $\left.z \in P^{n}, t \geq 0\right)$ is such a solution of the equation

$$
\frac{\partial v}{\partial t}=-h(v, b) \quad \text { for a.e } \quad t \in[0, \infty), \quad v(x, 0)=2
$$

that for every $z \in P^{n}, v(z, \cdot)$ is an simost aboolntely continnous function on $[0, \infty)$.
Remerk 1. The correctness of definition 2 followe from lemma 3.
Remark 2. The class $S^{0}\left(P^{n}\right)$ will be called the class of fanctions which have the parametric representation.

Remark 3. It is obvious that $S^{0}\left(P^{n}\right) \subset S\left(P^{n}\right)$.
Remark 4. On account of theorem 6.1 and 6.3 from [9] for $n=1$ we have

$$
S^{0}\left(P^{1}\right)=S\left(P^{1}\right)
$$

The example, which is in the latter part of this paper, shows that for $n \geq 2$, the class $S^{0}\left(P^{n}\right)$ is a proper subclass of the class $S\left(P^{n}\right)$.

Theorem 1. If $f \in S^{0}\left(P^{n}\right)$ then

$$
\begin{equation*}
\frac{\|z\|}{(1+\|z\|)^{2}} \leq\|f(z)\| \leq \frac{\|z\|}{(1-\|z\|)^{2}} \quad \text { for } z \in P^{n} . \tag{4}
\end{equation*}
$$

Proof. If $f \in S^{0}\left(P^{n}\right)$, then there exists a map $h=h(z, t)$ from $P^{n} \times(0, \infty)$ into C^{n} satisfying conditions (i)-(ii) of definition 2 . Hence $f(z)=\lim _{i \rightarrow \infty} e^{f} v(z, t)$, for $z \in P^{n}$, where $v=v(z, b)$, for $z \in P^{n}$ and $t \geq 0$, is a solution of the equation

$$
\frac{\partial v}{\partial t}(x, t)=-k(v(x, t), t) \quad \text { for ae } \quad t \in[0, \infty), \quad v(x, 0)=z
$$

By carcllary 2 we have the following inequalities
(5)

$$
\left\{\begin{array}{l}
\frac{e^{s}\|\bullet(z, t)\|}{\left(1-\|\bullet(s, t)\|^{2}\right.} \leq \frac{\|z\|}{(1-\|s\|)^{2}} \\
\frac{e^{s}\|\nabla(z, t)\|}{(1+\|\bullet(z, t)\|)^{2}} \geq \frac{\|z\|}{(1+\|z\|)^{2}},
\end{array}\right.
$$

for $z \in P^{n}$ and $t \geq 0$. Since $\|\rho(z, t)\| \leq 1$ for $z \in P^{n}$ and $t \geq 0$, therefore from above inequalities we obtain that $\lim _{t \rightarrow \infty}\|v(x, b)\|=0$. Tating this fact and inequalities (5) into socount we get that

$$
\frac{\|x\|}{(1+\| \|)^{2}} \leq\|f(x)\| \leq \frac{\|z\|}{(1-\|z\|)^{2}} \text {. }
$$

Now we shall prove a theorem which, with regand to remark 4, is a generalization of Koebe thearem (compare [3], theorem 2.3).

Theorem 2. If $f \in S^{0}\left(P^{n}\right)$, then $P^{n}\left(\frac{1}{4}\right) \subset f\left(P^{n}\right)$.
Proof. Let $f \in S^{0}\left(P^{n}\right)$. Then from theorem 1. it follows that

$$
\begin{equation*}
\lim _{\| \| \rightarrow 1} \inf \|f(x)\| \geq \frac{1}{1} \tag{6}
\end{equation*}
$$

Let \mp be a fixed number from $\left(0, \frac{1}{4}\right)$. By (6) we get that there exists $\rho \in(0,1)$ such that for $\omega \in f\left(\delta P^{n}(\rho)\right),\|w\|>\eta$. Since $\delta P^{n}(\rho)$ cuts C^{n}, therefore also $f\left(\delta P^{n}(\rho)\right)$ cuts C^{n} in two disjoint parts - one which is bounded and the other which is not bounded, and $f\left(\delta P^{n}(\rho)\right)$ is the boundary of these parts (see [4]). As $f\left(P^{n}(\rho)\right)$ is a connected set with the boundary $f\left(\delta P^{n}(\rho)\right)$, so far any w such that $\|\odot\|=\eta$ the segment $[0, \emptyset]$ does not cat $f\left(\delta P^{n}(\rho)\right)$. The point $0 \in f\left(P^{n}(\rho)\right)$, hence $P^{n}(\eta) \subset$ $C f\left(P^{n}\right)$ for any $\eta \in\left(0, \frac{1}{4}\right)$. As a consequence we obtain that $P^{n}\left(\frac{1}{4}\right) \subset f\left(P^{n}\right)$.

The next theorem will be preosded by following lemmas.
Lemme 4. Let $f=f(s, o)$ for $z \in P^{n}$ and,≥ 0 be a map defined as that in lemma 3. Then for any $z \in P^{n}, f(z, \cdot)$ is an almost absolustely continuous function on $[0, \infty)$. Moreover.

$$
\begin{equation*}
f(x, r)=f(v(x, x, r), r) \quad \text { for } \quad z \in P^{n}, \quad r \geq 0 \geq 0 \text {, } \tag{7}
\end{equation*}
$$

where ofulits the assumptions of lemma 3.

Proof. Equality (7) can be proved similarly to that in theorem 3 from [10].

- Now, let z_{0} be a fixed point of polydisc P^{n}, and $\varepsilon_{1}, \varepsilon_{2}$ - be any positive nambers. We can assume that $o_{1} \leq \theta_{2}$ (in the contrary case the proof runs likewise). By the definition of the function o we have

$$
v\left(z_{0}, t_{1}, t_{2}\right)-s_{0}=-\int_{0_{1}}^{\theta_{2}} h\left(v\left(s_{0}, t_{1}, t\right), t\right) d t .
$$

This and corollary 1 imply that

$$
\begin{equation*}
\cdot\left\|v\left(z_{0}, v_{1}, \|_{2}\right)-z_{0}\right\| \leq\left|\sigma_{2}-\sigma_{1}\right|\left\|z_{0}\right\| \frac{1+\left\|z_{0}\right\|}{1-\left\|z_{0}\right\|} . \tag{8}
\end{equation*}
$$

Since $\left\|f\left(z_{0}, 0\right)\right\| \leq \frac{e^{0}\left\|z_{0}\right\|}{\left(1-\left\|z_{0}\right\|\right)^{2}}$ for $0 \geq 0$, therefore by the Canchy formula and by the mean-value theorem it is not difficult to show that for every $T>0$ and $r \in(0,1)$ there exists $L>0$ such that

$$
\begin{equation*}
\left\|f\left(z_{1}, \theta\right)-f\left(z_{2}, \theta\right)\right\| \leq L\left\|z_{1}-z_{2}\right\| \tag{9}
\end{equation*}
$$

for any $z_{1}, z_{2} \in P^{n}(r)$ and $\bullet \in[0, T]$.

- Next, notice that from (7), (8) and (9) it follows

$$
\left\|f\left(z_{0}, v_{1}\right)-f\left(z_{0}, v_{2}\right)\right\| \leq L\left\|z_{0}\right\| \frac{1+\left\|z_{0}\right\|}{1-\left\|z_{0}\right\|}\left|o_{1}-o_{2}\right|
$$

for any $\theta_{1}, e_{2} \in[0, T]$.
From the above inequality it appears at once that for any fixed $z \in P^{n}$ the function $f(z, \cdot)$ is absolutely continuous on $[0, T]$, where T is any positive number. Hence for any $z \in P^{n}, f(z$,$) is an almost aboolutely continuous function on [0, \infty)$.

Lemana 5. If $h \in M\left(P^{n}\right)$, then

$$
\begin{equation*}
\left\|\frac{1}{2!} D^{2} h(0)(z, z)\right\| \leq 2 \quad \text { for } z \in P^{n} \tag{10}
\end{equation*}
$$

Proof. Let z be any fixed paint of P^{n}. Let us define a function H_{z} in the following way :

$$
B_{z}(\lambda)=h(\lambda z)-\lambda z \quad \text { for }|\lambda|<1
$$

Such defined function is holomorphic in unit bail and

$$
\begin{equation*}
\mathbb{Z}_{z}^{\prime \prime}(0)=D^{2} h(0)(x, z) \tag{11}
\end{equation*}
$$

By theorem 5.2 from [1] it follows that

$$
\begin{equation*}
H_{z}^{\prime \prime}(0)=\frac{2!}{2 \pi i} \int_{C_{0}} \frac{\bar{n}_{z}(\lambda)}{\lambda^{8}} d \lambda \tag{12}
\end{equation*}
$$

where $C_{r} \quad(0<r<1)$ is positively directed circle with center 0 and radius r. From lemma 1 we have

$$
\left\|H_{z}(\lambda)\right\| \leq \frac{2|\lambda|^{2}\|z\|^{2}}{1-|\lambda|\|z\|} \quad \text { for }|\lambda|<1
$$

Taking this inequality and equality (12) into accouns we get that

$$
\left\|B_{z}^{\prime \prime}(0)\right\| \leq 2!\frac{2\|z\|^{2}}{1-r\|z\|} \quad \text { for } r \in(0,1) \text {. }
$$

This immediately implies that $\left\|\frac{1}{2!} \boldsymbol{H}_{z}^{\prime \prime}(0)\right\| \leq 2^{\circ}$.
Hence from (11) and by the free choice of z we get inequality (10).
Theorem 3. If $f_{0} \in S^{0}\left(P^{n}\right)$, then

$$
\begin{equation*}
\left\|\frac{1}{2!} D^{2} f_{0}(0)(z, z)\right\| \leq 2 \quad \text { for }\|z\| \leq 1 \tag{13}
\end{equation*}
$$

Proof. By the definition of the class $S^{0}\left(P^{n}\right)$ it follows that there exists a function h from $P^{n} \times[0, \infty)$ into C^{n} which fulfils assamption (i)-(ii) from lemma 2 and such that

$$
f_{0}(z)=\lim _{t \rightarrow \infty} e^{t} v_{0}(z, t) \quad \text { for } z \in P^{n}
$$

where v_{0} is a solution of the equation

$$
\frac{\partial v_{0}}{\partial t}(z, t)=-h\left(v_{0}(x, t), \ell\right) \quad \text { for see } \quad t \in(0, \infty), \nu_{0}(z, 0)=z .
$$

Let us observe that in accordance with lemma 2 for any $0 \geq 0$ and $: \in P^{n}$ the equation

$$
\frac{\partial v}{\partial t}=-h(v, t) \quad \text { for ae. } \quad t \in[0, \infty), v(0)=z
$$

possesses exactly one almost absolutely continuous solution $v=\eta(z, a, t)$ on interval $[0, \infty)$. Next, let the function $f=f(z, s)$ for $(x, \theta) \in P^{n} \times[0, \infty)$ be defined as that in lemma 3. By lemma 4 the function f is differentiable with respect to the variable of for almost all $\bullet \in[0, \infty)$. Differentiating equality (7) and considering that $v(z, 0,0)=z$, we get

$$
\begin{equation*}
\frac{\partial f}{\partial v}(z, s)=D f(z, s) \circ h(z, v) \tag{14}
\end{equation*}
$$

for $z \in P^{n}$ and a.e. $\bullet \geq 0$.
Let T be any pasitive number. Then we can write equality (14) in the form

$$
\begin{equation*}
f(z, T)-f(z, 0)=\int_{0}^{T} D f(z, s) \circ h(z, s) d s \quad \text { for } z \in P^{n} \tag{15}
\end{equation*}
$$

Now, let us introduce two functions $G_{\varepsilon_{0}}(\lambda)=f\left(\lambda \varepsilon_{0}, T\right)-f\left(\lambda z_{0}, 0\right)$ and $B_{s_{0}}(\lambda)=\int_{0}^{T} D f\left(\lambda_{20}, \theta\right) \circ h\left(\lambda_{2}, 0\right) d e$ for $|\lambda|<1$, where 2_{0} is a fixed point of polydisc P^{n}. Such defined functions are holomarphic and map unit ball into C^{n}; besides considering (15) $G_{2_{0}}=\boldsymbol{H}_{s_{0}}$. Hence by lemma 3, corollary 1 and the theorem about the differentiation of integrals dependent on parameter we obtain

$$
H_{s}^{\prime \prime}(0)=\int_{0}^{T}\left[2 D^{2} f(0, \theta)\left(z_{0}, z_{0}\right)+e^{\bullet} D^{2} h(0, \theta)\left(z_{0}, z_{0}\right)\right] d \theta .
$$

Hence at once we get

$$
D^{2} f(0, T)\left(z_{0}, z_{0}\right)-D^{2} f(0,0)\left(z_{0}, z_{0}\right)=\int_{0}^{T}\left[2 D^{2} f(0,0)\left(z_{0}, z_{0}\right)+e^{\bullet} D^{2} h(0,0)\left(z_{0}, z_{0}\right)\right] d s
$$

By simple transformations this equality takes form

$$
\begin{equation*}
e^{-2 T} D^{2} f(0, T)\left(z_{0}, z_{0}\right)-D^{2} f(0,0)\left(z_{0}, z_{0}\right)=\int_{0}^{T} e^{-\theta} D^{2} h(0,0)\left(z_{0}, z_{0}\right) d \theta \tag{16}
\end{equation*}
$$

In virtue of corollary 2 and lemma 3 we have the inequality

$$
\|f(x, T)\| \leq \frac{e^{T}\|z\|}{(1-\|z\|)^{2}} \quad \text { for } z \in P^{n}
$$

hence asing the Canchy formala it is not difficult to show that $\lim _{T \rightarrow \infty} e^{-2 T} D^{2} f(0, T)\left(z_{0}, z_{0}\right)=0$. Next, making use of the inequality

$$
\left\|\frac{1}{2!} D^{2} h(0, \theta)\left(x_{0}, x_{0}\right)\right\| \leq 2 \quad \text { for } 0 \geq 0
$$

(compare lemma 5) and considering the fact that $f(z, 0)=f_{0}(z)$ for $z \in P^{n}$ and equality (16) obtain that

$$
\left\|\frac{1}{2!} D^{2} f_{0}(0)\left(z_{0}, z_{0}\right)\right\| \leq 2 .
$$

By the free chaice of 2_{0} it follows inequality (13).
Example. Let a ≥ 2 and $f: P^{n} \rightarrow C^{n}$ be defined by formala

$$
f(z)=\left(z_{1}+3 x_{2}{ }^{2}, z_{3}, \ldots, z_{n}\right) \quad \text { for } z=\left(z_{1}, \ldots, z_{n}\right) \in P^{n}
$$

It is easy to see that $f \in S\left(P^{n}\right)$. We shall show that $f \notin S^{0}\left(P^{n}\right)$. Let us observe that $\left\|\frac{1}{2!} D^{2} f(0)\left(z_{0}, z_{0}\right)\right\|=3$ for $z_{0}=(0,1,0, \ldots, 0)$, bence the function f does not satiofy the necessary condition, so it does not beiong to $S^{0}\left(P^{n}\right)$. Hence for $n \geq 2$ the class $S\left(P^{n}\right)$ is essentially wider than the class $S^{0}\left(P^{n}\right)$.

REFERENCES

[1] Alexievics, A. Araling foricjonaho, PWN, Waronem 1800.
 1880.
[3] Duren, P.L. , Umpalant Pinctione, Springar-Vorlag, Now York 1983.
[4] Engelking, R., Sioklucki, K. , Geometrie itopologia, part IL, PWN, Whersame 1880.
[5] Puts, B. A. , Special chaptern in the theory of andytic functions of veverol comples variables, (Rumien), Fironigis, Moscow 1963.
 Math. Soc 205 (1975), 389-408.
[7] Kato, T. , Nonlinaor servigroupe and exolation equations. J. Math Soc. Japen 18 (1967), 500-520.
[8] P\{altsgraff, J.A. Subordination chasine and misalence of holomorphic mappings in C^{n}, Math Ann. 210 (1974), 35-68.
[0] Pommerenke, J.Ch. , Univalent Fanctions, Vandeahoeck and Ruprecht, Götingen 1975.
[10] Porede, T. On the snivalent mbordination chaine of holomorphic mappings in Banach epaces, Commant. Math. Prece Mat., (to appear).
(11] Suffridge, T.J., Slartike and comeen mape in Banach apaces, Pecific J. Math. 46 (1973).

STRESZCZENIE

W pracy tej wyndrinione zostaty jednokrotne odwarowania halomorficane policylindra jednot

 seapolonej.

SUMMARY

The anthor concides univelent bolomorphic meppinge of the uris polydiec in C^{n} into C^{n} which have the parametric represeatation. Ble pointe ous an analoy between these mappinga and the univilent functions of one complex variable.

