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On the Univalent Holomorphic Maps of the Unit Polydics in Cn 
Which Have the Parametric Representation

I - the Geometrical Properties

O odwzorowaniach jednokrotnych połicylindra jednostkowego w C" 
mających przedstawienie parametryczne I - własności geometryczne

In this paper we consider univalent holomorphic maps of the unit polydisc in C" 
into C", having the parametric representation. It is shown that this cfiss of functions 
have basic geometrical properties analogous to those of the class of univalent functions 
of one variable.

Let C" denote the space of » complex variables t — (zi,...,z„) , z, 6 C ,
j — 1,2,...,». Fbr (zi,...,zn) = z € Cn, define ||z|| = max |zy|. Let Pn(r) =

1 jC j n
= {z € Cn; ||z|| < r) and P” = P"(l). We shall denote by I the identity map on C”. 
The class of holomorphic maps of a domain 0 (contained in C") into C" is denoted 
by P(fl).

Let A/(P"(r)) be the class of maps A : Pn(r) -* Cn which are holomorphic and 
satisfy the following conditions: A(0) = 0 , Z)A(O) = I and re(Ay(z)/zy) > 0 when 
||*|| = l*j'l > 0 (1 < / < »), where A = (Ai,...,A„) (see [6], [11]).

A mapping v € H(Pn) is called a Schwarz function if tr(O) = 0 and ||v(z)|| < ||x|| 
for x € P°.

We shall say that the function f from [«, oo) (where » > 0) into C" is almost 
absolutely continuous on [«, oo) if it is absolutely continuous on every bounded closed 
interval contained in [«, oo).

By 6Pn(r) we denote the boundary at the polydisc P"(r).

Lemma 1. If k € M(Pn), then
||A(z)-z||t2HL for z € P” .

Proof. Let h € Af(P"). Then by the definition of the class M(Pn), we have that 
A(0), DA(0) = I and re(At(z)/zfc) > 0 when z € Pn and ||z|| = |z*| > 0 (1 < k < »), 
where h = (hi,...,hn}. Denote by

Ekn = {z eP";||z|| < |z»| , where z = (zi,...,z„)}
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for k = 1,2,..., ».

Fix k , 1 < k < n. Let P*(x) = for x 6 £';n - {0}. It is easy to see that
ik

rePt(x) > 0 for x € Ekn — {0}. Now, we define a function Hk in the following way.

Pt(ll,.**i^n) = Pfc(ljifci • • • i ifc—t^ti^t? ^t+I tk, • • •, in^fc)

for all t = (tt,...,tn) € P” snch that it / 0. Since hk is a hdomorphic function 
on Pn and Dk(0) = I, therefore we can represent it in the form of the absolutely 
convergent power series

*t(«) = xt+ £ forx€P"
M»

(compare [2], chapter IX). Using this representation, we obtain that

jt(o = i+ £ ,
l"l>*
vgN“

(where iz = , M = ri + ••• + «'„), for all t = (<i,...,t„) € P" such that
it # 0.

Let ns extend the function Hk to the entire pclydisc P" by putting, for 
t = (ii,...,tt-i,0,it+i1...,tn) € P" , Hk(t) = 1- It is obvious that Hk is holo- 
morphic on P" and satisfies the following conditions: fifc(0) = 1 , rePt(i) > 0 for 
t € P". Taking the function Hk as a function of one complex variable t* (with 
other variables fixed) we obtain by Herglotz formula (see (9], theorem 2.4 ) following 
inequality

Mb....... t«)€P".

Now, let x = (xi,...,xn) be any fixed point of Ekn - {0}. Put t? = — for

i• # k , 1 < ii < », and t°k = Zk. It is obvious that t° = (tj,...,i°) € P" and, since 
2T* (Z°) = ^t(*)» therefore

By the free choice of x, we obtain that this inequality takes place for all x € P*" — {0}. 
This implies that

l**W-x*l<^Z^J forx6£t"-{0}.

Farther, observe that (r e**’1,... ,r «**’•) € Ekn - {0} for any r € (0,1) and 
pm € [0, 2jt] , m = 1,..., n. Hence, we have

Mr«***........
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for any r € (0,1) and ipm £ [0,2x] , m = 1,2,...,».
Considering the form of the Bergman-Silov boundary for the polydiac P", we

obtain J
|**(x)-x»|<^^ii forx£P".

From the arbitrariness of k (1 < k < n) we have

«*(>)-««< for r £ P" .

»
From the above lemma immediately arises 

. Corollary 1. If h € Af(P"), then

ll*(*)ll < M forz£Pn.

Lemma 2. Let h = h(z,t) be a function from Pn x |0,oo) into C" such that
(i) for every <£ [0, oo) , h(- ,<) € M(Pn) ,
(ii) for every zGP” , h(s, ■) is a measurable function on [0, oo).
Then for any i > 0 and x eP** the equation

(1) = -h(v,t) for a.«. t>», »(•) = *

poaesaea exactly one almost absolutely continuous aolution v = «>(«,», •) on interval 
[», oo). Moreover, for any t> a, the function »(•, s,t) ¿»a univalent Schwarz function 
onP and Dv(0,a,t) — e*~tI.

Proof. After introduction of semi-inner product in space C" (for definition of 
semi-inner product see [6] ) and after using lemma 1.3 from [7] and corollary 1, the 
proof of this lemma runs similarly as that of the theorem 2.1 from [8].

With the assumption cf lemma. the following corollary is true.

Corollary 2. If v = v(r,«, t) for a € Pn , 0 < a < t < oo satisfies equation (1) 
then the following inequalities take place

,2, (i-||»(,,.,oil)’ -G-M)’
1 ' <*W „ e‘M*,M)||

Ui + INI)1-(i + IM«,*,0ll)1
for z £ Pn and 0 < » < t < oo.

Using lemma 4 from [6] the proof of this corollary runs similarly to that of lemma 
2.2 from [8].

I
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Lemma 3. Let h = k(*,<) be a /unction Jrom Pu x [0,00} into C", which 
satisfies assumptions (i)-(ii) from lemma 2. Then there exists a limit 

(3) lim e*e(t,«, t) = /(*,«) , for z G Pn , s > 0 ,
t—*<X>

where v = v(z,«,(), for z € Pn and 0 < 1 < t, is a solution of equation (1) such 
that for any z € P" and t > 0 the function o(z, s, ■) is almost absolutely continuous 
on(»,oo) and for any »>0 the function f(,s) is holomorphie and univalent onPn, 
and Df(0, s) = e'l.

Proof. The fact that for any • > 0 the function /(•,«) is holomorphie on Pn 
can be proved similarly as in the theorem 2 from [10].

From lemma 2 it fellows that .0/(0,») = e'l for t > 0.
Since for any t>s («>0) the function »(-,», t) is univalent and holomorphie 

on Pn and 0/(0,») = e'l, thereiore the map /(-,«) is biholomorphic as the limit of 
bihdomorphisms (compare [5], theorem 20.2, p. 333).

Definition 1. We say that / 6 S(P") if and only if / € H(Pn) , /(0) = 0 , 
D/(0) = I and / is univalent on Pn

Definition 2. We say that / € S°(P") if and only if there exists a function 
h — h(z,t) from Pn x (0,00) into C" which satisfies conditions

(i) for every f € [0.00) , k(- ,f) € M(Pn)
(ii) for every z €:Pn , h(z, •) is a measurable function on Pn such that

Em «%(*,() = /(*) for z € Pnt "*OO

where v = v(z,t) (for z € Pn , t > 0) is such a solution of the equation 

= -h(v,t) for a a f€[0,oo), u(z,0) = z

that for every z € P" ,»(*, ) is an almost absolutely continuous function on [0,00).

Remark 1. The correctness of definition 2 follows from lemma 3.

Remark 2. The class S°(P") will be called the class of functions which have 
the parametric representation.

Remark 3. It is obvious that S°(Pn) c S(Pn).

Remark 4. On account of theorem 6.1 and 6.3 from [9] for n = 1 we have 

S°(P1) = S(P1) .

The example, which is in the latter part of this paper, shows that for n > 2, the 
class S°(Pn) is a proper subclass of the class S(P”).

Theorem 1. If f 6 5°(Pn) then

(1 +11*11 < IIZ(*)II < for zePn(4)
(1 - 11*11)’
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Proof. If f € S^fP"), then there exists & map h = h(*,t) from P" x (0,oo) 
into C" satisfying conditions (i)—(ii) of definition 2. Hence /(») = (Iim «‘e(s,0. for 
* € P", where » = e(s, <), for x € P" and < > 0, is a eolation of the equation

^(x,i) * -h(»(»,t),t) fcra-e. ie[0,oo), v(x,0)sx.

By corollary 2 we have the following inequalities

.<teOL<... Hm <l-||v(x,*)fl)’ S (1-||*||)»

U <*!»(»,*)| > 11*11
l(l + g*(M)ll)’”(l + M)” v

for * € P" and t > 0. Since ||e(«,t)|| < 1 for s € P" and t > 0, therefore from above
inequalities we obtain that hm ||®(x,l)|| = 0. Thking this fact and inequalities (5) 

I *oo
into account we get that

11*11

Now we shall prove a theorem which, with regard to remark 4, is a generalization 
of Koebe theorem (compare [3], theorem 23).

Theorem 2. Iff € S°(Pn), then P"(|) C /(P") .

Proof. Let f € S°(P"). Then from theorem l it follows that

(«) £ 7 •
l«H—> *

Let if be a fixed number from (0, |). By (6) we get that there exists p € (0,1) 
such that for w € f(SPn(p)) , ||w|| > if. Since iP"(p) cuts C", therefore also 
f (¿P”(p)) cuts Cn in two disjpint parts — one which is bounded and the other which 
is not bounded, and f(SPn(p)) is the boundary of these parts (see [4]). As /(P"(p)) 
is a connected set with the boundary /(¿Pn(/»)), so far any w such that ||w|| = i, 
the segment [0, w] does not cut f(bPn(p}). The point 0 € /(P"(p)), hence P"(if) C 
C f(Pn) for any i, € (0, |). As a consequence we obtain that P"Q) C /(Pn).

The next theorem will be preceded by following lemmas.
Lemma 4. Let f = /(s,a) for » € Pn and t > 0 be a map defined as that in 

lemma 3. Then for any x € P" , /(x,-) is an almost absolutely continuous function 
on [0, oo). Moreover,

(7) /(x,.) = /(e(x,.,r),r) for z^Pn, r>.>0,

where v fulfils the assumptions of lemma 3.
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Proof. Equality (7) can be proved similarly to that in theorem 3 from [10].
- Now, let «o be a fixed point of polydisc P”, and »i, «j - be any positive numbers.

We can assume that «i < #j (in the contrary case the proof runs likewise). By the 
definition of the function c we have

r»j
-»o = ~ / *(»(«o.»n<).<)* •

This and corollary 1 imply that

(8) .

Since ||/(*o.#)|l <
e'M for • > 0, therefore by the Cauchy formula and by

the mean-value theorem it is not difficult to show that for every T > 0 and r e (0,1) 
there exists L > 0 such that

(9) ||/(«i,»)- /(*»,*)|| < I |*i-*a||

for any *j,xj € P”(r) and « € [0,Tj.
Next, notice that from (7), (8) and (&) it follows

||/(*o,»i) -r /(*o,»a)|| <Ifl*o|| . + ||;”jj- |»1 - »»I

for any «i, «2 € [0,r],
From the above inequality it appears at once that for any fixed z € P" the 

function /(*,•) is absolutely continuous on [0, T], where T is any positive number. 
Hence for any z € Pn , /(*, •) is an almost absolutely continuous function on [0, oo).

Lemma 5. If h € M(Pn), then

(10) |jip3h(0)(t,x)|| <2 for z el”.
Jit

Proof. Let z be any fixed point of P". Let us define a function Ht in the 
following way :

K,(A) = h(Ar) - Xz for |A| < 1 .

Such defined function is holomorphic in unit bail and

(11) P;(0) = Dih(0)(t,x) .

By theorem 5.2 from (1] it follows that

c.
(12)
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where Gt (0<r<l)is pceitively directed circle with center 0 and radius r. FYom 
lemma 1 we have

Taking this inequality and equality (12) into account we get that

II 2,T^tn for r€ (0,1).

This immediately implies that ||^P"(0)|| < 2.

Hence from (11) and by the free choice of z we get inequality (10). 

Theorem 3. If fo € S°(Pn), then

(13) ||i PJ/o(0)(x,»)|| < 2 /or ||z|| < 1 .

Proof. By the definition of the class S° (P**) it fdlows that there exists a function 
h from Pn x (0, oo) into Cn which fulfils assumption (i)—(ii) from lemma 2 and such 
that

/o(x) = lira e‘o0(x,f) for z € Pn ,

where »o is a solution of the equation

=-*(®o(M)»<) for a.e. t € (0,oo) , oo(s,0) = 2 .

Let us observe that in accordance with lemma 2 for any t > 0 and » € P" the equation

dv
— = -h(o,t) for ae. t € (0,00) , »(•) = z

possesses exactly one almost absolutely continuous solution 0 = «(«,«,() on interval 
J», 00). Next, let the function f = f(z,») for (z, •) € P” x [0,00) be defined as that in 
lemma 3. By lemma 4 the function f is differentiable with respect to the variable a ior 
almost all a € [0,00). Differentiating equality (7) and considering that o(z,«,«) = z, 
we get

(14)

for z € P" and a.e. « > 0.
Let T be any positive number. Then we can write equality (14) in the form

(15)
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Now, let us introduce two functions C^,(A) = /(Aso,T) — /(Aso,0) and
T

H,0(A) = J P/(Aso,«) ® A(Axo, •) da for ,A| < 1, where so is a fixed point of polydisc 
o

P". Such defined functions are holomorphic and map unit ball into C" ; besides 
considering (15) G,,, — Sl0. Hence by lemma 3, corollary 1 and the theorem about 
the differentiation of integrals dependent on parameter we obtain

H'i(0) = [T [2P’/(0, •)(«>, *o) + e*£>3A(0, s)(so, *o)] d, .

Jo

Hence at once we get

PI/(0,T)(so,so)-P7(0,0)(so,zo)= /’r[2P7(0,.K*o,*o)+«'£’,A(0,.)(so,*o)] da. 

*0

By simple transformations this equality takes form

(16) e-,rP3/(0,^(so,so)-P,/(0,0)(so,so) = f e-*P’A(O,.)(so,so)ds.
Jo

In virtue of corollary 2 and lemma 3 we have the inequality

ll/(«,r)ll < for.eP" ,
\ ■ .

hence using the Cauchy formula it is not difficult to show that
lim e~2TD2f(0,T)(zo, so) = 0. Next, making use of the inequality 

T —♦oo

ll^j P’*(O,»)(»o,*o)|| < 2 for « > 0

(compare lemma 5) and considering the fact that /(s,0) = fo(z) far z € Pn and 
equality (16) we obtain that

||^ X>’/oiO)(xo,«o)|j 2 .

By the free choice of so it follows inequality (13).

Example. Let a > 2 and / : P" —» C” be defined by formula

/(*) = (*i•••,*»») for s = (st,...,sn) eP” .

It is easy to see that f € S(P”). We shall show that f £ S^P"). Let us observe
that II2j^’/(0)(*Oi*o)|| = 3 for so = (0,1,0,....0), hence the function f does not

satisfy the necessary condition, so it does not belong to S°(Pn). Hence for n > 2 the 
class S(P") is essentially wider than the class S°(P").
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STRESZCZENIE

W pracy tej wyróżnione zostały jednokrotne odwzorowania holomorficzne policyiindra jednos­
tkowego Pn w Cn mające przedstawienie parametryczne. Okazuje n«, że U klasa funkcji ma 
podstawowe własności geometryczne analogiczne jak klasa funkcji jednokrotnych jednej zmienne) 
zespolonej.

SUMMARY

The author considers univalent holomorphic mappings of the unit polydisc in 0n into Cn 

which have the parawwtrir representation. He points out an analogy between these mappings and 
the univalent functions of one complex variable.

r



b

i

?

i

j

. *

Ÿ

»

l


