ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL. XII, 13

SECTIO A

1987

Instytut Matematyka Uniwersytet Mani Curie-Skłodowskiej

D.PARTYKA

A Sewing Theorem for Complementary Jordan Domains

Twierdzenie o zszywaniu dla komplementarnych obszarów Jordana

Introduction. Let Γ be a Jordan curve in the finite plane and let $D, D^* \ni \infty$ be complementary domains of Γ . Due to the Riemann and Taylor-Osgood-Caratheodory theorems there exist homeomorphisms $h: \overline{\Delta} \to \overline{D}$ and $h^*: \overline{\Delta^*} \to \overline{D^*}$ conformal in $\Delta = \{z : |z| < 1\}$ and $\Delta^* = \{z : |z| > 1\} \cup \{\infty\}$, respectively. The composition $\gamma = (h^*)^{-1} \circ h$ is an automorphism of $\partial \Delta := T$, i.e. a sense-preserving homeomorphism of T onto itself. In this paper we prove a theorem which gives sufficient conditions for an automorphism γ of T to admit the above given representation $(h^*)^{-1} \circ h$ for some Jordan curve Γ . This theorem is essentially an analogue of the theorem proved by Pfluger [6] and Lehto-Virtanen [4], [5] for the upper and lower half-plane instead of Δ and Δ^* , when γ is a quasisymmetric function of the real axis R. The proof of our theorem is based on a method similar to that used by Lehto and Virtanen but instead of the Beurling-Ahlfors theorem [1] its counterpart for T due to Krzyż [2], [3] has been applied.

We denote by A_T the class of all automorphisms of T which keep the point 1 fixed and have a conformal extension on some annulus $\{z: r < |z| < R\}$, r < 1 < R.

Definition. An automorphism $\gamma: T \to T$ is said to be *M*-quasisymmetric, $M \geq 1$, iff the inequality

$$M^{-1} \leq |\gamma(l_1)|/|\gamma(l_2)| \leq M$$

holds for each pair of adjacent closed arcs $l_1, l_2 \subset T$ such that $0 < |l_1| = |l_2| \le \pi$, where $|\cdot|$ denotes the Lebesgue measure on T.

The family of all M-quasisymmetric automorphisms of T will be denoted by Q

Lemma. If $\gamma \in A_T \cap Q_T^+$, $M \ge 1$, then there exist K-quasiconformal automorphisms h, h° of the closed plane C. where the constant K depends only on M, and an analytic Jordan curve Γ such that

- (i) h and h[•] are conformal in Δ and Δ^{\bullet} respectively;
- (ii) $h(\Delta)$ and $h^{\circ}(\Delta) \ni \infty$ are complementary domains of Γ :
- (iii) $h(z) = h^{\circ} \circ \gamma(z)$ for $z \in T$:

(iv) $h(s) = h^{\circ}(s) = s$ for $s = 0, 1, \infty$.

Proof. Let $\gamma: P \to O$ be conformal in some annulus $P = \{s: r < |s| < R\}$, r < 1 < R, where $\gamma | T \in A_T \cap Q_T^{-1}$. By the J.Krzyż theorem [2], [3] there exists a K-quasiconformal extension φ of γ on the whole closed plane O which keeps the points 0, 1, co fixed and the constant K depends only on M. Now we will construct by induction a sequence (φ_n) mappings as follows. Let Δ_t be the disc with the centre at 0 and radius t > 0 whose boundary is denoted by T_t . Let $P_1 = \{z: r < |z| < 1\}$. There exist R_1 , $0 < R_1 < 1$, and a homeomorphism $\psi_1: \Delta^{\circ} \cup \gamma(P_1) \to O \setminus \Delta_{R_1}$ conformal in the domain $\overline{\Delta^{\circ}} \cup \gamma(P_1)$ such that $\psi_1(s) = s$ for $s = 1, \infty$. We define

$$\varphi_{1}(z) = \begin{cases} \psi_{1} \circ \varphi(z) , & z \in \Delta^{\circ} \\ \psi_{1} \circ \gamma(z) , & z \in \overline{P}_{1} \\ R_{1}^{2} \left(\overline{\varphi}_{1} \left(r_{1}^{2} \overline{z}^{-1} \right) \right)^{-1} , & z \in \Delta_{r_{1}} \end{cases}$$

where $r_1 = r$. Let for every $n \in \mathbb{N}$, N is the set of natural numbers, $P_{n+1} = P_n \cup T_{r_n} \cup \cup P_n^\circ$, where P_n° is an annulus symmetric to P_n with respect to the circle T_r . There exist R_{n+1} , $0 < R_{n+1} < 1$ and a homeomorphism $\phi_{n+1} : \varphi_n(\Delta^\circ \cup \overline{P}_{n+1}) \to O \setminus \Delta_{R_{n+1}}$ conformal in the domain $\varphi_n(\overline{\Delta^\circ} \cup P_{n+1})$ such that $\phi_{n+1}(s) = s$ for $s = 1, \infty$.

We define

 $\varphi_{n+1}(z) = \begin{cases} \psi_{n+1} \circ \varphi_n(z) , & z \in \hat{C} \setminus \Delta_{\tau_{n+1}} \\ R_{n+1}^2 (\overline{\varphi}_{n+1} (\overline{r_{n+1}^2} \overline{z}^{-1}))^{-1} , & z \in \Delta_{\tau_{n+1}} \end{cases}$

where $r_{n+1} = r_n^2$. By the reflection principle for quasiconformal mappings [5] and by induction we obtain that for every $n \in \mathbb{N}$, φ_n is a K-quasiconformal mapping of \hat{C} onto itself which keeps the points 0, 1, ∞ fixed. Hence the family $\{\varphi_n : n \in \mathbb{N}\}$ is normal [5] and there exists a subsequence (φ_n) of the sequence (φ_n) which almost uniformly converges to some K-quasiconformal mapping φ_0 of \hat{C} onto itself. Of course $\varphi_0(z) = z$ for $z = 0, 1, \infty$.

From the definition of φ_n it follows that $\varphi_n(s) = \varphi_n \circ \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi(s)$ for $n \in \mathbb{N}$ and $z \in \Delta^\circ$. Hence the sequence $\varphi_{n,b} \circ \varphi^{-1}$, $k \in \mathbb{N}$ converges to the conformal mapping $\varphi_0 \circ \varphi^{-1}$ in the domain Δ° . By the reflection principle for conformal mappings and by induction we obtain that φ_n is conformal in the annulus P_{n+1} for $n \in \mathbb{N}$. Since $P_n \subset P_{n+1}$ for $n \in \mathbb{N}$, $\bigcup_{n=1}^{\infty} P_n = \Delta \setminus \{0\}$, the sequence (φ_n) is uniformly convergent to the mapping φ_0 in Δ and $\varphi_0(0) = 0$, φ_0 being conformal in Δ . Putting $h = \varphi_0$, $h^\circ = \varphi_0 \circ \varphi^{-1}$ and $\Gamma = \varphi_0(T)$ we see that h and h° are K-quasiconformal mappings of \hat{C} onto itself, conformal in Δ and Δ° , respectively. Moreover, $h(\Delta) = \varphi_0(\Delta)$ and $h^\circ(\Delta^\circ) = \varphi_0(\Delta^\circ) \ni \infty$ are complementary domains of $\Gamma = \varphi_0(T)$, $h(s) = h^\circ(s) = s$ for $s = 0, 1, \infty$ and for every point $z \in T$ we have $h^\circ \circ \gamma(z) = \varphi_0 \circ \varphi^{-1} \circ \varphi(z) = \varphi_0(z) = h(z)$. The function $\lambda : P \to O$ defined by the formula

$$\lambda(z) = \begin{cases} h(z), & z \in P \cap \overline{\Delta} \\ h^{\bullet} \circ \gamma(z), & z \in P \cap \Delta^{\bullet} \end{cases}$$

is analytic in $P \setminus T$ and continuous in P. Consequently λ is analytic in the whole annulus P. Then from the equality $\Gamma = \varphi_0(T) = \lambda(T)$ it follows that Γ is an analytic Jordan curve and this ends the proof.

As a consequence of the above lemma we obtain

Theorem. If $\gamma \in Q_T$, $M \ge 1$ then there exist K-quasiconformal mappings h, h° of the closed plane C onto itself, where the constant K depends only on M and a Jordan curve Γ such that

(i) h and h[•] are conformal in Δ and Δ^{\bullet} , respectively;

- (ii) $h(\Delta)$ and $h^{\bullet}(\Delta^{\bullet}) \ni \infty$ are complementary domains of Γ ;
- (iii) $h(z) = h^{\circ} \circ \gamma(z)$ for $z \in T$;
- (iv) $h(z) = h^{\circ}(z)$ for $z = 0, \infty$.

Proof. Without loss of generality we may assume that $\gamma(1) = 1$. This can be always achieved after a suitable rotation. There exists a homeomorphism σ of Ronto itself such that $\sigma(0) = 0$, $\sigma(t + 2\pi) = 2\pi + \sigma(t)$ and $\gamma(e^{it}) = e^{i\sigma(t)}$ for every $t \in R$. Let $n \in \mathbb{N}$ be arbitrary and put $P_n(z) = en(n^4 z^4 + 1)^{-1}$ for $z \in D_n$, where $D_n = \{z : |\text{Im } z| < 1/2n\}$ and $e^{-1} = \int_{-\infty}^{\infty} (x^4 + 1)^{-1} dx$. We define the function $\sigma_n : D_n \to C$ by the following formula $\sigma_n(z) = P_n \cdot \sigma(z) - P_n \cdot \sigma(0)$, where $P_n \cdot \sigma(z) = \int_{-\infty}^{\infty} P_n(z-t) \sigma(t) dt$.

Since $P'_n(z) = -4cn^5 z^3 (n^4 z^4 + 1)^{-2}$ for $z \in D_n$, σ_n is an analytic function in the strip D_n and

(1)
$$\sigma'_n(z) = P'_n * \sigma(z)$$

It is easy to verify, using for example the Cauchy integral theorem, that for every $z \in D_n$, $\int_{\infty}^{\infty} P_n(z-t) dt = 1$. Hence for every $z \in D_n$ we have

(2) $\sigma_n(z+2\pi) = P_n \circ \sigma(z+2\pi) - P_n \circ \sigma(0) =$ $= P_n \circ \sigma(z) - P_n \circ \sigma(0) + 2\pi \int_{-\infty}^{\infty} P_n(z-t) dt = \sigma_n(z) + 2\pi .$

From (1) we obtain for every $z \in R$

$$\sigma'_n(x) = 4cn^5 \int_{-\infty}^{\infty} (t-x)^3 \left(n^4 (x-t)^4 + 1\right)^{-2} \sigma(t) \, dt > 0$$

as the homeomorphism σ is increasing. By this and (2) there exists e_n , $0 < e_n \leq 1/2n$ such that $\operatorname{Re} \sigma'_n(z) > 0$ for $z \in \tilde{D}_n = \{z : |\operatorname{Im} z| < e_n\}$. Thus putting $R_n = \{z : |\log|z|| < e_n\}$ we see that the mapping $\gamma_n : R_n \to C$, $\gamma_n(z) = \exp(i\sigma_n(-i\log z))$ for $z \in R_n$, is conformal in the annulus R_n , so $\gamma_n|T \in A_T$. Since $\gamma \in Q_T^{-1}$, the following inequality holds for any $z \in R$ and $y \in (0, \pi]$: $M^{-1}(\sigma(z) - \sigma(z - y)) \leq \sigma(z + y) - \sigma(z) \leq M(\sigma(z) - \sigma(z - y))$.

Consequently

$$\sigma_n(x+y) - \sigma_n(x) = P_n * \sigma(x+y) - P_n * \sigma(x) = \int_{-\infty}^{\infty} P_n(x-t) \left(\sigma(t+y) - \sigma(t) \right) dt \le$$

$$\leq M \int_{-\infty}^{\infty} P_n(x-t) \left(\sigma(t) - \sigma(t-y) \right) = M \left(P_n * \sigma(x) - P_n * (x-y) \right) = M \left(\sigma_n(x) - \sigma_n(x-y) \right)$$

and similarly

$$\sigma_n(x+y) - \sigma_n(x) \geq M^{-1}(\sigma_n(x) - \sigma_n(x-y)) .$$

Finally for every $n \in \mathbb{N}$ the homeomorphism $\gamma_n | T \in A_T \cap Q_T$ and

 $\sigma_n(t) \longrightarrow \sigma(t)$ as $n \longrightarrow \infty$ for every $t \in \mathbb{R}$.

By the lemma there exist sequences $(k_n), (k_n^*)$ of K-quasiconformal mappings of C onto itself which keep the points 0, 1, ∞ fixed. Thus the families of mappings $\{k_n : n \in \mathbb{N}\}, \{k_n^* : n \in \mathbb{N}\}$ are normal [5] and there exist subsequences $(k_{n_k}), (k_{n_k}^*)$, which are almost uniformly convergent to K-quasiconformal mappings h and h^* of C onto itself, respectively. Moreover, $h(z) = h^*(z) = z$ for $z = 0, 1, \infty$. By (3) it follows that $\gamma_n(z) \to \gamma(z)$ as $n \to \infty$. Since $k_n(z) = k_n^*(z) \circ \gamma_n(z)$ for $n \in \mathbb{N}$, we have for every $z \in T : h(z) = \lim_{n \to \infty} h_{n_k}(z) = \lim_{n \to \infty} h_{n_k}^*(\gamma_{n_k}(z)) = h^* \circ \gamma(z)$. Hence $h(T) = h^*(T)$ and $h(\Delta), h^*(\Delta^*) \ni \infty$ are complementary domains of a Jordan curve $\Gamma = h(T)$. Moreover, h and h^* are conformal mappings in Δ and Δ^* , respectively, as limits of almost uniformly convergent sequences of conformal mappings in Δ and Δ^* . This ends the proof.

REFERENCES

- Beurling, A., Ahlfors, L.V., The boundary correspondence under quanconformal mappings, Acta Math. 56 (1966), 125-142.
- [2] Krsys, J.G., Quancindes and harmonic measure, Ann. Acad. Sci. Penn. Ser. A I Math. 12 (1987), 19-24.
- [3] KIEYS, J.G., Harmonic analysis and boundary correspondence under quasiconformal mappings, ibid. (to appear).
- [4] Lehto, O., Virtanen, K.I., On the existence of quasiconformal mappings with prescribed complex dilatation, Ann. Acad. Sci. Fenn. A I 274 (1960).
- [5] Lehto, O., Virtanen, K.I., *Quasiconformal Mappings in the Plane*, Springer-Verlag, Berlin, Heidelberg, New York 1973.
- [6] Pfluger, A., Über die Konstruktion Riemannscher Flächen durch Verheftung, J. Indian Math. Soc. 24 (1961), 401-412.

STRESZCZENIE

Wykamano, że każdy k-quasisymetryczny automorfism γ okregu jednostkowego T jest konforemną representacją pewnego K-quasiokregu Γ , analitycznego jeśli γ jest automorfizmem analitycznym, gdzie stała K zależy tylko od stałej k.

SUMMARY

h

×

The anthor proves that any k-quasisymmetric automorphism γ of the unit circle T is a conformal representation of a K-quasicircle Γ which is analytic as soon as γ is analytic; the constant K depends on k only.

