LUBLIN-POLONIA

Zaldad Zastosomad Matomatyli
 Inatytut Teorii Roswoju Spotecano Elconomicmego
 - Unimeraytat Maï Curio-Sldodowligj

2.LEWANDOWSKI

New Remarks on Some Univalence Criteria

Nowe awagi o pewnych kryteriach jednolistmóci

1. Introduction. This paper contains an improvement and extension of some univalence criteria contained in my earlier papers [1] and [2]. Section 2 of this article contains general results while Section 3 includes some carollaries. We conclude with remarks and information about some misprints contained in [1] and [2], although they were of no consequence for all results of the above mentioned articles.

We begin with some notations: \mathbf{C} is the complex plane; $A, \partial A$ denote the dosure or the boundary of the set $A \subset \mathbf{C}=\mathbf{C} \cup\{\infty\}$, respectively; $\mathbf{R}=(-\infty, \infty)$; $K(S ; R)$ is an open disc of centre S and radius $R ; E_{r}=\{z:|z|<r\} ; r \in(0 ; 1]$, $E_{1}=E ; E_{r}^{0}=\left\{\bullet \in O:|\infty|>^{\circ} r \geq 1\right\}, E_{1}^{0}=E^{0}$.
2. Main results. Before the formulation of general results we shall give a trivial bat useful

Remark 1. Let $D \subset C$ be a convex domsin such that ∂D does not contain any rectilinear segment Suppose that $A \in D$ and $\vartheta\left(\lambda_{0}\right)=\lambda_{0} A+\left(1-\lambda_{0}\right) B \in D$, where $A \neq B$ are fixed points. Then it is easy to see, that
a) $\left[\lambda_{0} \in(0 ; 1)\right] \Rightarrow \varpi(\lambda) \in D \quad$ for each $\lambda \in\left(\lambda_{0} ; 1\right)$,
b) $\left[\lambda_{0}>1\right] \quad \approx(\lambda) \in D \quad$ for each $\lambda \in\left(1 ; \lambda_{0}\right)$.

We came now to the formulation and proof of general reaults.
Theorem 1. Let $\in \geq 1 / 2, \bullet=\alpha+\beta i, \alpha>0, \beta \in \mathbb{R}$ be fired numbers and let $f(z)=s+a_{2} z^{2}+\cdots$ and $g(z)$ be regular in E with $f^{\prime}(z) \neq 0$ for $z \in E$. Suppose that the following inequalities

$$
\begin{equation*}
\left|\frac{s f^{\prime}(s)}{f(x) g(z)}-\frac{a 0}{a}\right| \leq \frac{a \mid}{a}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left||z|^{2 a / a} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{2 a / a}\right)\left[\frac{z f^{\prime}(z)}{f(z)}+z \frac{z d^{d}(z)}{g(z)}\right]-\frac{a}{a}\right| \leq \frac{a f 0 \mid}{a} \tag{2}
\end{equation*}
$$

hold for $z \in E$. Then f is usivalent in E.

Proof. Thearem 1 was proved in [1] for $c>1 / 2$ by using Pommerenke's subordinations chains. It remains to prove Theorem 1 in the limit case $a=1 / 2$ for which the mentioned method cannot be applied directly. In this case from (1) and (2) we obtain

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z) g(z)}-\frac{0}{2 \alpha}\right| \leq \frac{|0|}{2 \alpha} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left||z|^{1 / \alpha} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{1 / \alpha}\right)\left[\frac{z f^{\prime}(z)}{f(z)}+e \frac{z g^{\prime}(z)}{g(z)}\right]-\frac{v}{2 \alpha}\right| \leq \frac{|\sigma|}{2 \alpha} . \tag{4}
\end{equation*}
$$

Let us put $f_{r}(z)=r^{-1} f(r z), g_{r}(z)=g(r z)$ where $r \in(0 ; 1)$ is a fixed namber. Then (4) implies the following inequality

$$
\begin{equation*}
\left||r z|^{1 / \alpha} \frac{z f_{r}^{\prime}(z)}{f_{r}(z) g_{r}(z)}+\left(1-|r z|^{1 / \alpha}\right)\left[\frac{z f_{r}^{\prime}(z)}{f_{r}(z)}+\frac{z g_{r}^{\prime}(z)}{g_{r}(z)}\right]-\frac{s}{2 \alpha}\right| \leq \frac{|s|}{2 \alpha} . \tag{5}
\end{equation*}
$$

Let us set $A_{r}(z)=z f_{r}^{\prime}(z) /\left[f_{r}(z) g_{r}(z)\right], B_{r}(z)=z f_{r}^{\prime}(z) / f_{r}(z)+s z g_{r}^{\prime}(z) / g_{r}(z)$. From. the definition and by (3) $A_{r}(z) \in K(8 / 2 \alpha ;|\rho| / 2 \alpha)$ for $z \in E$. Applying Remark $\left.1, a\right)$ with $D=K\left(0 / 2 \alpha_{i}|\sigma| / 2 \alpha\right), A=A_{r}(z), B=B_{r}(z), \lambda_{0}=|r z|^{1 / \alpha}$ to conditions (3) and (4) we obtain the following inequality

$$
\begin{equation*}
\left||z|^{1 / \alpha} A_{r}(z)+\left(1-|z|^{1 / \alpha}\right) B_{r}(z)-\theta / 2 \alpha\right| \leq|\theta| / 2 \alpha \tag{6}
\end{equation*}
$$

which is equivalent to the following one

$$
\begin{equation*}
\left||z|^{2 / \alpha}\left[A_{r}(z)-B_{r}(z)\right]+N_{r}(z)+1-\rho / 2 \alpha\right| \leq|\sigma| / 2 \alpha \tag{7}
\end{equation*}
$$

where $N_{r}(z)=B_{r}(z)-1$. In what follows we will show that there exists $\varepsilon \in(0 ; 1)$ such that the inequalities

$$
\begin{gather*}
\left|A_{r}(z)-\frac{(1+e) s}{2 \alpha}\right| \leq \frac{(1+\varepsilon)|0|}{2 \alpha}, \tag{8}\\
\left||z|^{(1+s) / a} A_{r}(z)+\left(1-|z|^{(1+\varepsilon) / \alpha}\right) B_{r}(z)-\theta / 2 \alpha\right| \leq|0| / 2 \alpha \tag{9}
\end{gather*}
$$

hold for $z \in E$. In such a case by Theorem 1 for $a=(1+c) / 2>1 / 2$ $f_{r}(z)$ would be univalent in E. Inequality (8) is an easy consequence of (3). From (5) by Remark 1 ,a) we obtain (9) for $|z| \geq r^{1 / \sigma}$ because $|r z|^{1 / \alpha} \leq|z|^{(1+s) / \alpha}$ and $K(\theta / 2 \alpha ;|\theta| / 2 \alpha) \subset K((1+e) \cdot / 2 \alpha ;(1+\varepsilon)|\theta| / 2 \alpha)$ for each $\in \in(0 ; 1)$. Now in order to complete the proof we ought to show that there exists $e \in(0 ; 1)$ such that (9) holds for $|z| \leq r^{1 / 6}$. From (3) we obtain $z^{-1} f(z) g(z) \neq 0$ for $z \in E$ and hence $z^{-1} f_{r}(z) g_{r}(z) \neq 0$ in E. Thus there exists $M(r)>0$ such that $|A(z)-B(z)| \leq M(r)$,
$|N(s)| \leq M(r)$. Moreover in view of $N(0)=0$ and the Schwarz lemma $|N(z)| \leq M(r)|z|$. Similarly as (6) and (7) inequality (9) is equivalent to the fodlowing one

$$
\begin{equation*}
\left||z|^{(1+c) / a}\left[A_{r}(z)-B_{r}(z)\right]+N_{r}(z)+1-(1+\sigma) \cdot / 2 a\right| \leq(1+\sigma)|\cdot| / 2 \alpha \tag{10}
\end{equation*}
$$

It follows from the above considerations that

$$
\left||z|^{(1+\varepsilon) / \alpha}\left[A_{r}(z)-B_{r}(z)\right]+N_{r}(z)\right| \leq M(r)\left(|z|^{(1+s) / a}+|z|\right)<M(r)\left(|z|^{1 / a}+|z|\right)
$$

and (10) will be fulfilled for $|z| \leq r^{1 / 6}$ if $M(r)\left(|z|^{1 / \sigma}+|z|\right)$ is smaller than the distance $d(\varepsilon)$ of the point $\omega=1$ from the boundary of $K((1+\sigma) \cdot / 2 \alpha ;(1+\sigma)|\theta| / 2 \alpha)$ and if the point $\omega=1$ is in that disc. Forther we have $d(\varepsilon)=(1+\sigma)|\rho| / 2 \alpha-|(1+\sigma) \rho / 2 \alpha-1|=$ $=2 \sigma /\left[(1+\sigma)\left(\sqrt{1+(\beta / a)^{2}}+\sqrt{(1-\varepsilon)^{2} /(1+\sigma)^{2}+(\beta / a)^{2}}\right)\right]>\sigma /\left[(1+\sigma) \sqrt{1+(\beta / \alpha)^{2}}\right]=$ $=s \cos \gamma /(1+\varepsilon)$ where $\gamma=\operatorname{ang} \varepsilon \in(-\pi / 2 ; \pi / 2),=\alpha+i \beta$. Hence we deduce that the point $w=1$ lies in the mentioned disc and $d(e)>s \cos \gamma / 2$. Since $\lim _{0<x \rightarrow \infty}\left(b^{3} / x\right)=0$ for $0<b<1$ we obtain $M(r)\left(|z|^{1 / a}+|z|\right) \leq M(r)\left(r^{1 / s a}+r^{1 / 6}\right)<e \cos \gamma / 2<d(e)$ for $|z|<r^{1 / 6}$ and for sufficiently small $\in \in(0 ; 1)$. Thus (10) and so (9) is fulfilled in E for this 8 and then f_{r} is univalent there Obviously $f(z)=\lim _{r m 1} f_{r}(z)$ is univalent in E as well. The proof of Theorem 1 has been completed.

Theorem 2. Suppose that $g(\infty)=\infty+b_{0}+b_{1} \infty^{-1}+\cdots, g^{\prime}(\infty) \neq 0$ $h(\infty)=1+c_{n} v^{-n}+\cdots$ are regular in $E^{0} \backslash\{\infty\}$ or E^{0} respectively. For some fixed numbers $a>1 / 2,0=\alpha+i \beta, \alpha>0, \beta \in \mathbb{B}$, let the following inequalities

$$
\begin{equation*}
\left|\frac{\sigma^{\prime}(v)}{g(\infty) h(v)}-\frac{a \Delta}{a}\right| \leq \frac{a|0|}{\alpha}, \tag{11}
\end{equation*}
$$

$$
\left||\infty|^{2 a / \alpha} \frac{\omega g^{\prime}(\infty)}{g(\infty) h(\infty)}+\left(1-|\infty|^{2 a / a}\right)\left[\frac{\infty g^{\prime}(\infty)}{g(\infty)}+\frac{\infty h^{\prime}(\infty)}{h(\infty)}\right]-\frac{\infty}{a}\right| \leq \frac{a|\sigma|}{a}
$$

hold for $w \in E^{0}$. Then g is univalent in E^{0}.
The main tool in our proof is the following
Pormmerenke's lemma [3]. Let $r_{0} \in(0 ; 1]$ and let $f(z, t)=c_{1}(t) z+\cdots$, $a_{1}(t) \neq 0$, be regular in $E_{r_{0}}$ for each $t \in[0 ; \infty)$ and locally absolutely continuous in $(0 ; \infty)$, local uniformly in $E_{r_{0}}$. Suppose that for almost all $t \in[0 ; \infty) f$ satisfies the equation $f_{f}^{\prime}(z, t)=z f_{z}^{\prime}(z, t) p(z, t)$ for $z \in E_{r_{0}}$, where $p(z, t)$ is regular in E and Rep $(z)>0$ for $z \in E$. If $\left|a_{1}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and if $\left\{f(z, t) / a_{1}(t)\right\}$ forms a normal family in E_{po}, then for each $t \in[0 ; \infty) \quad f(x, t)$ has a regular and univalent extension to the whole dise E.

Proof of Theorem 2. From the normalizations of g and h we infer that (11') has the form

$$
\left||\infty|^{20 / \alpha}\left[(n \theta-1) e_{n} \infty^{-n}+o\left(0^{-n}\right)\right]+1+O\left(\infty^{-1}\right)-\frac{c}{\alpha}\right| \leq \frac{a|s|}{\alpha}, \quad \infty \rightarrow \infty
$$

and this in turn implies the following inequality

$$
\leq \pi \alpha / 2
$$

From $g^{\prime}(\infty) \neq 0$ for $\omega \in E^{0}$ and (11) we obtain $g(\infty) h(0) \neq 0$ in E^{0}. For $t \in[0 ; \infty)$ let us put formally

$$
\begin{equation*}
f(z, t)=\frac{1}{g\left(e^{0 t} x^{-1}\right)}\left[1-\left(1-e^{-2 a t}\right) k\left(e^{0 t} z^{-1}\right)\right]^{-\theta}, \quad z \in E \tag{12}
\end{equation*}
$$

Then have

$$
\left\{\begin{array}{l}
g\left(e^{\alpha} z^{-1}\right)=\frac{e^{s t}}{z}+b_{0}+b_{1} z e^{-n t}+\cdots, \tag{13}\\
h\left(e^{o t} z^{-1}\right)=1+e_{n} z^{n} e^{-n t t}+\cdots
\end{array}\right.
$$

Putting $A(z ; a, a, t)=1-\left(1-e^{-2 a t}\right) A\left(e^{a t} z^{-1}\right)=e^{-2 a t}-\left(1-e^{-2 a t}\right)\left(e_{n} z^{n} e^{-n a t}+\cdots\right)$ we obtain that $A(z ; a, z, b) \neq 0$ for $z \in E_{r_{1}}$ and for each $t \in[0 ; \infty)$, where $r_{1} \in(0 ; 1]$ is a fixed number. For example r_{1} may be chosen so that $\left|c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots\right| \leq 1$ for $z \in E_{r_{1}}$. Then $|A(z ; a, a, t)| \geq e^{-2 a t}-\left(1-e^{-2 a t}\right) e^{-a n t}=$ $=e^{-2 a t}\left[1-\left(1-e^{-2 a t}\right) e^{(2 a-n \alpha) t}\right]>0$ for $\ell \in[0 ; \infty)$ because $2 a-n a \leq 0$ by ($11^{\prime \prime}$) Hence, for each fixed $t \in[0 ; \infty)$, each fixed single-valued bramch of $f(z, l)$ is regular in $E_{r_{1}}$. Purther from (13) we obtain $a_{1}(t)=\left|e^{-t} e^{2 a t}\right|^{0}$. In what followa we choose that fixed branch of pover in $a_{1}(l)$ for which $\left|a_{1}(t)\right|=e^{-a t} e^{20 a t}$. Thus $\left|a_{1}(\ell)\right|=e^{(2 \alpha-1) a t} \rightarrow \infty$ มв $t \rightarrow \infty$ because $a>1 / 2$ and $a>0$. By the definition of $A(z ; a, e, t)$ and (12), (13) we obtain

$$
\begin{equation*}
\frac{f(z, \ell)}{a_{1}(\ell)}= \tag{14}
\end{equation*}
$$

$=\frac{z}{\left(1+b_{0} e^{-01} z+b_{1} z^{2} e^{-2 \alpha}+\cdots\right)\left[1-\left(e^{2 a t}-1\right)\left(c_{n} z^{n} e^{-n o t}+c_{n+1} z e^{-(n+1)}+\cdots\right)\right]^{n}}$
It follows from (14) and from ($11^{\prime \prime}$) that there exists $r_{0}, 0<\rho_{0}<\pi$ such that $\left\{f(z, t) / a_{1}(t)\right\}$ forms a normal family in $E_{r_{0}}$. Furthermore, from the definition of $f(z, t)$, its regularity in $E_{r_{0}}$ it fodlows that $\int_{i}^{\prime}(z, t)$ is uniformly bounded in $E_{r_{0}}$ for $t \in[0 ; T]$, where $T>0$ is an arbitracily chosen fixed number. Thus $f(z, t)$ is absolutely continuous in $[0 ; T]$, unformly in E_{ro}. Now from (12) after some computations we obtain

$$
\begin{aligned}
& \frac{f_{t}^{\prime}(z, t)}{z f_{z}^{\prime}(z, t)}=p(z, t)= \\
& =-t+\frac{2 a v e^{-2 a t} g\left(w e^{t \theta}\right) h\left(w e^{t \theta}\right)}{v e^{t 0} g^{\prime}\left(\varpi e^{t 0}\right)\left[1-\left(1-e^{-2 a t}\right) h\left(\varpi e^{t \theta}\right)\right]-0\left[\left(1-e^{-2 a t}\right) \varpi c^{t 0} g\left(w c^{t 0}\right) h^{\prime}\left(\varpi e^{t \theta}\right)\right]}
\end{aligned}
$$

where $v=z^{-1}$. Thus

$$
p(z, t)=-0+\frac{2 a \theta}{e^{20 t} A\left(w e^{50}\right)+\left(1-e^{2 a t}\right) B\left(w e^{t 0}\right)}
$$

 plies that $A\left(\infty^{\text {to }}\right) \in \mathbb{R}(c \rho / \alpha ; \alpha|0| / \alpha)$ for each $\quad \in E^{0}$ and $t \in[0 ; \infty)$. Moreover $A(\infty) \neq 0$, because $f^{\prime}(\infty) \neq 0$ for $\varpi \in E^{0}$. It follows from (11') that the quantity
 $\left|w e^{t a}\right|^{2 a / \alpha}=|w|^{2 a / \alpha} e^{2 a t}>e^{2 a t}$. Hence, by Remark $\left.1, b\right)$ with $\lambda_{0}=\left|w e^{10}\right|^{20 / \alpha}$ and $\lambda=e^{20 t}$ we see that the denominator d of the r.h.s. of $\left(1^{\prime}\right)$ lies in $K(a s / a ; \alpha|\rho| / \alpha)$ for each $\varphi \in E^{0}$ and $t \in(0 ; \infty)$. Thus $p(z, t)$ is regular in E^{0} for each $t \in[0 ; \infty)$. The inequality $\operatorname{Re} p(s, t)>0$ and the relation $d \in K(e s / a ; \alpha \mid \theta / a)$ are equivalent by (14^{\prime}). Then $\operatorname{Re} p(x, t)>0$ for $z \in E$ and $t \in(0 ; \infty)$. Thus we see from the above considerations that all assumptions of Pommerenke's lemma are fulfilled. Hence $f(z, t)$ is univalent in E for each $t \in[0 ; \infty)$ and so is g because $f(x, 0)=1 / g\left(z^{-1}\right)$. The proof of Thecrem 2 has been completed.

In the special case $n=2$ Theorem 2 was proved in [2].
3. Conolleriea. We infer from (1) that there exists a function ω which is regular in E and $|\omega(z)| \leq 1, \omega(z) \neq 1$ there and such that $\left.|1-\omega(z)| \alpha o / \alpha=z f^{\prime}(z) / \mid f(z) g(z)\right]$ for $z \in E$. Taling logarithm of both sides of the last equality and differentiating we obtain by (2) after simple calculation the following equivalent form of Theorem 1

Theorems 3. Let $f(z)=s+c y z^{2}+\cdots, f^{\prime}(z) \neq 0$, be regular in E. If there exists a function ω regular in E with $|\omega(z)| \leq 1, \omega(z) \neq 1$ for $z \in E$ and such that the inequality
$\left||z|^{2 \alpha / \alpha} \omega(z)-\left(1-|z|^{2 \alpha / \alpha}\right)\left\{\frac{\alpha-\varepsilon}{a}+\frac{\alpha}{\sigma \theta}\left[(1-\varepsilon) \frac{z f^{\prime}(z)}{f(z)}+s\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{z \omega^{\prime}(z)}{1-\omega(z)}\right)\right]\right\}\right| \leq 1$
holde for some fised numbers $\mathrm{E} \geq 1 / 2, \quad=\alpha+i \beta, \alpha>0, \beta \in \mathbf{R}$ then f is univalent in E.

If we assume $h(\infty)=\rho^{\prime}(\infty) / g(\infty)$ in Thearem 2 then by simple calculation we obtain

Corollary 1. Suppose that $g(\vartheta)=\infty+b_{0}+b_{1} 0^{-1}+\cdots$ is regular in $E^{0} \backslash\{\infty\}$ and $g^{\prime}(\infty) \neq 0$ there. For some fised numbers $>1 / 2,0=\alpha+i \beta, \alpha>0, \beta \in \mathbf{R}$ let the following inequatity

$$
\begin{equation*}
\left||\omega|^{2 a / a}+\left(1-|\omega|^{2 \sigma / a}\right)\left[(1-0) \frac{g^{\prime}(\omega)}{g(\infty)}+\theta\left(1+\frac{\omega g^{\prime \prime}(\omega)}{g^{\prime}(\infty)}\right)\right]-\frac{a s}{a}\right| \leq \frac{a|\sigma|}{a} \tag{15}
\end{equation*}
$$

hold for $\boldsymbol{v} \in E^{0}$. Then is unvalent in E^{0}.
Note that inequality (11) is satisfied antomatically in this case because $\partial K(c o / a ; c|0| / a)$ passes through the points $\omega=0, \infty=2 \alpha$ and this in turn implies that $\omega \varepsilon^{\prime}(\infty) /[0(\infty) h(\infty) \mid \equiv 1 \in K(a 0 / \alpha ; \varepsilon|0| / \alpha)$.

Now we will give Theorem 4 which is equivalent to Theorem 2. (11) implies that there exists a function $\omega,|\omega(0)| \leq 1, \omega(\varpi) \neq 1$, regular in E^{0} and such that

$$
\begin{equation*}
\frac{\infty}{a}(1-\omega(\infty))=\frac{g^{\prime}(\infty)}{g(\infty) h(\infty)} \tag{16}
\end{equation*}
$$

Thus by simple calculation we obtain from (11^{\prime}) and (16), similarly as previously, the following

Theorem 4. Let $g(v)=\emptyset+b_{0}+b_{1} \omega^{-1}+\cdots, g^{\prime}(\omega) \neq 0$, be regular in $E^{0} \backslash\{\infty\}$ and let $\omega(\nu),|\omega(\omega)| \leq 1, \omega(\omega) \neq 1$, be regular in E^{0}. If for some fired numbers $a>1 / 2,: \alpha+i \beta, \alpha>0, \beta \in \mathbf{R}$ the following inequality

$$
\begin{aligned}
& \left||\infty|^{2 a / a} \omega(\varpi)-\right. \\
& \left.-\left(1-|\infty|^{2 a / a}\right)\left\{\frac{\alpha-a}{a}+\frac{a}{\omega e}\left[(1-s) \frac{g^{\prime}(\varpi)}{g(\infty)}+\theta\left(\frac{w g^{\prime \prime}(\infty)}{\left.g^{\prime} w\right)}+\frac{\omega \omega^{\prime}(\infty)}{1-\omega(\varpi)}\right)\right]\right\} \right\rvert\, \leq 1
\end{aligned}
$$

holds for $w \in E^{0}$ then g is univalent in E^{0}.
It is easily seen from (16) that $\omega(\infty)=1-\infty / c e$. If we assume in Theorem 4 $\omega(w)=\infty$ onst $=1-\alpha / a s$ then we obtain

Corollary 2. For the previous assumptions let the inequality
$\left||v|^{2 a / \alpha}(1-\alpha / \alpha s)-\left(1-|v|^{2 a / \alpha}\right)\left\{\frac{\alpha-a}{a}+\frac{\alpha}{a s}\left[(1-0) \frac{\infty g^{\prime}(v)}{g(v)}+\frac{\infty g^{\prime \prime}(\infty)}{g^{\prime}(v)}\right]\right\}\right| \leq 1$
holds in E^{0}. Then g^{\prime} is univalent in E^{0}.
In the case $\bullet=a=a=1$ we obtain from (17) the well known Becker's anivalence criterion, ef. p.ex. [3], p. 173.

Similarly as in Theorem 1 we come now to present the limit case $a=1 / 2$ in Theorem 2. It must be emphasized that this limit case is somewhat different than the mentioned one of Theorem 1. By definition of g and h we obtain $w g^{\prime}(w) /[g(w) h(v) \mid=1$ at the point $\omega=\infty$. A simple geometrical observation tells us that the point $*=1$ lies on the $\partial K(s / 2 \alpha ;|0| / 2 \alpha)$. Thus (11) and the regularity of the quantity $w g^{\prime}(w) /[g(w) h(w)]$ in E^{0} implies that $h(w) \equiv \boldsymbol{q}^{\prime}(w) / g(w)$ in E^{0}. This leads to the limit case $a=1 / 2$ of the Corollary 1. Hence (15) implies the following inequality

$$
\begin{equation*}
\left||v|^{1 / \alpha}+\left(1-|v|^{1 / \alpha}\right)\left[(1-s) \frac{v g^{\prime}(w)}{g(w)}+s\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(v)}\right)\right]-s / 2 \alpha\right| \leq|s| / 2 \alpha . \tag{18}
\end{equation*}
$$

Let $A(\varpi)$ denote the expression in square bracket of (18). The function $A(v)$ is regular in E^{0} and $A(\infty)=1$. If $A(\infty) \neq 1$ then there exists a $\varpi_{0} \in E^{0} \backslash\{\infty\}$ such that $A\left(\omega_{0}\right)=1-8$ for some $\in \in(0 ; 1)$. Further we obtain from (18) $\left|\omega_{0}\right|^{1 / \alpha}+\left(1-\left|\omega_{0}\right|^{1 / \alpha}\right) A\left(\omega_{0}\right)=\left|\omega_{0}\right|^{1 / \alpha}+\left(1-\left|\omega_{0}\right|^{1 / \alpha}\right)(1-\varepsilon)=1+\varepsilon\left(\left|\omega_{0}\right|^{1 / \alpha}-1\right)>1$. Thus $\left|w_{0}\right|^{1 / \alpha}+\left(1-\left|\omega_{0}\right|^{1 / \alpha}\right) A\left(\omega_{0}\right)$ lies ontside the disc $K\left(\rho / 2 \alpha_{i}|\sigma| / 2 \alpha\right)$ in spite of (18). Therefore $A(\odot) \equiv 1$ in E°. Solving the suitable differential equation we obtain $g(\infty)=\left(c+w^{1 / 0}\right)^{\circ}$ with $|c| \leq 1$. These functions are regular in $E^{0} \backslash\{\infty\}$ and univalent in E^{0} if and only if $e=0$ or $s=1$. Thas we obtain

Corollary 3. For $a=1 / 2, \quad=\alpha+i \beta, \alpha>0, \beta \in \mathbf{R}$ only the function $g(\infty)=$ satisfies Theorem 2 and in addition for $:=1 g(v)=\infty+c_{1}$ does so.

4. Concluding remerks.

Remark 2. We infer from (2) and (11) for $z=0$ or $0=\infty$ respectively that $1 \in R(a s / a ; a|\alpha| / \alpha)$ if $a \geq 1 / 2$ but this cannot be true if $0<a<1 / 2$. Then the assumption $a \geq 1 / 2$ is essential in our previous considerations.

Remark 3. We shall iist here misprints in paper [1]. They are $88_{12}, f_{z}^{\prime}(0, t)=1^{\prime}=1 ; 88_{6}, \varsigma f^{\prime}(\varsigma) /[f(\varsigma) g(\varsigma)] ; 89^{12}, z f^{\prime \prime}(z) / f^{\prime}(z)-z \omega^{\prime}(z) /\left[e^{i \gamma}-\omega(z)\right\} ;$ $92^{4}, z f^{\prime \prime}(z) / f^{\prime}(z) ; 93^{1},|0|^{2} ; 93^{6}, a /(2 a-1) ; 93^{9}, z f^{\prime \prime}(z) / f^{\prime}(z)-z \omega^{\prime}(z) /\left[e^{37}-\omega(z)\right]$. They ought to be replaced by $f_{s}^{\prime}(0,0)=1^{\prime}=1 ; \varsigma f^{\prime}(\varsigma) / f(s) ; z f^{\prime \prime}(z) / f^{\prime}(z)+$ $+z \omega^{\prime}(z) /\left\{e^{i \gamma}-\omega(z)\left|; 1+z f^{\prime \prime}(z) / f^{\prime}(z) ;|z|^{2} ; a /(2 z-a) ; z f^{\prime \prime}(z) / f^{\prime}(z)+z \omega^{\prime}(z) /\right| e^{i \gamma}-\right.$ $-\omega(z)]$, respectively.

Remark 4. Similarly, there is $b_{0} z+b_{1} z^{2} e^{-o t}$ on p. 179^{11} and $z \in E^{0}$ on p. 180^{8} in the paper [2]. It should be $b_{0} z e^{-\alpha}+b_{1} z^{2} e^{-2 \alpha}$ and $z \in E$, respectively.

REFERENCES

[1] Lewendowski, 2. Some Remarke on Univalence Chiteria, Ann. Univ. Mariee CurieStiodowith, Sect.A, 36/37 (1982/1883), 87-05.
[2] Lewandowski, 2. Some remarke on enssalence criteria for functione meromorphic in the exterior of the enit diac, Ann. Polon. Math vol 46 (1985), 177-181.
[3] Pommerenke. Ch. Uuber die Subondination analytischer Punctionen. J. Reine Angew. Math. 218 (1985), 159-173.

STRESZCZENIE

 zodmie a oznacsemami peyjoymi \boldsymbol{m} tych pracach. Dla ustalorych licab $a>1 / 2,:=a+i \beta$, $a>0, \beta \in(-\infty ; \infty), \kappa=2 a / a$ prandrive en invianderia

Twiendrenie $z[1]$. Niech $f(z)=z+c_{2} z^{2}+\cdots, f^{\prime}(z) \neq 0$, ig(z) bede funkcjami
 Jesels proces logo machodsí mieróunoíc

$$
\begin{equation*}
\left||z|^{2 \kappa} \frac{z f^{\prime}(z)}{f(z) g(z)}+\left(1-|z|^{2 \pi}\right)\left[\frac{z f^{\prime}(z)}{f(z)}+e \frac{z g^{i}(z)}{g(z)}\right]-\frac{a}{a}\right| \leq \frac{a|g|}{a} \tag{A}
\end{equation*}
$$

da $2 \in E$ to f reat gedanotina w E.
Iwiendzenie 2[2]. Nrech $g(s)=s+b_{0}+b_{1} s^{-1}+\cdots, g^{\prime}(s) \neq 0, i h(s)=1+c_{2} s^{-2}+\cdots$

-as/a|$\leq a|0| / a$ da $\varsigma \in E^{0}$. Jeseli próas tego sachodzi nierómnoid

$$
\begin{equation*}
\left||s|^{2 \pi} \frac{s g^{\prime}(s)}{g(s) h(s)}+\left(1-|s|^{2 \kappa}\right)\left[\frac{s g^{\prime}(s)}{g(s)}+o \frac{s h^{\prime}(s)}{h(s)}\right]-\frac{a g}{\alpha}\right| \leq \frac{a|\rho|}{\alpha} \tag{B}
\end{equation*}
$$

da $\varsigma \in E^{0} \cdot a \leq a \log$ jed jednolietinaw E^{0}.

 proypediku ogolnym, gly $h(s)=1+e_{n} 5^{-n}+\cdots, n=1,2, \ldots$. Równies des twierdzemis 2 roswais nie pryypedek granicany $a=1 / 2$. W p. 3 podaje die powne wiosti oras twiendeenie 3 i 4
 sie usterli drularnlie jalie znnjduje sip w pracach [1] i [2].

SUMMARY

In the papers [1],[2] the following results have been obtained. For fixed $a>1 / 2,=\alpha+i \beta$, $\alpha>0, \beta \in(-\infty ; \infty), \kappa=2 a / \alpha$ wo have

Theorem 2[1]. Let $f(z)=z+a_{3} z^{2}+\cdots, f^{\prime}(z) \neq 0$ and $g(z)$ be negular in $E=\{z:$ $|z|<1\}$ and sech thas $\left|z f^{\prime}(z) /[f(z) g(z)]-a s / \alpha\right| \leq a|\theta| / \alpha$ for $z \in E$. Tf the inequality (A) holde for all $z \in E$ then f is oniocalent in E.

Theorem $2[2]$. Let $g(s)=s+b_{0}+b_{1} s^{-1}+\cdots, g^{\prime}(s) \neq 0$ and $h(s)=1+e_{2} s^{-2}+\cdots$ be regilar in $E^{0} \backslash\{\infty\}=\{s:|s|>1\} \backslash\{\infty\}$ and ouch that $\mid s g^{\prime}(s) /[g(s) h(s)|-a s / \alpha| \leq a|\theta| / \alpha$ for all $s \in E^{0}$. Them it the mequality (B) holde for $s \in E^{0}$ and $a \leq \alpha$, the function g is univalent in E^{0}.

In this paper the above mantioned reaulta are eartonded as follows. Theorem 2(1) bolds in the Liriting case $a=1 / 2\left(\right.$ Thrm 1) and Theorem 2 2 2] halde for $h(s)=1+e_{n} s^{-n}+\cdots, n=1,2, \ldots$ Also the limiting case $a=1 / 2$ is considered. In Sect. 3 some condusions and Thm 3,4 equivalent to Thrm 1,2, resp. are given. Finally eorme misprints appearing in [1] and [2] are corrected.

