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Algebraic Operations on Sequences by Diagonal Transforms 

Operacje algebraiczne na ciągach określone transformacjami diagonalnymi

Let K be the held of all real or complex numbers, and Z+ be the set of all 
positive integers. A is called a sequence space over K if A is a linear space of sequences 
in K under oooidinatewise operations. Some special sequence spaces are given in the 
following.

+OO
Notations: (i) w = K = {(*«)n€Z+ : *„ € K for n e Z+ } and 

n«l

IP = II K = {(xn)^z+ : xn e K for any n € Z+ and z„ = 0 for all but finitely 
n=l

many n’s}.
-{-co

(ii) e1 = {(xn)n€Z+ e w : E l*«l < +»} and r° = {(*n)„€Z4 • TOP l*n| < 
n~l "€Z+

< +00}. Also, = {(«n)„€S+ : |x„|’’ < +00} for 1 < p < +oo.
n«I

We also have the fallowing definitions.

Definition 1. Let x, y € w and C w.
(i) x is called positive iff x« > 0 far any n € Z+.
(ii) Let x, y be positive, then we define x < y iff x„ < y„ for any » 6 Z+.
(iii) Let |x| = (|x„|)n€Z+ and x-1 = (on)n€S+. where an = 1 for x„ = 0, and 

«n = x“1, otherwise.
(iv) Let xy = (xny„)„€Z+ and x/y = xy-1.
(v) p is called solid (or normal on p.405,[2]) if x € p and y € w with |y| < |x| 

implies y € p.
(vi) Let n* = {y € w : |y| < jx| for any x € p}, then p* is convex, balanced and 

solid in u. Furthermore, p C p* and p* is the smallest, solid subset of u containing p. 
M* is called the solid hull of p in u.

(vii) Let p* = {y e w :< x,y >= E xn9n converges absolutely for any x € p },
nasi

z
z
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then ft* is called the (1st order) summability polar of ft in u.
(viii) If A is a sequenoe space, then A* is called the or-dual of A in w (p.405,[2]).
(ix) p is called perfect if p** = p (p.406,[2]).

If £ is a linear space over K and £* is the algebraic dual of L, then, for any 
I # A C L and 0 / A* C £*, we define A°* = {/€£*: |/(z)| <1 for x € A} and 
"(A*) = {x 6 L : |/(®)| <1 for / € A*}. A°* (or “(A*)) is called the polar of A 
(or A*) in L* (or £). The summability polar p*'has some properties similar to those 
of A°* as we will see in the following (c£ p.245,[2]).

Lemma 1. Zetl^p, pi,pi C m and a 0 € K.
(i) w* = p and p* = w.
(ii) p* is a sequence space, (op)* = |«|p* and p C p‘*.
(iii) Z/p, C p,, tAenpj C pj.
(iv) (p*)** = p* and p* is a perfect sequence space.
(v) p’* is the smallest, perfect sequence space containing p.
(vi) If p is perfect, then p is a sequence space, p C p and p is solid.
In particular, u, p, and P for 1 < p < +00 are perfect (p.406,[2]).

Proof, (i) If x € p, then < x,y > converges absolutely for any y € w. Thus 
x € w* and p C w*. Conversely, if x € w with infinitely many non-zero z„’s, then 
for each of these z„’s, we can find an y„ € K with |*„»n| > 1- For the other n’s, we 
let y„ = 0. Thus y e u and ^2 l*«Mn| = +00. Hence x w*. This implies w* C p.

n=l
Thus p = w*. p* C w is dear. But w C p* as we have shown in the beginning. 
Hence p* = w.

(v) We note (p**)** = (p*)*** = p** and p** is perfect. If A is a perfect sequence 
space with p C A, then p** C A** = A.

(vi) If p is perfect, then p = p** and p** is a sequence space. Since p* C w,
we have p = u* C p** = p by (i). If x € p and y € u with |y| < |z|, then 
+00 +2p
E lx»*n| < E l«n*n| < +<» for any » € p*. Hus y € p** = p and p is solid. 

n=l ns»l

If p C p7 C u for any 7 € T, then we define E Mt = {E : € p~ for
7er 7er

any 7 € T, and x^ = 0 € w for all but finitely many 7’s}. The condition p C p7 
implies sM € p7 for any 7 € T.

Proposition 1. Let • # Mt £ u for any 7 € T.
(o n (*)• = ( u #•-,)•■

- tct 7er
. (ii) Ifp C p7 for any 7 eT, then ( E Mt)’ = 0 (Mt)*- V T is finite, then 

t€T 7er
the condition of p C p, for any 7 € T « not necessary.

W U(Mr)*£(n Mt)*«
Ter t€T

0v) Mt « perfect for any yeT, then ( f| p7)* = ( £ (p.,)’)**, and f| pn 
7er 7er q€T

is perfect.
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Proof, (ii) If y € (53 Mr)*, then < x,y > converges absolutely for any
• '»er

x € 52 /,t I11 particular, < x^ , y > converges absolutely for any x^1* € m and
-jcr

7 € T. Hence y € (Mt)* for any 7 € T implies y € f"| (Mt)*- Thus ( £ Mt)* £ 
r'. ?er ?er

C D (/».J*. Conversely, if y € fl (Mt)*> then < x ^i9 > converges absolutely 
ier 7€r
I k

for any x^ € and 7€T. If x € £ Mi» then x = £ where xW =
ier ;-i i

+OO +00 *
= (*T/,n)n€Z+ € Mt> for j — 1,2, ...,*. Thus £ |*n,n| = 52 !( 52 xi,,-,n)yn| =

natl f»l 7*1

= 52 I 52 < E 52 = 52 52 l*T7.nfn|- Since < x<^’,y > oon-
n=l jxxt rusl jasl ; = 1 n»l

>oo • 4-oo
verges absolutely, we have £ l^.nfnl < +<» for/= 1,2,...,*. Thus £ ¡*nyn| <

flas 1 fis-l
< +00 for any x € 52 Mt and y € (52 Mi)*- This implies f| C (£ Mt)*- 

Ter 7«r 7gr ^e^
The gjven identity is proved. ,

(iii) This follows directly from Lemma l(iii).
(iv) By (ii), (E(Mt)T = n (/•+)•• = n Mt Hence ( fl =

'icr "r€r ?€r ^€r
= (( 52 M’)T = ( 52 (Mt)*)* by Lemma l(iv). Thus ( f) Mi)“ = 0 Mt and

i€r Ter 7er ier
f"| Mt is perfect.

Ter

The simplest, algebraic operation on sequences is the following.

Definition 2. Let {n* : k = 1,2,...} be a strictly increasing sequence of positive 
integers. If x e w, then we define xd = (xnJ*€Z+> which is called the sectional 
sequence of x associated with {n* : * = 1,2,...} (p. 410,[2]), where “d” means 
deletion for the obvious reason. If • / ft C u, then we define fid =■ {xd : x € ^}.

Lemma 2. For any x € w and any strictly increasing sequence {»* : * — 
1,2,...} in Z+, there is an y € w with ynt — Xk for k € Z+ and yn — 0, otherwise.

Proof. Let mq = 0. For any k € Z+, we put - n*_i — 1 0’s right before the
k

coordinate x*. Thus at the n*-th coordinate, we add 52 (n; ~ n?-i - 1) = n* - * 
>-i

0’s. Let y = (0,0,...,0,xi,0,0,...,0,xi,...), then the n*-th coordinate of y is x*
------ ------ ' ------ ------ ' In, —1 n,— 1

for any * € Z+, and yd = x.

Proposition 2. Let 9 # /*, Ml,Mi £ w 3n(f {nt ; * = 1,2,...} be a strictly 
increasing sequence in Z+.

(i) If £ MJ, then pd C M^.
(ii) <pd — ifi. Thus if if>C n, then C /»d.
(in) (Mdr = (/.•)<
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(iv) If p is solid (or per}set), so is pd.

Proof, (ii) If x € pd, then x = yd for some y € p. Since all but finitely many 
coordinates of y are 0, so are the coordinates of x. Thus x € p. This proves pd C p. 
Conversely, if x € p, then x = yd for some y € w in Lemma 2. Since y € p, we 
have x € pd. Thus p C pd. The given identity is proved. Hence if p £ p, then 
p = pd C / by (i).

(iii) If A is a sequence space, then so is Ad. If y € (f*d)*, then < x^, y > converges 
absolutely for any x € p. But y = zd for some z € w in Lemma 2. We can easily 
check < x, z >=< x^y > for any x € p. Hence z € p* and y € (p*)d- This proves 
(#»“*)* £ (ft*)d. Conversely, if y e (p*)d, then y = zd for some z € p*. Since z € p*, 
< x,z > converges absolutely for any x € p. Thus < xd,y > converges absolutely for 
any x 6 p, and y € (pd)*- This proves (ft*)d C (pd)*.

(iv) If p is solid, x 6 pd and y € w with |y| < |x|, then x = zd for some 
z e p. But y = wd for some w € u in Lemma 2. We can easily check |w| < |x|. 
Since p is solid, we have w € p and y € pd. Thus pd is solid. If p is perfect, then 
(pd)** = ((p*)d)* = (p**)d = pd by the repeated applications of (iii).

We now discuss the main notion of this paper.

Definition .3. If a — (an)„€z+ € w and x = (xn)n€J5+ € w, then 
ax = (an*n)n€Z+ is called the diagonal transform of x by a for the following rear
son:

If t p C w, then we define ap = {ax : x € ft} which is called the diagonal transform 
of p by a.

Theorem 1. Let a = (a„)„€Z+ € w and jjipCu.
(i) a~lp*C(ap)*.
(ii) (ap)’ = a~*w = w.
(iii) If a„ # 0 for all but finitely many »’s, then (ap)* = a~lp*.

Proof, (i) If y € p* and x € ft, then a_1y = (a„yn)n€Z+ |«o»nanyr.| =
n»l

= £ l*n>n| < +°°- This is true for any x € p. Thus a”*y € (aft)*. This proves 
•«#0

«“*#»• C (a/»)*.
(ii) (ap)* C w and a-lw C w are clear. If x € w, then we claim x € a~lu by 

considering the following cases, where a-1 = (an)n€Z+-
(1) an = 0: Thus an = 1. Let y„ = x„.
(2) «to # 0: Thus a„ = l/a„. If x„ = 0, let y„ = 0 otherwise, let y„ = a„xn. 

Fbr both cases, we have o„yn = x„. Thus x € a~lu, and we proved w = a“*w. This 
proves (ap)* O a~lp* = a_1w = w.

(iii) It suffices to prove (ap)* C a~lp*. Let anj = 0 for j = 1,2,...,A. Let 
y e (aft)*, then we let znj = yn, for j = 1,2,...,lb and zn = a„yn, otherwise. 
Hence a-1s = y. If x € ft, then ( for y € (aft)* and x € ft )
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+oo k k
23 i*n*n| = L I*«,+ 23 |«n*f»| = 23 + 23 |«n*nfn| < +<».
t»l )»1 n#ny J«1 n#»j
This is true for any x € p. Thus » € p* and (ap)* £ a-1/»*. The identity is 
proved.

Remark . We consider why (aft)* = a-1p* is not true far any a € w: If a„* = 0 
+2°

for any k € Z+, then the infinite sum ¿3 |»n*ÿn*| < +oo may not be true in the 
kal

proof of the set-containment (ap)* £ a~lp*.

Diagonal transforms between two subsets of u are more applicable, and we discuss 
them.

Definition 4. Let 0 # pi, ft] £ w, then we define D(pi,p3) = (a 6 w : 
u/*i £ Pa}- In other words, D(pi,pi) is the set of all diagonal transforms from pi to 
Pi (P-68, M)-

Lemma 4. Let i / pi, p3 £ w.
o)
(ii) If pi is »olid, »o is 2?(pi,pi).
(iii) If p, is perfect, then »o it P(pi,p3), and D(pi,pi) = (pi(p5))*.

Proof, (iii) is Proposition 1.2, [1], and (i) can be proved similarly. Fbr (ii), 
we let a € I?(pi,Pi) and t € w with |h| < |a|, then ax € p3 for any x € pi. But 
IMnl < |«n*n| for any » € Z+. Thus bx e p3 and b € ^(pnp^. Hence Z>(pi,p3)
is solid.

Some special subsets p3 of w will make D(pi,pi) more applicable. Fbr ex­
ample, if 0 / p £ u, then Dfp,/1) = {« 6 w : ax € f* for any x € p} =

= {a 6 w : ¿3 M* converges absolutely for any x € p} = p* and D(p*,tl) =

= D(D(p,fl), <*). Another example is in the following.

Definition 5. Ha G w, then 2>(a,<l) = {» € w :< «, x > converges absolutely}= 
= {a}* = A„ which is called the dilation operation of s. Thus A„ is a perfect sequence 
space. We note (A«)* = {«}**.

Lemma S. Let a,b€u and # p £ u.
(i) 6 6 A. iffaeXb.
(ii) If |s| < |*|, then A» £ A. and (A.)* £ (A*)*.
(iii) aa € (A„)* for any a € K and A„, (A„)* are perfect sequence »paces.
(hr) p*=D(p,f»)= A A*.

a € Aj.

Proof, (i) We note the following equivalences: b € A„ iff $3 |®n&n| < +oo iff
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That Aa is perfect is a consequence of A„ = {a}* or can be derived from this result: If 
+ 00 +<»

z € (A«)**, then £ < +°° ior «»y f € (A«)*- 111 particular, £ |«n«n| < +oo
rwsl r»»l

implies i € A,. This proves (Aa)** = Ao.

Fbr any 0 / p C «, p* and p** can be represented by Ac for e in some suitable 
subsets of w.

Theorem 2. Let j gt p C v.
(i) p* C n A» = Z>(p*,f*) = p- and n A. = P(p,f>) = ?*'.

46m* <•&>
(ii) p’ C U (A»)* = u POM1)* £ p~ and (J (A*)* = U D(b,l1)* = p*.

«6p »6m 4€m* 4€m*
(¡ii) If a & w, then Xat = (A«)“*, ¿e- D(ad,fi) = (2?(«s, Z1 ))**, where ad w

the sectional sequence of a associated with the strictly increasing sequence {n* : 
A = 1,2,...} in Z+.

Proof, (i) We note p** = D(p*,f*) = f| D(b,f1) = f) A*. Since p*" 
46m’ 4€m*

is perfect, ft** is solid and p C p**. Hence ft’ C p**. Also, p* = D(p,tl) = 
= n P(a,f‘)= n Ao.

(ii) If x € ft', then |x| < |a| for some a € p. Since a € (A,)* and (Aa)‘ 
is perfect, we have « € (Aa)*. This proves p* C U (A«)*- We note (J (A„)* C

«6m o6m
C ( D Aa)* = (is*)* = it** by Proposition l(iii) and (i). Also, (J (A&)* C 

«6m 46m*£ ( n A»)*,= ( n P(M*))* = (D(,s*,tl)r = ((p*)*)* = ft* by Lemma Ifni) 
46m* 46m*

and the identity ft* = D(/t, t1) = f) Aa. Conversely, if b € it*, then b € (Aj)*. Hence

It* C U (At)*- This proves (J (A*)* ='p*.
4€m* 4€m*

■K» , .
,(iii) If y € Aa*, then £ < +°°- But y = x* for some x € w in T/mma. 2.

t-i
■foe -Moo

We can easily check J3 ¡«n*n| = ¿2 < +°°- Hence x € Aa and y 6 (Aa)d.
n=l fcwl

This implies Aoi C (Aa)rf. Conversely, if y € (Ao)**, then y = xd for some x € Aa. 

Thus £ |a„4y*| < |a ox„| < +oo implies y € X„t. This implies (Aa)d C A,*.
Jkssl nasi

Hence Ao« = (X„)d.

We have the following characterizations of perfect sequence spaces.

Corollary 1. A sequence space A is perfect iff A = f| Aj = D(X*,ll).
40*

We now consider the possibilities of a € w and its associated sequence space Aa. 

Theorem 3. Let a £u be given.
(i) If an / 0 for all but finitely many rts, then Aa = {a}* = P(a, ■= 

= a-1f* and (Aa)* = {a}** = , where a’« = («„)„«, andb = (M»6«+
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an = b„ ss 1 for a„ =■ 0, and an = a“1, bn = an, otherwise.
(ii) If an = Q for all but finitely many n’s, then A« = {a}* = 2?(a, fl) = w and

(A«r = ^.
(iii) If a^, 0 and an, = 0, where mi, < mj+t and nt < nt+i for any

k € Z+, then the sectional sequences of A« associated with {m* : k — 1,2,...} 
and {nfc : k = 1,2,...} are ((«m1, )»€:»+K1 andw, respectively. Thus the sectional 
sequence spaces o/(Ao)* associated with (mu : k = 1,2,...} anJ{nt, : k = 1,2,...} 
are (am,)*gz+f°° and <p respectively.

Proof, (j) Let an> = 0 for j — 1,2,..., Ac. IS x € Aa, then we let ynj = xnj
for j = 1,2,..., Ac and y„ — «n*m otherwise. Hence x = a-,y and *£ lin| — 

n»l

= E lfn/1 + E l»n| = E l*n,|+ E lan*«l < +°°- This implies y 6 ll. Hence
j=l n#ny n#nj

A« C a-,fl. Conversely, if y € Z1, then a-1» = (<*n»n)n€Z+ ¡««<*«»»1 =
f»a«l

k
= E |«n><*ny»nj + E |«n«»»>n| = E |f«| < •+«>• This implies a~‘f G Ao.

j=l n#ny n#n,
Hence a-1<* C A«. The identity A„ = a~ltl is proved. Since an # 0 for any n G Z+, 
we have (Aa)* = (a”1^1)* = b(t1)* = bt°° by Theorem l(iii).

(ii) Fbr any x € w, < a, x > converges absolutely, i.e. x € Aa. Thus A„ = w and
(A«r=¥>.

(iii) By Theorem 2(iii), A(ami),es+ = (Aa)d which is thhe sectional sequence 
space of A„ associated with (m* : k = 1,2,...}. Thus (A„ )d = («mJteM* by (i). 
Also, w = A(o> = (A«)* which is the sectional sequence space of A„ associated 
with {n* : k = 1,2,?..}. Thus ((A.)*)' = ((A.)-)’ = (A(.mJi<,+f = (am,)*€z+r° 

and ((A.)’)" =((A.)*')‘ = «*=*».

Corollary 1. For any a G w, a-1^ C A» = P(a,f*).

Proof. We consider the following cases.
(i) a„ / 0 for all but finitely many »’s: Thus Aa = a_,f* by Theorem 3(i).
(ii) an = 0 for all but finitely many n’s: Thus Aa = w by Theorem 3(ii).
(iii) am, / 0 and an, = 0, where m* < mj+i and n* < »*+i for any

+OO +oo
fcG Z+: If y € f1, then a-1y = (onyn)Bg>+ and £ |a„onyn| = £ |am,om,ym,| + 

n«l Awl
+op +2?

+ E l«n*an*Mn*| = E lfm*| < +oo implies a-,y € A.. Thus a_*<* C A«.
Awl Awl

Corollary 2. Let a G w satisfy the conditions of Theorem 3(iii), then x € A„ 
a-m,)A£Z+ 6 and (rn,)A£Z+ € w. Also, y G (A„) iff (ym»)k€Z+ €

€ («mjACZ+i00 and (fn»)*€Z+ € V-

By the applications of Theorem 3 and the polar properties of p*, we can determine 
It* for some p C <*>. The following are two simple examples.
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Corollary S. Let 0 / p C w.
(i) If ®n # 0 for all but finitely many n ’» for any a e p, then p* = D (a, Z1) =

= n
a£fi

(ii) If pQ <p, then p* =u and p** = p.

Proof, (i) Ws note p* = ((J (a))* w f| {«}• = f| «“‘Z* by Proposition l(i)
' o£p o€p «£>

and Theorem 3(i).
(ii) Ws note w = ip* C p* and p** = w* = p.

The polar properties of p* can simplify many oompntations on sequences. An- 
fc

other example is the following: If € w for j = 1,2,..., k and a = a1*), then
>-»

A« = {«}* = (£ s(j))* = ("I {«W)}* = fl Aa0> fcy Proposition l(ii). 
y-i y-i y«i

At the end of this paper, we will find P(£P,Z’) and D(Z’,ZP) for 1 < p,q < +oo 
(c£ Example 1.6,[1]).

Lemma 6. For 1 < p,j < +oo with r = > 1, we have PP = Zr.

Proof. Fbr any t > 1 and * € w, we have |x|‘ = (|x„|<)n€Z+* If * € P and 
y € P, then lx|F € Z* and |p|’ 6 <*. Wfe note (|xp|)r = |x|r|y|r and |x|r e 
and |p|r € Z’’Ap+«). But = i implies |xy|r = |x|r|y|r € Z*. Hence xy € Zr

and we proved PP C Zr. Conversely, if x € Z*-, then |«|r € Z* implies |s|’Z(p+«) € P 
and |r|,’Z(H-i) g ¿9. Hence ]z| = |z|«/(F+<) |zp»/(P+v) g (P(g z g ppi This implies 
C C PP.

The identity PP = P is certainly not correct without the condition r > 1. This 
can be seen from the proof of Lemma 6 ( i.e. |x)r is a |-th root of |x| ) or can be 
disproved by the following example.

Proposition S. (i) D(P,P°} = Z°° for any 1 < p < +oo.
(ii) D(P, P) = P° for any I < p < +oo.
(iii) Z*Z* C Z* and Z*Z* is not perfect ( Remark (c), p.68,[1]).

Proof, (i) This can be proved by the similar arguments in Lemma 1.4,[1].
(ii) By Proposition 1.2,(1] we have P(Z*,Z*) = (Z^Z1)*)* = (Z’Z00)* = (Z1)* =

= Z°° and = (Z1)« = Z°°, where we use
the fact AZ00 = A for any solid sequence space A. Fbr 1 < p < +oo, we have
D(P, P) = {« € « : ^2 l«n«»»l’’ < +oo for any x e Zp) = {a € w : lanI”l»nI” <

n=I n=l
" +<x>

< +oo for any |x|p 6 Z1} = {« 6 w : ¿2 |«n|p|«n| < +°° for any » € Z1}. Thus

aeD(P,P) iff |a|” € (Z1 )• = Z°° iff a 6 Z°°, i.e. D(P,P) = l°°.
(iii) We note (Z’Z1)* = (Z^Z00)*)* = D(P,P°) = Z°° by Proposition 1.2 and 

Lemma 1.4, (1]. Thus (Z*Z*)** = Z1 and Z*Z* C Z*. This can also be seen by Z*Z* C 
CZ°°Z* =Z*.
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If Lemma 6 is true for any 1 < ft f < +oo, then f* f* = /*/*. Thia is a contradic­
tion.

'Ibeareni 4. Let 1 p < 4 < +oo.
(i) lfp=q=l, then D(P,P) — D(P,P) = t00.
(ii) tfp = g = +oc, then D(P,P) = D(P,P) = t°°.
(iii) Ifi<p = q<+<x>, thenD{P,P) = D(P,P) = P°.
(hr) lfp-l and q = +oo, then D{P,P) = P° and D{P ,P) = ll * 3.
(v) Vp=l andq<+oo, then Z>(f*,i*) = Z°° and P(f’,Z”) = /«/<«-»>.
(vi) Ifp> 1 andq = +<x>, then D(P,F) = P° andD(P,P)= P.
(vii) Ifp> 1 and q < +oo, then D(P,P) = P^t^-rt and D(P,P) it unde­

cided.

Proof. If 1 < r < +oo, then we let r' be the conjugate component of r, i.e.
| + jr = 1. (i), (ii) and (iii) have been proved in Proposition 3.

(iv) We note D(P,P) = D(tl,P°) = t°° by Lemma 1.4, [1], and D(P,P) =
= D(foo,f‘) = = el.

(v) We. note D(P,P) = D(ll,P) = (f‘(f’)*)‘ = (<*<’)• = =
D(P ,P°) = P° by Proposition 3(i) and D(P,P) = D(P,ll) = (f«)* =

(vi) We note D(P,P) - D(P,P°) = P° and D(P,P) = D(P°,P) = 
= = ((^')^°)‘ = (*”')’ = *”•

(vii) We note D(P,P) = by Example 1.6, [1],

We also have the following simple consequences.

Corollary 1. l<ft«<+oo, then D(P,P) = D(P' ,P‘).

Proof. This follows that D(P,P) = (<*(<«)•)• = («’'(<”')•)• = D(P',P').

Corollary 2. £?(<*, P) = P° and D(P,£*) = P for 1 < p < +oo.

Corollary 8. D(P°,P) = P andD(P,P°) = P° for 1 < p < +oo.

If 1 < p < q < +oo, then 1 < q" < p' < +oo. Hence D(P ,P ) can be obtained 
by Example 1.6, (lj. In other words, the applications of Corollary 1 will simplify some 
results in Theorem 4. In §8 of the author’s paper ‘Several basic theorems on locally 
convex spaces and their duality”, various topologies on sequence spaces are briefly 
discussed.
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■STRESZCZENIE

W pracy tej wprowadzono pojecie zbioru polarnego ae względu na aumowalnofó, który jeat 
analogonem zbioru polarnego w przestrzeniach lokalnie wypukłych. Wprowadzenie takiego zbioru 
pozwala uprofcić niektóre daałania na dagach.

SUMMARY

In thia paper polar aeta wj.t. auramability are introduced which are counterparts of polar seta 
in locally convex spaces. Thia idea enables ua to simplify acme operations on sequences.
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