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Algebraic Operations on Sequences by Diagonal Transforms
Operacje algebraiczne na ciggach okreflone tranaformacjami diagonalnymi

Let K be the field of all real or complex numbers, and Z; be the set of all
positive integers. ) is called a sequence space over K if A is a linear space of sequences

in K under coordinatewise operations. Some special sequence spaces are given in the
following.

+
Notations: (i) w = |] K = {(@n)nez, : #n € K forn € Z,} and
nml
00
= h K = {(zn)nex. : 2n € K _for any » € Z; and z, = 0 for all but finitely
n=1
many n's}.

(i) & ={(zn)nes, Ew: +f |zn| < +00} and £ = {(zn)nez, * "sen’!)+ lzal <

<'+oo}. Also, & = {(2n)nex., :E |#alP < 400} for 1 < p < +o0.
nml
We also have the following definitions.

Definition 1. Let 2,y €w and ## g C w.
@) z is called positive iff 2, > 0 for any » € 2.

(i) Let z,y be positive, then we define z < y iff 2o S yn for any n € Z4..

(i) Let |z| = (|zn|)nes, and 2! = (an)nex. , Where an = 1 for zn =0, and
an =z, otherwise,

(iv)  Letzy = (2ngn)nes, and z/y=zy~".

(v)  pis called solid (or normal on p.405,[2]) if z € s and y € w with |y| < |2]
implies y € p.

(Vi) Letp®={y€w:|y| < |s|forany z € g}, then g’ is convex, balanced and
salid in w. Furthermore, g C s* and p° is the smallest, salid subset of w containing .
#’ is called the solid hull of g in w.

+00
(vii) Letp* = {y €Ew:< 2,y >= Y. zpyn converges abeclutely for any z € p },
n=]
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then p° is called the (1st order) summability polar of g in w.
(viii) I A is a sequence space, then A*® is called the a—dual of A in w (p.405,(2]).
(ix) pis called perfect if g*° = p (p.406,{2])-

If L is a linear space over K-and L° is the algebraic dual of L, then, for any
0#ACLandP# A°C L% wedefine A = {f€L®:|f(z)|]S1 forz € A} and
°(A*)={z€L:|f(z)] <1 for f € A°}. A° (ar °(A®)) is called the polar of A
(or A®) in L® (or L). The summability pdar s°‘has some properties similar to those
of A°® as we will see in the following (cf. p.245,[2]).

Lesarm 1. Let0#p, pi,p3Cw anda#0€K.

i) w'=¢pandp®=w.

(i) m° is a sequence space, (ap)® = |a|p® and p C p*°.

(iii) If 1 G pa, then p3 C A}.

(iv) (#°)*® = p* and p° is g perfect sequence space.

(v)  #*° is the smallest, perfect sequence space containing g.

(vi) If p is perfect, then p is a sequence space, ¢ S p and p is sokid.
In particular, w,p, and & for 1 < p < +0o are perfect (p.406,[2]).

Proof. (i) If z € p, then < 2,y > converges abeclutely for any y € w. Thus
z € w* and p C w®. Conversely, if £ € w with infinitely many non-zero z,'s, then
for each of these z,,'s, we can find an g, € K with |[zaya| > 1. For the other n’s, we
let yo =0. Thus y € w and Eﬁ |2ngn] = +00. Hence z ¢ w*. This implies w* C .
Thus p = w®. p* Cwis d::a;. But w C ° as we have shown in the beginning.
Hence p°* = w.

(v) We note (5**)** = (p°)*** = p** and p*° is perfect. If A is a perfect sequence
space with g C A, then ** C A*® = A,

(vi) If # is perfect, then g = g°** and s*° is & sequence space. Since g* C w,
we have ¢ = w* C g™ = p by (i) Hz € p and y € w with |y| < |z|, then

00 400
t [¥nzn|l € T |Zn2n| < +00 for any s € 5. Thus y € s** = & and g is salid.
n=] nm=]l

o Cp,Cwforany y€T, then we define ¥ g, = {1 =7 :2(" € g, for
7€r 7€T

any v €T, and 2(7) = 0 € w for all but finitely many v's}. The condition ¢ C p,
implies z(7) € g, for any y€T.

Proposition 1. Let§ # p, Cw for anyy€ET.
@ N m)*=(U )
- q€r 7€r
(i) I S py for anyy €T, then ( }grﬁq)' = Qr(h)‘- If T is finite, then
the condition of o C g, for any Y €T is nZt ncccuary‘.’
(@) U (s1)* S (N pq)°.
7€r 7€r
(iv)  If gy is perfect for any 7 €T, then () 8,)°* = (X (8,)*)**, and () B,
7€r 7€r 7€r
18 perfect.
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Proof. (i) y € (E a4)°, then < z,y > converges absalutely for any
z e Y #4: In particular, < z(").y > converges absdlutely for any 2(7) € ., and
1€r
v€T. Hence y € (p,)* for any vy €T implies y € Qr(p.,)‘. Thus (%\p,)‘ c
~ Lo

C N (). Conversely, if y € N (pq)°, then < z{7,y > converges absdlutely
7€r 7€r

' x
for any 2(7 € p, and Y€T. Hz € T p,, then 3 = ¥ 2{7), where 2077 =
7€l =1

) +oc0 k
= (“u.n)nél+ € By for y = 1,2,...,k. Thus .E)I'n’ﬂ = 2 I(E 3"7_,-,'!)’"' =

ll

E | E Zq,n0n| S E ): |#oqy nBn| = E Z |2+;.n¥nl. Since < 214,y > con-

nml g§=| n | ,- J=1 n=al
verges absalutely, we have 2 |£4;,n¥n| < +00 for y =1, 2 .,k. Thus E [Znyn] <
na:l
< 400 for any z € Ep., a.ndye(z #,)°. This implies ﬂ(p.,) (Zérp.,)‘.
1
The given identity is pmved.
(iii) This follows directly from Lemma l(m) .
(v) By (@), (L (m)*)* = N)*" = N, Hemce (] pq)* =
1€r ~1€r ) 17€Tr ~€r
= (X (#1)°)")* = (I (#)*)* by Lemma 1(iv). Thus () p,)** = () py and
7€r ~€r 7€r 7€l
N u, is perfect.
q€r
The simplest, algebraic operation on sequences is the following.

Definition 2. Let {sn; : k = 1,2,...} be a strictly increasing sequence of positive
integers. If € w, then we define z¢ = (zn,)ses.,, Which is called the sectional
sequence of z amsociated with {ms : k = 1,2,...} (p. 410,[2]), where “d” means
deletion for the obvious reason. If § # g C w, then we define u? = (2% : z € p}.

Lerara 3. For any z € w and any strictly increasing sequence {ns : k& =
1,2,...} inZy, there is an y € w with yn, = z& for k € T4 and gy =0, otherwise.

Proof. Let ng =0. Forany k€ Z4, we put mg —a3—; — 1 b’srightbefomthe
k
coordinate zx. Thus at the ng—th coordinate, we add Y (nj —#j_y = 1) =np -k
j=t
0's. Let y = (0,0,...,0,21,0,0,...,0,23,...), then the ny~th coordinate of y is xj

n;-l ﬂ’—l

for any k € Z4, and y? = 2.

~ Proposition 2. Let 0 # 4, p1,43 Cw and {ns : k = 1,2,...} de o strictly
nereasing sequence in Z 4. ]

() I m C pa, then pf C 43,

(i) p='p. Thusif pC u, thenp C w9.

(i) (w4)° = °) .
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(iv) If p is solid (or perfect), so0 is p°.

Proof. (ii) If £ € ¢, then z = gy for some y € p. Since all but finitely many
ooordinates of y are 0, so are the coordinates of z. Thus z € p. This proves p? C .
Conversely, if z € p, then z = y¢ for some y € w in Lemma 2. Since y € p, we
have z € p%. Thus p C p¢ The given identity is proved. Hence if ¢ C g, then
p =% C pf by (i}

(iii) If A is a sequence space, then sois A4. If y € (g9)°, then < z¥,y > converges
abeolutely for any z € g. But y = 39 for some z € w in Lemma 2. We can easily
check < 2,2 >=< 29,y > for any 2 € p. Hence z € p* and y € (p*)¢. This proves
(8%)® C (8*)%. Conversely, if y € (5*)%, then y = 2¢ for some z € u*. Since z € p°,
< z,z > converges abealutely for any z € 5. Thus < z4,y > converges absalutely for
any z € , and y € (*)". This proves (5°)¢ C (5%)"-

(Jv)prlssohd z € p and y € w with |g| < |z], then z = z¢ for some
z € p. But y = v’ for some v € w in Lemma 2. Weca.neamlycheck|w|$|z|
Since g is sdlid, we have w € g and y € g% Thus p¢ is sdlid. I s is perfect, then
(w%)** = ((n*)?)* = (s°**)¢ = 5 by the repeated applications of (iii).

We now discuss the main notion of this paper.

Definition 8. I @ = (8p)ngz, € w and 2 = (Za)nez, € w, them
6z = (6nZn)nex, is called the diagonal transfarm of # by a for the fallowing rea-

o) el )

@ # p Cw, then we define ag = {8z : z € g} which is called the diagonal transform
of p by a.

'Iheorem 1. Leta=(an)nes, Ew and0#p Cw.

i) s* < (lﬁ)‘

(i) (asp)‘ =s"lu=w.

(i) Ifan # 0 for all but finitely many n’s, then (ap)® =a~1p°.

Proof. (i) y € s* and z € g, then 6™ 'y = (anpn)nex, and E [8nZndnyn| =
= Y |tapnl < +0o0. This is true for any = € g. Thus @~ 'e(ap)‘ This proves
aa®d

"ﬂ < (am)".
(ii) (8p)® C w and 6™'w C w are clear. H z € w, then we claim z € a~'w by
considering the following cases, where 6~} = (an)nez. .
(1) an =0: Thus an = 1. Let g, = z,,.

" (2) ap # 0: Thus a, = 1/a,. K z, = 0, let y, = 0 otherwise, let y, = 6,2.
For both cases, we have angn = z,. Thus z € 6™ 'w, and we proved w = a~'w. This
proves (ap)* 24~ 'p* = e 'w =w.

(iii) It suffices to prove (ap)* C a~'u*. Let ap, =0 forj = 1,2,...,k. Let
y € (ap)®, then we let Zn; = yn, forg=12,...,k and zp = anyn, othewae.
Hences™'s=g. Hz €, then(iorye(ap)‘ mdzep )




Algebraic Operations on Sequences by Diagonal Transforms 25

oo A [ ]
t |zazn| = E |3n,-ln,| + [Z2n3n| = e |‘n,!n,l+ r [8nZagnl < +oco.
n=| J=l nyn; J=1 nytn;

This is true for any z € g. Thus z € s* and (ap)® C 6~ '4°. The identity is
proved.

Remark . We consider why (ap)® = 6 ~!p® is not true for any & € w: Ha,, =0
40
for any k € Z4, then the infinite sum } |zn,¥n,| < +o0 may not be true in the
k=l
proof of the set—containment (ap)® S 6™ 1a°.

Diagonal transiorms between two subsets of w are more applicable, and we discuss
them

Definition 4. Let @ # gy, p3 C w, then we define D(m,p3) = {a € w :
apy C pa}. In other words, D(#, s3) is the set of all diagonal transforms from g to
pa (p-68, [1])'

Lenrmrm 4. Let @ # gy, pa C w.

()  D(mi,pa) € (ma(n3))".

(i) If pa is solid, so is D(p,p3).

(iid) If py is perfect, then s0 is D(my,p3), and D(py,p3) = (p1(s3))°-

Proof. (iii) is Proposition 1.2, (1}, and (i) can be proved similarly. For (ii),
we let ¢ € D(p),p3) and b € w with |b] < |a], then 6z € g3 for any z € u;. But
|bnZn| < |8nzn| for any n € Z,.. Thus bz € g3 and b € D(py,p;). Hence D(py, p3)
i8 solid.

Some special subeets gy of w will make D(p;,p3) more applicable. For ex-
ample, if # # p € w, then D(p,8!) = {6 € w : az € ' foranyz € p} =

=f{a€w: tfa,.z,, converges absolutely for any z € p} = p* and D(p*,8}) =
n=1
= D(D(p, '), €'). Another example is in the following.
Definition 5. If ¢ € w, then D(a,¢!) = {2 € w :< 8,2 > converges abealutely}=

= {a}® = A, which is called the dilation operation of a. Thus ), is a perfect sequence
space. We note (Aq)® = {a}*°.

Lerrmrm 8. Leta,b€Ew and D # g Cw.

i) b€l iffa€s.

i) I |a| < Jbl, then Xs € Aq and (A4)* C (.4\.)‘.

(i) aa € (Ag)* for any a € K and )A,,(Aq)° are perfect sequence spaces.
@ #*=Dt)= 0 k.

420
Proof. (i) We note the fallowing equivalences: b € A, iff } |8adn| < +o0 iff
n=l
a € Ay

(iii) K 2 € A, then *f; faesJoal w:fof 'ﬁ: l6nzal < $oo. - Thus we € ()
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That A, is perfect’is a consequence of Aq = {8}° or can be derived fromthm result: If
z € (A\q)°*°, then E [#a2n] < 400 for any y € (A¢)°*. In particular, Z |8nzn| < +00
irnplies z € A,. Tlus proves (A4)*® = A,.

Forany @ # g C w, p° and s*° can be represented by A, for ¢ in some suitable
subsets of w.

Theorem 2. Let@#p Cw.
i) »° gwn.,\. =D(p*, ') = g*° and n A =D(p, ') = p°

@ atC Y= .gyv(a,e*)'sr- mﬁq_(m-— _g.n(s,c')'a'.

(iii) If a € w, then Aye = (Ag)?, ie. D(a%, ') = (D(a,2'))d, uhere a* is
the sectional sequence of & associated with the strictly increasing sequence {ny :
k=1.2,...} n Z+.

Proof. (i) We note g** = D(n*%, &) = | D(3,¢') = N As. Since p™
bEp® Ep*

is perfect, p** is solid and g C a**. Hence p* C a**. Also, p* = D(u,l') =
=) D(a,8') = () A
a€p L

(i) H =z € p',’then |£] < Ja| for some ¢ € p. Since @ € (A;)* and (Ad)®
perfect, we have z € (Aq)*. This proves g* C U (Aa)*. We note U (Xa)® €

(ﬂ Aa)* = (s*)* = a** by Propasition l(m) and (i)  Also, U (4\5)‘
4 (ben_*b)"“ (beﬂ.D(b W) = (D(s*, )" = ((°)°)° = &° by Lemma 1(iii)

N

and the identity 4* = D(p, ') = n Aq. Conversely, if b € p°, then b € (Ay)°. Hence

p* C beU (As)*. This proves U (Ag)‘ =,

[Gii) i y € Agqe, then E |8, #k] < 400. But y = z¢ for some z € w in Lemma 2.
km]

We can easily check Eo i8nZn| = t:f |sns¥a| < +00. Hence z € A, and y € (A,)*.
This implies A,¢ C (':\:;‘. Convu:;ly, if y € (Aa)?, then y = 2¢ for some z € A,.
Thus ?f [n, o] < E |6nZn| < 400 implies y € Aqe. This implies (Ag)? C Aqe.
Hencek:\-,la = (Aq)4. A

We have the following characterizations of perfect sequence spaces.

Corollary 1. A sequence space ) is perfect iff A = berl- Ay = D(A°, ).

We now consider the possibilities of ¢ € w and its associated sequence space A,.

Theorern 3. Let a € w bde given.
@) If an # 0 for all but finitely many n’s, then Ay = {a}* = D(a,!) =
=a"'! and (Aa)* = {6}** = W™, where a™! = (an)nex, and b= (bn)nes, *




Algebraic Operations on Sequences by Diagonal Transforms 27

an=bp =1 fora, =0, and ap = a3}, bn = an, otheruise.

(i) If an =0 for all but finitely many n's, then Ao = {}* = D(s,¢') = w and
(Aa)* =p.

(i) If am, # 0 and an, = 0, where my < ma41 and s < nuyy for any
k € Z4, then the sectional sequences of Ay associated with {my : k = 1,2,...}
and {ns : k = 1,2,...} are ((a;))rex, )t and w, respectively. Thus the sectional
scquence spaces of (Ag)® associated with {my : k = 1,2,...} and {ny : k = 1,2,...}
are (am, )rez, (™ and @ respectively.

Proof. (i) Let a,, = 0 for j = 1,2,...,k. If z € A,, then we let yo, = z,,
400

for j = 1,2,...,k and yn = @nzn, Otherwise. Hence z = ¢~ !y and Y |ya]| =
n=]

k &
= E I'n,l % E |'n| = 2 |zﬁ;' + E |°n3n| < +o0o. This implies y € ¢!'. Hence
ym] nytng y=1 nying

As S a”!e}. Conversely, if y € £, then 6™y = (@nyn)nes, and E |ananyn| =
naxl

]
= 1 len,angn,l + L |6nangn| = ¥ |ga| < +oo. This implies a~'y € A,.
=i nyng nyn;

Hence ™! ¢! C A,. The identity A, = 6¢~'¢! is proved. Sincea, # 0 foranyn € Z,
we have (A,)* = (a~1¢!)* = §(£!)* = b6 by Theorem 1(iii).

(i) For any z € w, < &,z > converges absalutely, i.e. z € A,. Thus A, = w and
(Aa)® = .

(iii) By Theorem 2(iii), A(em,)sen, = (Aa)? which is thhe sectional sequence
space of A, associated with {my : k = 1,2,...}. Thus (A.)¢ = (s}, )aez, &' by (i)
Also, w = 4\(,_.,“.* = (Aq)¥ which is the sectional sequence space of A, associated
with {ms : k = 1,2,...}. Thus ((‘\‘O).)‘ = ((Aa))" = (A(C-.)lel., )* = (6my)rez, €
and ((Ae)*)¥ = (Ra)¥)* =w* = p.

Corollary 1. For anys €w, &~ ' C A, = D(a, ).

Proof. We consider the following cases.

(i) an # 0 for all but finitely many s’sc Thus A, = a~!¢! by Theorem 3(i).
(ii) an =0 for all but finitely many n’s: Thus A = w by Theorem (ii).

(i) @m, # 0 and @,, = 0, where mg < mpy4; and mg < ng4) for any

00 a0
ke Z,:Hyedl, thens™'y = (anyn)nes, and +E| |ananyn| = }: [8my Amy¥m, | +
nm =l

‘Eo:o 00
+h |8ns @ny¥na| = }: |#ma] < 400 implies ™'y € A,. Thus 6™ ¢! C A,.
=] L1}

Corollary 3. Let a € w satisfy the conditions of Theorem 3(iii), then z € A,
i (2m, )rez. € (65))sex.l' and (zn,)res, € w. Also, 3 € (Aa)* iff (¥ym,)rez, €
€ (8m,)rex, ° and (yn,)rez., € .

By the applications of Theorem 3 and the polar properties of g°, we can determine
#° for some g C w. The following are two simple examples.
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Corollary 3. Let@ # 5 C w.
() I en # O for all but finitely many n's for any a € g, then p* = D(a, &)=
= -ltl_
.Qpc
(@) TaCyp,thenp® =w and g™ = p.

Prool. (i) We note p* = (.g' {e})* = .g{l}‘ = .g’ 6~ ¢! by Proposition 1(i)

and Theorem 3(i).
(ii) We note w = p° C #° and pg** = w* = p.

The polar properties of #° can simplify many computations on sequences. An-
other example is the following: If /) € w for j = 1,2,...,k and 6 = t al”), then
j=1
Yo =ta)* = (5 60 = f 69} = fi 3 by Propesiton 163

Atthemdo{thmpapc,wewnllﬁndD(l' &) and D(09,07) for 1 € p,g S +o0
(. Example 1.6,(1]).

Lexrsrn 6. For 1 < p,g € 400 un'tlnr:#;kl, we have PO = {7,

Proof. Foranyt 2 1 and 2 € w, we have [z|* = (Jza|')nez,. H z € 2 and
y € 09, then |2]? € & and |g|* € . We note (|zg])” = |2|"|y|" and |2|" € t3/(p+9)
and |1|' € t#/s+9) But s + 73 =1 implies |zy]" = |2["ly]" € ¢'. Hencezy € l’
and we proved P8 C &', Conversely, if 5 € £, then |z|” € ¢! implies |s|9/(?19) g ¢
and |z|P/(P+9) € ¢, Hence |z| = |5|¢/(Pt9) |z|r/(rﬂ) € 0% and z € P, This implies
rCcen.

The identity £P& = {" ig certainly not correct without the condition £ > 1. This
can be seen from the proof of Lemma 6 ( i.e. |#|" is a 1-th root of |z| ) or can be
disproved by the following example.

Proposition 8. (i) D(,62) =t for any1 < p < +oo.
(i) D(£P,f) =t for any1 < p < +oo.
(i) €'¢' C¢* and 1¢! is not perfect ( Remark (c), p.68,[1]).

Proof. (i) This can be proved by the similar arguments in Lemma 1.4,[1].

(ii) By Proposition 1.2,[1] we have D(!,£!) = (£} (£})°)* = (£'¢=)* = (¢')* =
= ¢*° and D(I®,t®) = (£°(£2)*)* = (=) = (!)* = ¢, where we use
the fact A = A for any salid sequence space A. For 1 < p < 400, we have

D(P,P)={e€Ew: &: |[8nzalP < +00 foranyz€lP}={a€Ew: f |an|Plzn|? <

< 400 forany |z]P € !} = {a€w: )_,la,.|"|z..|<+oo foranyzel’} Thus

a € D(&, ) ift |a|f € (£!)°* = £ iﬂ'cet“’ i.e. D(CP,fP) =¢>

(iii) We note (£161)° = (£1(£2)%)° = D(81,£°) = &= by Proposition 1.2 and
Lemma 1.4, (1). Thus (£2¢!)** = ¢! and #¢! C ¢!. This can also be seen by £1¢! C
gt =4,
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I Lemma 6 is true for any 1 < p, ¢ < +00, then £!¢! = ¢}/3_ This is a contradic-
tion.

Theorem 4. Let 1 <p < g < +oo.

i) IDp=q=1, thenD(f?,0%) = D(V,0?) =

@) Ip=g=+oo, then D(¢?,08) = D(t9,0?) =

() If1<p=gq<+oo, then D(L?,03) = D(8&9,(P) = ¢

Gv) Ifp=1andg=+oo, then D(fP,£0) = t>° and D(6,0P) = {*.

(v) Dp=1andg< +oo, then D(t?,t9) = £ and D(t9, tP) = ¢a/a=1)

(vi) Ifp>1 andq=+oo, then D(P, (%) = ¢ and D(3, () = £°

(vii) Ifp > 1 and ¢ < +co, then D(1, ) = (P9/(9=P) gnd D(¢?,9) is unde-
cided. .

Proof. If'l1 £ r € +o0o, then we let ¢ be the conjugate component of r, i.e.
L4+ X =1. (i), (i) and (iii) have been proved in Proposition 3.

(iv) We note D(¢?,89) = D(£!,£®°) = ¢*° by Lemma 1.4, {1}, and D(&4, fP)
= D(&=, ) = (E®) = ¢L.

(v) We. note D(e,0%) = D(&',¢9) = (&(9)°) = (L'9)y = I(t"") ey
D(l' £2) = £ by Proposition 3(i) and D(#9,¢P) = D(&9, ') = (£9)° = &8/1a=1),

(vi) We note D(t’ ) = D(f,t°) = ¢*° and D(N,P) = D(>,r)

= (E=2(7)°)* = ((¢F)e°) = (&) = .
(vii) We note D(&9, #) = #9/(9=?) by Exampie 1.6, [1].

We also have the following simple consequences.

Corollary 1. If'1 < p,q S +0o, then D(t?, ) = D(&7, 7).

Proof. This follows that D(P, %) = (£P(£9)*)* = (29 (¢7')*)* = D(ev', ¢¥').
Corollary 2. D(£*,(?) = ¢ and D(t?,8') = * for1 < p < +co.
Corollary 3. D(t®,{?) = * and D((?,t®°) =t® for1<p< +oo.

Hl<p<g<+oo, thenl < ¢ < p' < +0o. Hence D(£#,£%) can be obtained
by Example 1.6, {1]. In other words, the applications of Carallary 1 will simplify some
results in Theorem 4. In §8 of the author’s paper “Several basic theorems on locally

comvex spaces and their duality”, varous topalogies on sequence spaces arc briefly
discussed.
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‘STRESZCZENIE

W pracy tej wprowadzono pojecie shioru palarnego se wagledu na sumowalnodé, ktéry jest
analogonem shioru polarnego w prasstrseniach lolalnie wypuldych. Wprowadsenie takiego shioru
poswala uprodcié niektére duialania na degach.

SUMMARY

In this paper polar sets w.r.t. surmmmabhility are introduced which are counterparts of polar seta
in locally convex spaces. This idea enables us to_simplify some operations on sequences.




