Chinese University of Hong Kong

W. H. HSIANG

Algebraic Operations on Sequences by Diagonal Transforms

Operacje algebraicnne na ciagach okreslone tranaformacjami diagonalnymi

Let K be the field of all real or complex numbers, and \mathbf{Z}_{+}be the set of all poaitive integers λ is called a sequence space over K if λ is a linear space of sequences in \mathbf{K} under coordinatewise operations. Some special sequence spaces are given in the following.

Notations: (i) $\omega=\prod_{n=1}^{+\infty} \mathbf{X}=\left\{\left(x_{n}\right)_{n \in Z_{+}}: x_{n} \in \mathbf{K}\right.$ for $\left.n \in Z_{+}\right\}$and $p=\prod_{n=1}^{+\infty} \mathbf{K}=\left\{\left(x_{n}\right)_{n \in Z_{+}}: x_{n} \in \mathbf{K}\right.$ for any $n \in Z_{+}$and $x_{n}=0$ for all bnt finitely many n's $\}$.
(ii) $l^{1}=\left\{\left(x_{n}\right)_{n \in Z_{+}} \in \omega: \sum_{n=1}^{+\infty}\left|x_{n}\right|<+\infty\right\}$ and $\ell^{\infty}=\left\{\left(x_{n}\right)_{n \in \mathbb{X}_{+}}: \sup _{n \in \mathbb{Z}_{+}}\left|x_{n}\right|<\right.$ $<+\infty\}$. Also, $p=\left\{\left(x_{n}\right)_{n \in z_{+}}: \sum_{n=1}^{+\infty}\left|x_{n}\right|^{p}<+\infty\right\}$ for $1<p<+\infty$.

We also have the following definitions
Defmition 1. Let $x, y \in \omega$ and $\not \not \equiv \mu \subseteq \omega$.
(i) x is called positive iff $x_{n} \geq 0$ for any $n \in \mathbb{Z}_{+}$.
(ii) Let x, y be positive, then we define $x \leq y$ iff $x_{n} \leq y_{n}$ for any $\propto \in Z_{+}$.
 $\alpha_{n}=x_{n}^{-1}$, otherwise.
(iv) Let $x y=\left(x_{n} y_{n}\right)_{n \in z_{+}}$and $x / y=x y^{-1}$.
(v) μ is called solid (or normal on p.405,[2]) if $z \in \mu$ and $y \in \omega$ with $|y| \leq|x|$ implies $y \in \mu$.
(vi) Let $\mu^{2}=\{y \in \omega:|y| \leq|x|$ for any $x \in \mu\}$, then β^{0} is convex, balanood and solid in ω. Furthermore, $\beta \subseteq \beta^{0}$ and β^{0} is the smallest, solid subset of ω containing β. μ° is called the solid hall of μ in ω.
(vii) Let $\mu^{*}=\left\{y \in \omega:\langle x, y\rangle=\sum_{n=1}^{+\infty} x_{n} y_{n}\right.$ converges aboolutely for any $\left.z \in \beta\right\}$,
then μ^{0} is called the (1st order) summability polar of μ in ω.
(viii) If λ is a sequence space, then λ^{*} is called the ordual of λ in ω (p.405,[2]).
(ix) μ is called perfect if $\beta^{\bullet \bullet}=\beta$ (p.406,[2]).

If L is a linear space over K and L° is the algebraic dual of L, then, for any $\emptyset \neq A \subseteq L$ and $\not \neq A^{\circ} \subseteq L^{*}$, we define $A^{0 \bullet}=\left\{f \in L^{*}:|f(x)| \leq 1\right.$ for $\left.x \in A\right\}$ and ${ }^{0}\left(A^{\bullet}\right)=\left\{x \in L:|f(x)| \leq 1\right.$ for $\left.f \in A^{0}\right\}$. $A^{00}\left(a^{\circ}\left(A^{\circ}\right)\right)$ is called the polar of A (or A^{*}) in L^{*} (or L). The summability polar β° has some properties similar to those of A^{00} as we will see in the following (cf. p.245,[2]).

Lemma 1. Let $\neq \mu, \mu_{1}, \mu_{2} \subseteq \omega$ and $\alpha \neq 0 \in \mathbb{R}$.
(i) $\omega^{*}=\varphi$ and $\varphi^{\bullet}=\omega$.
(ii) β° is a sequence space, $(\alpha \beta)^{*}=|\alpha| \beta^{\circ}$ and $\beta \subseteq \beta^{\circ \omega}$.
(iii) If $\mu_{1} \subseteq \mu_{2}$, then $\mu_{2}^{*} \subseteq \mu_{i}^{*}$.
(iv) $\left(\mu^{\circ}\right)^{\bullet \bullet}=\beta^{*}$ and β° is a perfect sequence space.
(v) μ^{00} is the smallest, perfect sequence space containing β.
(vi) If μ is perfect, then μ is a sequence space, $\varphi \subseteq \mu$ and μ is solid.

In particular, ω, φ, and ${ }^{\omega}$ for $1 \leq p \leq+\infty$ are perfect ($p .406,[2]$).
Proof. (i) If $x \in \varphi$, then $\langle x, y\rangle$ converges absolutely for any $y \in \omega$. Thns $x \in \omega^{*}$ and $\varphi \subseteq \omega^{*}$. Conversely, if $x \in \omega$ with infinitely many non-zero x_{n} 's, then for each of these x_{n} 's, we can find an $y_{n} \in \mathbb{K}$ with $\left|x_{n} y_{n}\right|>1$. For the other n 's, we let $y_{n}=0$. Thus $y \in \omega$ and $\sum_{n=1}^{+\infty}\left|x_{n} y_{n}\right|=+\infty$. Hence $z \notin \omega^{\circ}$. This implies $\omega^{\circ} \subseteq \varphi$. Thus $\varphi=\omega^{*} \cdot \varphi^{\bullet} \subseteq \omega$ is clear. But $\omega \subseteq \varphi^{\bullet}$ as we have shown in the beginning. Hence $\varphi^{\bullet}=\omega$.
(v) We note $\left(\mu^{\bullet \bullet}\right)^{\infty}=\left(\beta^{\bullet}\right)^{\infty \bullet \bullet}=\mu^{\infty}$ and $\mu^{\bullet \bullet}$ is perfect. If λ is a perfect sequence space with $\beta \subseteq \lambda$, then $\mu^{\bullet \bullet} \subseteq \lambda^{\bullet \bullet}=\lambda$.
(vi) If μ is perfect, then $\mu=\mu^{\circ \bullet}$ and $\mu^{\bullet \omega}$ is a sequence space. Since $\mu^{\bullet} \subseteq \omega$, we have $\varphi=\omega^{*} \subseteq \beta^{* *}=\mu$ by (i). If $x \in \mu$ and $y \in \omega$ with $|y| \leq|x|$, then $\sum_{n=1}^{+\infty}\left|y_{n} z_{n}\right| \leq \sum_{n=1}^{+\infty}\left|z_{n} z_{n}\right|<+\infty$ for any $s \in \mu^{\bullet}$. Thas $y \in \mu^{\infty}=\mu$ and μ is solid.

If $\varphi \subseteq \beta_{\gamma} \subseteq \omega$ for any $\gamma \in \Gamma$, then we define $\sum_{\gamma \in \Gamma} \mu_{\gamma}=\left\{\sum_{\gamma \in \Gamma} x^{(\gamma)}: x^{(\gamma)} \in \mu_{\gamma}\right.$ for any $\gamma \in \Gamma$, and $x^{(\gamma)}=0 \in \omega$ for all but finitely many $\left.\gamma^{\prime} s\right\}$. The condition $\varphi \subseteq \mu_{\gamma}$ implies $x^{(\gamma)} \in \mu_{\gamma}$ for any $\gamma \in \Gamma$.

Proposition 1. Let $\emptyset \neq \mu_{\gamma} \subseteq \omega$ for any $\gamma \in \Gamma$.
(i) $\bigcap_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{*}=\left(\bigcup_{\gamma \in r} \mu_{\gamma}\right)^{\circ}$.
(ii) If $\varphi \subseteq \mu_{\gamma}$ for any $\gamma \in \Gamma$, then $\left(\sum_{\gamma \in \Gamma} \mu_{\gamma}\right)^{*}=\bigcap_{\gamma \in \Gamma}\left(\beta_{\gamma}\right)^{\bullet}$. If Γ is finite, then the condition of $\varphi \subseteq \mu_{\gamma}$ for any $\gamma \in \Gamma$ is not necessary.
(iii) $\bigcup_{\gamma \in \Gamma}\left(\beta_{\gamma}\right)^{\bullet} \subseteq\left(\bigcap_{\gamma \in r} \mu_{\gamma}\right)^{\circ}$.
(iv) If β_{γ} is perfect for any $\gamma \in \Gamma$, then $\left(\bigcap_{\gamma \in \Gamma} \beta_{\gamma}\right)^{\bullet}=\left(\sum_{\gamma \in \Gamma}\left(\beta_{\gamma}\right)^{\bullet}\right)^{\bullet \bullet}$, and $\bigcap_{\gamma \in \Gamma} \beta_{\gamma}$ is perfecs.

Proof. (ii) If $y \in\left(\sum_{x \in \Gamma} \mu_{7}\right)^{\circ}$, then $\langle x, y\rangle$ converges abodutely for any $x \in \sum_{\gamma \in \Gamma} \mu_{\gamma}$: In particular, $\left\langle x^{(\gamma)}, y\right\rangle$ convenges absolately for any $x^{(\gamma)} \in \mu_{\gamma}$ and $\gamma \in \Gamma$. Hence $y \in\left(\mu_{\gamma}\right)^{*}$ for any $\gamma \in \Gamma$ implies $y \in \bigcap_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\circ}$. Thas $\left(\sum_{\gamma \in \Gamma} \mu_{\gamma}\right)^{\bullet} \subseteq$ $\subseteq \bigcap_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\circ}$. Conversely, if $y \in \bigcap_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\bullet}$, then $\left\langle x^{(\gamma)}, y\right\rangle$ converges aboolutely for any $x^{(\gamma)} \in \beta_{\gamma}$ and $\gamma \in I$. If $z \in \sum_{\gamma \in \Gamma} \mu_{\gamma}$, then $z=\sum_{j=1}^{b} x^{(\gamma j)}$, where $x^{i}\left(\gamma_{j}\right)=$ $=\left(x_{\gamma_{j}, n}\right)_{n \in \Xi_{+}} \in \beta_{\gamma_{j}}$ for $j=1,2, \ldots, k$. Thas $\sum_{n=1}^{+\infty}\left|x_{n} y_{n}\right|=\sum_{n=1}^{+\infty}\left|\left(\sum_{j=1}^{k} x_{\gamma_{j}, n}\right) y_{n}\right|=$ $=\sum_{n=1}^{+\infty}\left|\sum_{j=1}^{k} x_{\eta_{j}, n} y_{n}\right| \leq \sum_{n=1}^{+\infty} \sum_{j=1}^{k}\left|x_{\gamma_{j}, n} y_{n}\right|=\sum_{j=1}^{k} \sum_{n=1}^{+\infty}\left|x_{\gamma_{j}, n} y_{n}\right|$. Sizce $\left\langle x^{\left(\gamma_{j}\right)}, y\right\rangle$ converges abodintely, wave $\sum_{n=1}^{+\infty}\left|x_{\gamma_{j}, n} y_{n}\right|<+\infty$ for $j=1, \dot{2}, \ldots, k$. Thos $\sum_{n=1}^{+\infty}\left|x_{n} y_{n}\right|<$ $<+\infty$ for any $z \in \sum_{\gamma \in \Gamma} \mu_{\gamma}$ and $y \in\left(\sum_{\gamma \in \Gamma} \mu_{\gamma}\right)^{\circ}$. This implies $\bigcap_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\circ} \subseteq\left(\sum_{\gamma \in \Gamma} \mu_{\gamma}\right)^{\circ}$. The given identity is proved.
(iii) This follows directly from Lemma 1(iii).
(iv) By (ii), $\left(\sum_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\circ}\right)^{\bullet}=\bigcap_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\omega \theta}=\bigcap_{\gamma \in \Gamma} \mu_{\gamma}$. Hence $\left(\bigcap_{\gamma \in \Gamma} \mu_{\gamma}\right)^{\omega *}=$ $=\left(\left(\sum_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\bullet}\right)^{\bullet}\right)^{\omega \bullet}=\left(\sum_{\gamma \in \Gamma}\left(\mu_{\gamma}\right)^{\bullet}\right)^{\bullet}$ by Lemma 1(iv). Thus $\left(\bigcap_{\gamma \in \Gamma} \mu_{\gamma}\right)^{* *}=\bigcap_{\gamma \in \Gamma} \mu_{\gamma}$ and $\cap \mu_{\gamma}$ is perfect.
$\gamma \in \Gamma$
The simplest, algebraic operation on sequences is the following.
Definition 2. Let $\left\{n_{k}: k=1,2, \ldots\right\}$ be a strictly increasing sequence of positive integers. If $x \in \omega$, then we define $x^{d}=\left(x_{n_{b}}\right)_{k \in \Sigma_{+} \text {, which is called the sectional }}^{\text {, }}$ sequence of a associated with $\left\{m_{k}: k=1,2, \ldots\right\}$ (p. 410,[2]), where "g" means deletion for the obvious reason. If $\emptyset \neq \beta \subseteq \omega$, then we define $\mu^{d}=\left\{x^{d}: x \in \beta\right\}$.

Lemma 2. For any $z \in \omega$ and any strietly inereasing sequence $\left\{n_{k}: k=\right.$ $1,2, \ldots\}$ in Z_{+}, there is an $y \in \omega$ with $y_{n_{i}}=x_{k}$ for $k \in Z_{+}$and $y_{n}=0$, otherwise.

Proof. Let $m_{0}=0$. For any $k \in \mathbb{Z}_{+}$, we put $m_{k}-\Omega_{n-1}-1$ 0's right before the coordinate x_{k}. Thus at the n_{k} th coordinate, we add $\sum_{j=1}^{k}\left(n_{j}-n_{j-1}-1\right)=n_{k}-k$ 0^{\prime} s. Let $y=(\underbrace{0,0, \ldots, 0}_{n_{1}-1}, x_{1}, \underbrace{0,0, \ldots, 0}_{n_{1}-1}, x_{2}, \ldots)$, then the n_{k}-th coordinate of y is x_{k} for any $k \in Z_{+}$, and $y^{d}=x$.

Proposition 2. Let $\triangle \neq \mu, \mu_{1}, \mu_{2} \subseteq \omega$ and $\left\{\Omega_{k}: k=1,2, \ldots\right\}$ be a strietly inereasing sequence in Z_{+}.
(i) If $\mu_{1} \subseteq \mu_{2}$, then $\mu_{1}^{d} \subseteq \mu_{2}^{d}$.
(ii) $\varphi^{d}=\varphi$. Thus if $\varphi \subseteq \mu$, then $\varphi \subseteq \mu^{d}$.
(iii) $\left(\mu^{d}\right)^{\bullet}=\left(\mu^{0}\right)^{d}$.
(iv) If β is solid (or perfect), so is μ^{d}.

Proof. (ii) If $x \in \varphi^{d}$, then $x=y^{d}$ for some $y \in \varphi$. Since all bat finitely many coordinates of y are 0 , so are the coordinates of x. Thus $x \in \varphi$. This proves $\varphi^{d} \subseteq \varphi$. Converely, if $x \in \varphi$, then $x=y^{d}$ for some $y \in \omega$ in Lemma 2. Since $y \in \varphi$, we have $x \in \varphi^{d}$. Thas $\varphi \subseteq \varphi^{d}$. The given identity is proved. Hence if $\varphi \subseteq \mu$, then $\varphi=\varphi^{d} \subseteq \mu^{d}$ by (i).
(iii) If λ is a sequence space, then so is λ^{d}. If $y \in\left(\mu^{d}\right)^{d}$, then $\left\langle x^{d}, y\right\rangle$ converges aboolutely for any $z \in \mu$. But $y=z^{d}$ for some $z \in \omega$ in Lemma 2. We can easily check $\langle x, z\rangle=\left\langle x^{d}, y\right\rangle$ for any $z \in \mu$. Hence $z \in \mu^{0}$ and $y \in\left(\mu^{\circ}\right)^{d}$. This proves $\left(\mu^{d}\right)^{0} \subseteq\left(\mu^{\circ}\right)^{d}$. Conversely, if $y \in\left(\mu^{\circ}\right)^{d}$, then $y=z^{d}$ for some $z \in \mu^{\circ}$. Since $z \in \mu^{0}$, $\langle x, z\rangle$ converges aboclutely for any $x \in \mu$. Thus $\left\langle x^{d}, y\right\rangle$ converges aboolutely for any $x \in \mu$, and $y \in\left(\mu^{d}\right)^{0}$. This proves $\left(\mu^{0}\right)^{d} \subseteq\left(\mu^{d}\right)^{e}$.
(iv) If μ is solid, $x \in \mu^{d}$ and $y \in \omega$ with $|y| \leq|x|$, then $z=z^{d}$ for some $z \in \mu$. But $y=\boldsymbol{w}^{d}$ for some $w \in \omega$ in Lemma 2 . We can easily check $|\varpi| \leq|z|$. Since μ is solid, we have $\boldsymbol{\boxminus} \in \mu$ and $y \in \mu^{d}$. Thus μ^{d} is solid. If μ is perfect, then $\left(\mu^{d}\right)^{\bullet \bullet}=\left(\left(\mu^{0}\right)^{d}\right)^{\bullet}=\left(\mu^{\bullet 0}\right)^{d}=\mu^{d}$ by the repeated applications of (iii).

We now discuss the main notion of this paper.
Deflnition 8. If $a=\left(a_{n}\right)_{n \in \mathbf{Z}_{+}} \in \omega$ and $x=\left(x_{n}\right)_{n \in Z_{+}} \in \omega$, then $a x=\left(a_{n} x_{n}\right)_{n \in \mathbf{Z}_{+}}$is called the diagonal transform of x by a for the following reason:
If $a=\left(\begin{array}{ccc}a_{1} & & 0 \\ & a_{2} & \\ 0 & & \ddots\end{array}\right)$, then $\quad a x=\left(\begin{array}{ccc}a_{1} & & 0 \\ & a_{2} & \\ 0 & & \ddots\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots\end{array}\right)$.
U $\neq \mu \subseteq \omega$, then we define $\sigma \beta=\{\varepsilon x: x \in \beta\}$ which is called the diagonal transform of μ by a.

Theorem 1. Let $a=\left(a_{n}\right)_{n \in \Sigma_{+}} \in \omega$ and $\emptyset \neq \mu \subseteq \omega$.
(i) $a^{-1} \mu^{0} \subseteq(\alpha \beta)^{\circ}$.
(ii) $(a \varphi)^{*}=0^{-1} \omega=\omega$.
(iii) If $a_{n} \neq 0$ for all but finitely many n 's, then $(a \beta)^{\circ}=e^{-1} \beta^{\circ}$.

Proof. (i) If $y \in \mu^{0}$ and $x \in \mu$, then $a^{-1} y=\left(a_{n} y_{n}\right)_{n \in \Sigma_{+}}$and $\sum_{n=1}^{+\infty}\left|a_{n} x_{n} \alpha_{n} y_{n}\right|=$ $=\sum_{0, \mu_{0}}\left|x_{n} y_{n}\right|<+\infty$. This is true for any $x \in \mu$. Thus $e^{-1} y \in(\alpha \beta)^{\circ}$. This proves $a^{-1} \mu^{\bullet} \subseteq(a \beta)^{\bullet}$.
(ii) $(\sigma \varphi)^{\circ} \subseteq \omega$ and $a^{-1} \omega \subseteq \omega$ are clear. If $x \in \omega$, then we claim $x \in a^{-1} \omega$ by considering the following cases, where $a^{-1}=\left(\alpha_{n}\right)_{n \in Z_{+}}$.
(1) $a_{n}=0$: Thas $\alpha_{n}=1$. Let $y_{n}=x_{n}$.
(2) $a_{n} \neq 0$: Thus $a_{n}=1 / a_{n}$. If $x_{n}=0$, let $y_{n}=0$ otherwise, let $y_{n}=a_{n} x_{n}$. For both cases, we have $\alpha_{n} y_{n}=x_{n}$. Thos $x \in a^{-1} \omega$, and we proved $\omega=a^{-1} \omega$. This proves (ap) $\supseteq a^{-1} \varphi^{0}=e^{-1} \omega=\omega$.
(iii) It suffices to prove $(a \beta)^{0} \subseteq d^{-1} \mu^{0}$. Let $a_{n_{j}}=0$ for $j=1,2, \ldots, k$. Let $y \in(a \mu)^{\circ}$, then we let $z_{n_{j}}=y_{n_{j}}$ for $j=1,2, \ldots, k$ and $z_{n}=a_{n} y_{n}$, otherwise. Hence $s^{-1} z=y$. If $x \in \mu$, then (for $y \in(ब \mu)^{\circ}$ and $x \in \mu$)
$\sum_{n=1}^{+\infty}\left|x_{n} z_{n}\right|=\sum_{j=1}^{k}\left|x_{n j} z_{n_{j}}\right|+\sum_{n \neq n_{j}}\left|z_{n} z_{n}\right|=\sum_{j=1}^{n}\left|x_{n j} y_{n_{j}}\right|+\sum_{n \neq n_{j}}\left|x_{n} x_{n} y_{n}\right|<+\infty$. This is true for any $x \in \beta$. Thus $z \in \mu^{\circ}$ and $(a \beta)^{\bullet} \subseteq e^{-1} \mu^{\circ}$. The identity is proved.

Remark. We consider why $(\alpha \mu)^{*}=\varepsilon^{-1} \mu^{*}$ is not true for any $\varepsilon \in \omega$: If $a_{n_{s}}=0$ for any $k \in Z_{+}$, then the infinite sum $\sum_{k=1}^{+\infty}\left|x_{n_{k}} y_{n_{s}}\right|<+\infty$ may not be true in the proof of the set-containment $(\alpha \mu)^{\circ} \subseteq e^{-1} \mu^{\circ}$.

Diagonal transforms between two subeets of ω are mare applicable, and we discuss them

Deflnition 4. Let $\neq \mu_{1}, \mu_{2} \subseteq \omega$, then we define $D\left(\mu_{1}, \mu_{2}\right)=\{a \in \omega$: $\left.a \mu_{1} \subseteq \mu_{2}\right\}$. In other words, $D\left(\mu_{1}, \mu_{2}\right)$ is the set of all diagonal transiorms from μ_{1} to μ_{2} (p.68, $[1]$).

Lemtra 4. Let $\mid \neq \mu_{1}, \mu_{2} \subseteq \omega$.
(i) $D\left(\mu_{1}, \mu_{2}\right) \subseteq\left(\mu_{1}\left(\mu_{2}^{*}\right)\right)^{*}$.
(ii) If μ_{2} is solid, so is $D\left(\mu_{1}, \mu_{2}\right)$.
(iii) If μ_{2} is perfect, then 30 is $D\left(\mu_{1}, \mu_{2}\right)$, and $D\left(\mu_{1}, \mu_{2}\right)=\left(\mu_{1}\left(\mu_{2}^{\circ}\right)\right)^{\circ}$.

Proof. (iii) is Proposition 1.2, [1], and (i) can be proved similarly. For (ii), we let $a \in D\left(\mu_{1}, \mu_{2}\right)$ and $b \in \omega$ with $|b| \leq|a|$, then $a x \in \mu_{2}$ for any $x \in \mu_{1}$. But $\left|b_{n} x_{n}\right| \leq\left|\Omega_{n} x_{n}\right|$ for any $n \in Z_{+}$. Thus bex $\in \mu_{2}$ and $b \in D\left(\mu_{1}, \mu_{2}\right)$. Hence $D\left(\mu_{1}, \mu_{2}\right)$ is solid.

Some special subeets μ_{2} of ω will make $D\left(\mu_{1}, \mu_{2}\right)$ more applicable. For example, if $\neq \mu \subseteq \omega$, then $D\left(\mu, \ell^{1}\right)=\left\{\omega \in \omega: a x \in \ell^{l}\right.$ for any $\left.x \in \mu\right\}=$ $=\left\{a \in \omega: \sum_{n=1}^{+\infty} a_{n} x_{n}\right.$ converges absolutely for any $\left.x \in \mu\right\}=\mu^{\bullet}$ and $D\left(\mu^{\bullet}, \ell^{1}\right)=$ $=D\left(D\left(\mu, \ell^{1}\right), \ell^{2}\right)$. Another example is in the following.

Defmition δ. If $\in \in \omega$, then $D\left(c, l^{l}\right)=\{x \in \omega:\langle\varepsilon, x\rangle$ converges absolutely $\}=$ $=\{a\}^{\circ}=\lambda_{e}$ which is called the dilation operation of c. Thas λ_{s} is a perfect sequence space. We note $\left(\lambda_{a}\right)^{\bullet}=\{a\}^{*}$.

Lemma 5. Let $a, b \in \omega$ and $\emptyset \neq \mu \subseteq \omega$.
(i) $b \in \lambda_{0}$ iff $a \in \lambda_{b}$.
(ii) \quad bf $|a| \leq|b|$, then $\lambda_{6} \subseteq \lambda_{E}$ and $\left(\lambda_{6}\right)^{*} \subseteq\left(\lambda_{0}\right)^{\circ}$.
(iii) $\alpha a \in\left(\lambda_{B}\right)^{*}$ for any $a \in K$ and $\lambda_{B},\left(\lambda_{0}\right)^{*}$ are perfect sequence spaces.
(iv) $\mu^{*}=D\left(\mu, l^{1}\right)=\bigcap_{\Delta \in \mu} \lambda_{0}$.

Proof. (i) We note the following equivalencess $b \in \lambda_{0}$ iff $\sum_{n=1}^{+\infty}\left|e_{n} b_{n}\right|<+\infty$ iff $\in \in \lambda_{6}$.
(iii) If $x \in \lambda_{a}$, then $\sum_{n=1}^{+\infty}\left|\left(\alpha a_{n}\right) x_{n}\right|=|\alpha| \sum_{n=1}^{+\infty}\left|a_{n} x_{n}\right|<+\infty$. Thus $\alpha a \in\left(\lambda_{a}\right)^{*}$.

That λ_{0} is perfect is a consequence of $\lambda_{0}=\{\sigma\}^{\circ}$ or can be derived from this result: If $z \in\left(\lambda_{0}\right)^{\bullet \bullet}$, then $\sum_{n=1}^{+\infty}\left|y_{n} z_{n}\right|<+\infty$ for any $y \in\left(\lambda_{0}\right)^{\bullet}$. In particular, $\sum_{n=1}^{+\infty}\left|a_{n} z_{n}\right|<+\infty$ implies $z \in \lambda_{0}$. This proves $\left(\lambda_{c}\right)^{\bullet \bullet}=\lambda_{0}$.

For any $\not \not \neq \mu \subseteq \omega, \mu^{\theta}$ and $\mu^{\circ \theta}$ can be represented by λ_{c} for e in some suitable subsets of ω.

Theorem 2. Let $\triangle \neq \mu \subseteq \omega$.
(i) $\beta^{0} \subseteq \bigcap_{0 \in \mu^{\circ}} \lambda_{b}=D\left(\beta^{0}, \ell^{1}\right)=\beta^{\infty}$ and $\bigcap_{0 \in \mu} \lambda_{0}=D\left(\beta, \ell^{2}\right)=\beta^{\circ}$.
(ii) $\beta^{\theta} \subseteq \bigcup_{a \in \mu}\left(\lambda_{0}\right)^{\bullet}=\bigcup_{B \in \mu} D\left(a, l^{1}\right)^{\bullet} \subseteq \beta^{0 *}$ and $\bigcup_{u \in \mu^{*}}\left(\lambda_{b}\right)^{\bullet}=\bigcup_{l \in \mu^{\bullet}} D\left(b, l^{1}\right)^{*}=\beta^{*}$.
(iii) If $a \in \omega$, then $\lambda_{a} d=\left(\lambda_{a}\right)^{d}$, i.e. $D\left(a^{d}, \ell^{\ell}\right)=\left(D\left(a, \ell^{1}\right)\right)^{d}$, where a^{d} is the sectional sequence of associated with the strietly increasing sequence $\left\{n_{k}\right.$: $k=1,2, \ldots\}$ in $2+$.

Proof. (i) We note $\mu^{\bullet \bullet}=D\left(\mu^{\bullet}, \ell^{l}\right)=\bigcap_{\bullet \in \mu^{\bullet}} D\left(b, l^{l}\right)=\bigcap_{\bullet \in \mu^{*}} \lambda_{b}$. Since μ^{ω} is perfect, $\mu^{\bullet \bullet}$ is solid and $\mu \subseteq \mu^{\bullet \bullet}$. Hence $\mu^{\bullet} \subseteq \beta^{\bullet \bullet}$. Also, $\beta^{\bullet}=D\left(\mu, \ell^{l}\right)=$ $=\bigcap_{a \in \mu} D\left(a, L^{1}\right)=\bigcap_{0 \in \#} \lambda_{\mathrm{B}}$.
(ii) If $x \in \beta^{\circ}$, then $|x| \leq|a|$ for some $\in \in \mu$. Since $\in \in\left(\lambda_{B}\right)^{\bullet}$ and $\left(\lambda_{G}\right)^{\bullet}$ is perfect, we have $x \in\left(\lambda_{G}\right)^{*}$. This proves $\mu^{\circ} \subseteq \bigcup_{\theta \in \mu}\left(\lambda_{\theta}\right)^{*}$. We note $\bigcup_{0 \in \mu}\left(\lambda_{G}\right)^{\bullet} \subseteq$ $\subseteq\left(\bigcap_{a \in \mu} \lambda_{a}\right)^{*}=\left(\mu^{*}\right)^{*}=\mu^{* *}$ by Proposition 1 (iii) and (i). Also, $\bigcup_{0 \in \mu^{\circ}}\left(\lambda_{b}\right)^{*} \subseteq$ $\subseteq\left(\bigcap_{b \in \mu^{*}} \lambda_{b}\right)^{*}=\left(\bigcap_{\bullet \in \mu^{*}} D\left(b, l^{1}\right)\right)^{*}=\left(D\left(\mu^{*}, l^{l}\right)\right)^{*}=\left(\left(\mu^{*}\right)^{*}\right)^{*}=\beta^{*}$ by Lemma 1 (iii) and the identity $\mu^{\bullet}=D\left(\mu, l^{1}\right)=\bigcap_{\Delta \in \mu} \lambda_{c}$. Conversely, if $b \in \mu^{\bullet}$, then $b \in\left(\lambda_{b}\right)^{\bullet}$. Hence $\mu^{\bullet} \subseteq \bigcup_{b \in \mu^{*}}\left(\lambda_{b}\right)^{*}$. This proves $\bigcup_{B \in \mu^{\circ}}\left(\lambda_{b}\right)^{\bullet}=\beta^{\bullet}$.
(iii) If $y \in \lambda_{0} d$, then $\sum_{k=1}^{+\infty}\left|a_{n_{k}} y_{k}\right|<{ }^{\prime}+\infty$. But $y=x^{d}$ for some $x \in \omega$ in Iemms 2. We can easily check $\sum_{n=1}^{+\infty}\left|a_{n} x_{n}\right|=\sum_{k=1}^{+\infty}\left|a_{n} y_{k}\right|<+\infty$. Hence $r \in \lambda_{0}$ and $y \in\left(\lambda_{0}\right)^{d}$. This implies $\lambda_{a} d \subseteq\left(\lambda_{0}\right)^{d}$. Conversely, if $y \in\left(\lambda_{0}\right)^{d}$, then $y=x^{d}$ for some $x \in \lambda_{B}$. Thas $\sum_{k=1}^{+\infty}\left|a_{n_{B}} y_{k}\right| \leq \sum_{n=1}^{+\infty}\left|\sigma_{n} x_{n}\right|<+\infty$ implies $y \in \lambda_{a}$. This implies $\left(\lambda_{s}\right)^{d} \subseteq \lambda_{\infty}<$. Hence $\lambda_{\mathrm{a}} \mathrm{d}^{2}=\left(\lambda_{\mathrm{a}}\right)^{d}$.

We heve the following characterizations of perfect sequeace spaces.
Corollary 1. A sequence space λ is perfect iff $\lambda=\bigcap_{b \in \lambda^{\bullet}} \lambda_{b}=D\left(\lambda^{\bullet}, \ell^{1}\right)$.
We now consider the possibilities of $\in \in \omega$ and its associated sequence space λ_{0}.
Theorem 3. Let $a \in \omega$ be given.
(i) If $a_{n} \neq 0$ for all but finitely many n's, then $\lambda_{0}=\{c\}^{\circ}=D\left(a, c^{1}\right)=$ $=a^{-1} l^{1}$ and $\left(\lambda_{0}\right)^{\bullet}=\{s\}^{\bullet \bullet}=b l^{\infty}$, where $a^{-1}=\left(a_{n}\right)_{n \in E_{+}}$and $b=\left(b_{n}\right)_{n \in E_{+}}$
$\alpha_{n}=b_{n}=1$ for $a_{n}=0$, and $a_{n}=a_{n}^{-1}, b_{n}=a_{n}$, otherwise.
(ii) If $a_{n}=0$ for all but finitely many $n ' s$, then $\lambda_{0}=\{c\}^{\circ}=D\left(c, l^{l}\right)=\omega$ and $\left(\lambda_{a}\right)^{\bullet}=\varphi$.
(iii) If $a_{m_{1}} \neq 0$ and $a_{n_{s}}=0$, where $m_{k}<m_{k+1}$ and $n_{k}<n_{k+1}$ for any $k \in Z_{+}$, then the sectional sequences of λ_{s} associated with $\left\{m_{k}: k=1,2, \ldots\right\}$ and $\left\{n_{k}: k=1,2, \ldots\right\}$ are $\left(\left(a_{m_{0}}^{-1}\right)_{k \in \Omega_{+}}\right) \ell^{1}$ and ω, respectively., Thus the sectional sequence spaces of $\left(\lambda_{0}\right)^{0}$ associated with $\left\{m_{k}: k=1,2, \ldots\right\}$ and $\left\{n_{k}: k=1,2, \ldots\right\}$ are $\left(a_{m_{1}}\right)_{k \in Z_{+}}{ }^{\infty}$ and φ respectively.

Proof. (j) Let $a_{n_{j}}=0$ for $j=1,2, \ldots, k$. If $x \in \lambda_{0}$, then we let $y_{n_{j}}=x_{n_{j}}$ for $j=1,2, \ldots, k$ and $y_{n}=a_{n} x_{n}$, otherwise. Hence $x=e^{-1} y$ and $\sum_{n=1}^{+\infty}\left|y_{n}\right|=$ $=\sum_{j=1}^{k}\left|y_{n_{j}}\right|+\sum_{n \neq n_{j}}\left|y_{n}\right|=\sum_{j=1}^{k}\left|x_{n_{j}}\right|+\sum_{n+n_{j}}\left|a_{n} x_{n}\right|<+\infty$. This implies $y \in l^{2}$. Hence $\lambda_{0} \subseteq c^{-1} l^{1}$. Conversely, if $y \in l^{1}$, then $c^{-1} y=\left(a_{n} y_{n}\right)_{n \in I_{+}}$and $\sum_{n=1}^{+\infty}\left|a_{n} a_{n} y_{n}\right|=$ $=\sum_{j=1}^{b}\left|a_{n j} a_{n j} y_{n j}\right|+\sum_{n \neq n_{j}}\left|a_{n} a_{n} y_{n}\right|=\sum_{n \neq n_{j}}\left|y_{n}\right|<+\infty$. This implies $e^{-1} y \in \lambda_{0}$. Hence $a^{-1} l^{1} \subseteq \lambda_{0}$. The identity $\lambda_{a}=e^{-1} l^{1}$ is proved. Since $a_{n} \neq 0$ for any $n \in Z_{+}$, we have $\left(\lambda_{a}\right)^{\bullet}=\left(a^{-1} l^{l}\right)^{\bullet}=b\left(l^{1}\right)^{\bullet}=60^{\circ}$ by Theorem 1(iii).
(ii) For any $x \in \omega,\langle a, x\rangle$ converges absolutely, i.e. $x \in \lambda_{0}$. Thus $\lambda_{\mathrm{a}}=\omega$ and $\left(\lambda_{a}\right)^{*}=\varphi$.
(iii) By Theorem 2(iii), $\left.\lambda_{\left(\varepsilon_{m,}\right)}\right)_{t \in B_{+}}=\left(\lambda_{a}\right)^{d}$ which is the sectional sequence space of λ_{a} associated with $\left\{m_{h}: k=1,2, \ldots\right\}$. Thus $\left(\lambda_{a}\right)^{d}=\left(a_{m}^{-1}\right)_{h \in Z_{+}} l^{l}$ by (i). Also, $\omega=\lambda_{\left(a_{\sigma_{B}}\right)_{k \in E}+}=\left(\lambda_{6}\right)^{d f}$ which is the sectional sequence space of λ_{8} associated with $\left\{n_{k}: k=1,2, \ldots\right\}$. Thus $\left(\left(\lambda_{0}\right)^{\bullet}\right)^{d}=\left(\left(\lambda_{0}\right)^{d}\right)^{\bullet}=\left(\lambda_{\left(a_{m_{b}}\right)_{b \in Z_{+}}}\right)^{\bullet}=\left(a_{m b}\right)_{k \in Z_{+}} \sum^{\infty}$ and $\left(\left(\lambda_{e}\right)^{0}\right)^{d!}=\left(\left(\lambda_{e}\right)^{d!}\right)^{\bullet}=\omega^{\bullet}=\varphi$.

Corollary 1. For any $\in \in \omega, e^{-1} l^{1} \subseteq \lambda_{c}=D\left(c, l^{1}\right)$.
Proof. We consider the following cases.
(i) $a_{n} \neq 0$ for all but finitely many $\varepsilon^{\prime} s$ Thus $\lambda_{s}=a^{-1} l^{1}$ by Theorem 3(i).
(ii) $a_{n}=0$ for all bat finitely many m^{\prime} s: Thus $\lambda_{c}=\omega$ by Theorem 3 (ii).
(iii) $a_{m_{k}} \neq 0$ and $a_{n_{j}}=0$, where $m_{k}<m_{k+1}$ and $n_{k}<n_{k+1}$ for any $k \in Z_{+}$: If $y \in l^{1}$, then $c^{-1} y=\left(\alpha_{n} y_{n}\right)_{n \in X_{+}}$and $\sum_{n=1}^{+\infty}\left|a_{n} \alpha_{n} y_{n}\right|=\sum_{k=1}^{+\infty}\left|a_{m_{b}} a_{m_{b}} y_{m_{b}}\right|+$ $+\sum_{k=1}^{+\infty}\left|a_{n} a_{n_{b}} y_{n_{s}}\right|=\sum_{k=1}^{+\infty}\left|y_{m_{s}}\right|<+\infty$ implies $e^{-1} y \in \lambda_{k}$. Thas $e^{-1} \ell^{1} \subseteq \lambda_{s}$.

Corollary 2. Let $\in \in \omega$ satisfy the conditions of Theorem 3 (iii), then $x \in \lambda_{0}$ iff $\left(x_{m_{1}}\right)_{k \in Z_{+}} \in\left(a_{m_{k}}^{-1}\right)_{k \in Z_{+}} \ell^{1}$ and $\left(x_{n_{1}}\right)_{k \in Z_{+}} \in \omega$. Also, $y \in\left(\lambda_{a}\right)^{*}$ iff $\left(y_{m_{1}}\right)_{k \in Z_{+}} \in$ $\in\left(a_{m_{\Delta}}\right)_{k \in \Sigma_{+}} \sum^{\infty}$ and $\left(y_{n_{\Delta}}\right)_{k \in z_{+}} \in \varphi$.

By the applications of Theorem 3 and the polar properties of β°, we can determine β for some $\beta \subseteq \omega$. The following are two simple examples.

Corollary 3. Let $\mathrm{O} \neq \mu \subseteq \omega$.
(i) If $a_{n} \neq 0$ for all but finitely many \&'s for any $\in \in \beta$, then $\mu^{\circ}=D\left(a, l^{1}\right)=$ $=\bigcap_{0 \in \Omega} a^{-1} c^{1}$.
(ii) $\quad \| \mu \subseteq \varphi$, then $\mu^{\circ}=\omega$ and $\mu^{\infty}=\varphi$.

Prook. (i) We pate $\mu^{\circ}=\left(\bigcup_{\sim \in \mu}\{c\}\right)^{\bullet}=\bigcap_{\Omega \in \mu}\{c\}^{\bullet}=\bigcap_{\bullet \in \mu} e^{-1} l^{1}$ by Proposition 1(i) and Theorem 3(i).
(ii) We note $\omega=\varphi^{\circ} \subseteq \mu^{\circ}$ and $\beta^{\circ \circ}=\omega^{\circ}=\varphi$.

The polar properties of μ° can simplity many computations on sequences. Another example is the following. If $a^{(j)} \in \omega$ for $j=1,2, \ldots, k$ and $a=\sum_{j=1}^{k} a^{(j)}$, then $\lambda_{a}=\{a\}^{\bullet}=\left(\sum_{j=1}^{k} e^{(j)}\right)^{\bullet}=\bigcap_{j=1}^{n}\left\{e^{(j)}\right\}^{\bullet}=\bigcap_{j=1}^{n} \lambda_{e}(i)$ by Proposition $1($ ii $)$.

At the end of this paper, we will find $D\left(l^{p}, C^{\ell}\right)$ and $D\left(\ell^{\ell}, \ell^{p}\right)$ for $1 \leq p, q \leq+\infty$ (ci. Example 1.6,[1]).

Lemma 8. For $1 \leq p, q \leq+\infty$ with $r=\frac{p q}{p+q} \geq 1$, we have $P Q=P^{r}$.
Proof. For any $t \geq 1$ and $z \in \omega$, we have $|x|^{p}=\left(\left|x_{n}\right|^{t}\right)_{n \in Z_{+}}$. If $x \in \mathbb{C}$ and $y \in \mathcal{P}$, then $|x|^{p} \in l^{1}$ and $|y|^{q} \in l^{1}$. We note $(|x y|)^{r}=|x|^{r}|y|^{r}$ and $|x|^{r} \in l^{q /(p+q)}$ and $|y|^{r} \in l^{p} /(p+q)$. But $\frac{p}{p+q}+\frac{q}{p+q}=1$ implies $|x y|^{r}=|x|^{r}|y|^{r} \in l^{1}$. Hence $x y \in l^{r}$ and we proved $\mathbb{C P} \subseteq \subseteq C^{r}$. Conversely, if $s \in \mathbb{C}$, then $|z|^{r} \in l^{1}$ implies $|z|^{\square /(p+q)} \in \mathbb{C}$ and $|z|^{p /(p+q)} \in \mathbb{C}$. Hence $|z|=|z|^{\mid /(p+q)}|z|^{p /(p+q)} \in \mathbb{C N}$ and $z \in \mathbb{C P}$. This implies $C \subseteq \mathbb{C P}^{\circ}$.

The identity $C^{C P}=C^{r}$ is certainly not carrect withort the condition $r \geq 1$. This can be seen from the proof of Lemma 6 (i.e. $|x|^{r}$ is a $\frac{1}{r}$-th root of $|x|$) or can be disproved by the following example.

Proposition 3. (i) $D(p, \infty)=e^{\infty}$ for any $1 \leq p \leq+\infty$.
(ii) $D\left(\mathbb{C P},\left(e^{\prime}\right)=\ell^{\infty}\right.$ for any $1 \leq p \leq+\infty$.
(iii) $l^{1} l^{1} \subseteq l^{1}$ and $l^{1} l^{1}$ is not perfect (Remart (c), p.68,[1]).

Proof. (i) This can be proved by the similar anguments in Lemma 1.4,[1].
(ii) By Proposition 1.2,[1] we have $D\left(l^{1}, l^{1}\right)=\left(\ell^{1}\left(l^{1}\right)^{0}\right)^{\bullet}=\left(l^{1} \ell^{\infty}\right)^{\bullet}=\left(l^{1}\right)^{\bullet}=$ $=l^{\infty}$ and $D\left(l^{\infty}, \ell^{\infty}\right)=\left(l^{\infty}\left(l^{\infty}\right)^{\circ}\right)^{\circ}=\left(l^{1} l^{\infty}\right)^{\circ}=\left(l^{2}\right)^{\circ}=l^{\infty}$, where we use the fact $\lambda C^{\infty}=\lambda$ for any solid sequence space λ. For $1<p<+\infty$, we have $D\left(l^{p}, c^{p}\right)=\left\{c \in \omega: \sum_{n=1}^{+\infty}\left|\sigma_{n} x_{n}\right|^{p}<+\infty\right.$ for any $\left.x \in C^{p}\right\}=\left\{a \in \omega: \sum_{n=1}^{+\infty}\left|a_{n}\right| p\left|x_{n}\right|^{p}<\right.$ $<+\infty$ for any $\left.|x|^{p} \in \ell^{1}\right\}=\left\{\in \in \omega: \sum_{n=1}^{+\infty}\left|e_{n}\right| p\left|x_{n}\right|<+\infty\right.$ for any $\left.x \in \ell^{1}\right\}$. Thus $c \in D\left(l^{p}, l^{p}\right)$ iff $|a|^{p} \in\left(l^{1}\right)^{\bullet}=\ell^{\infty}$ iff $\in \in \ell^{\infty}$, i.e. $D\left(l^{p}, l^{p}\right)=l^{\infty}$.
(iii) We note $\left(l^{1} l^{1}\right)^{\circ}=\left(l^{1}\left(\infty^{\infty}\right)^{\circ}\right)^{\circ}=D\left(l^{1}, \infty^{\infty}\right)=\infty^{\infty}$ by Proposition 1.2 and Lemma 1.4, [1]. Thus $\left(l^{1} l^{1}\right)^{\circ 0}=l^{1}$ and $l^{1} l^{1} \subseteq l^{1}$. This can also be seen by $l^{1} l^{1} \subseteq$ $\subseteq \ell^{\infty} \ell^{1}=\ell^{1}$.

If Lemma 6 is true for any $1 \leq p, \ell<+\infty$, then $l^{1} l^{1}=\ell^{1 / 2}$. This is a contradiction.

Theorem 4. Los $1 \leq p \leq \Omega \leq+\infty$.
(i) If $p=q=1$, then $D(C), C)=D(C,(P)=\ell$.
(ii) If $p=q=+\infty$, then $D(C), C)=D(C P, \mathbb{P})=\infty^{\infty}$.
(iii) If $1<p=q<+\infty$, then $D\left(C^{P}, C^{Q}\right)=D\left(C^{P}, \ell^{p}\right)=l^{\infty}$.
(iv) If $p=1$ and $q=+\infty$, then $D\left(\ell^{p}, \ell^{\varphi}\right)=\ell^{\infty}$ and $D\left(C^{\rho}, \ell\right)=\ell^{1}$.
(v) If $p=1$ and $\ell<+\infty$, then $D\left(l^{p}, \ell^{\varphi}\right)=l^{\infty}$ and $D\left(l^{\varphi}, l^{p}\right)=l^{q} /(\varphi-1)$.
(vi) If $P>1$ and $q=+\infty$, then $D(\Gamma, \Gamma)=C^{\infty}$ and $D(\Gamma,(P)=\Gamma$.
 cided.

Proof. If $1 \leq r \leq+\infty$, then we let r^{\prime} be the conjugate component of r, i.e. $\frac{1}{r}+\frac{1}{r}=1$. (i), (ii) and (iii) have been proved in Proposition 3.
 $=D\left(l^{\infty}, \ell^{l}\right)=\left(\ell^{\infty}\right)^{*}=l^{l}$.
(v) We, note $D\left(\iota^{\rho}, \iota^{\varphi}\right)=D\left(\ell^{1}, \ell^{\varphi}\right)=\left(\ell^{1}\left(\ell^{q}\right)^{\bullet}\right)^{\bullet}=\left(\ell^{1} \ell^{\varphi}\right)^{\bullet}=\left(\left(\ell^{\infty}\right)^{\varphi} \ell^{q^{\prime}}\right)^{*}=$ $D\left(\ell^{\prime}, \ell^{\infty}\right)=\ell^{\infty}$ by Proposition 3(i) and $D\left(\ell^{\varphi}, \ell^{p}\right)=D\left(\ell^{\ell}, \ell^{1}\right)=\left(\ell^{\ell}\right)^{\bullet}=t^{q} /(q-1)$.
(vi) We note $D\left(\ell^{P}, \ell^{\ell}\right)=D\left(\ell, \ell^{\infty}\right)=\ell^{\infty}$ and $D\left(\Gamma, \ell^{P}\right)=D\left(C^{\infty}, \ell^{P}\right)=$ $=\left(l^{\infty}\left(\ell^{p}\right)^{\bullet}\right)^{\circ}=\left(\left(l^{p}\right) C^{\infty}\right)^{\bullet}=\left(l^{p}\right)^{\bullet}=l^{p}$.
(vii) We note $D\left(\mathcal{C},(\stackrel{Q}{ })=\ell^{p / /(q-p)}\right.$ by Exampie 1.6, [1].

We also have the following simple consequences.
Conollary 1. If $1 \leq p, q \leq+\infty$, then $D\left(\ell^{p}, \mathcal{Q}\right)=D\left(\mathcal{C}^{\prime}, \ell^{\prime}\right)$.
Proof. This follows that $D\left(\ell^{p}, C^{\varphi}\right)=\left(\ell P\left(C^{\rho}\right)^{\bullet}\right)^{\bullet}=\left(C^{\prime}\left(\ell^{\prime}\right)^{\bullet}\right)^{\bullet}=D\left(C^{\prime}, \ell^{P^{\prime}}\right)$.
Conollary 2. $D\left(\ell^{1}, \ell^{p}\right)=\ell^{\infty}$ and $D\left(\ell^{p}, \ell^{1}\right)=\ell^{p^{\prime}}$ for $1 \leq p \leq+\infty$.
Corollery 3. $D\left(\ell^{\infty}, \ell^{p}\right)=\ell$ and $D\left(\ell^{p}, \ell^{\infty}\right)=\ell^{\infty}$ for $1 \leq p \leq+\infty$.
If $1<p<q<+\infty$, then $1<q^{\prime}<p^{\prime}<+\infty$. Hence $D\left(p^{\prime}, p^{\prime}\right)$ can be obtained by Excample 1.6, [1]. In other words, the applications of Corollary 1 will simplify some results in Theorem 4. In $\$ 8$ of the author's paper "Several basic theorems on locally convex apaces and their duality", varions topologies on sequence spaces are briefly discuseed.

REFEREN'CES

[1] Crofte, G., Concermang Perfect Prechet Spoces and Dragonal Thamoformationa, Math. Ann., 182 (1900), 67-78.
[2] Köthe, G., Tbpological Vetor Spacss, Vol. 1, Springer-Vedeg, 1989.

STRESZCZENIE

W pracy tej wprowedzono pojocie etioru palarnego so whdedu na sumowalnokk, ktory jeat analogonam stioru polarnego w prentrsariach lolalnie wypuldych. Wprowadsamie tatiego sbioru porinde uprofict mieltore divatamio me cissech.

SUMMARY

In this paper polar eots w.r.t. sumambility ase introduced which are counterparts of polar rete in locally convex speces. This iden enable un to simplify some operation on mequances.

