## LUBLIN-POLONIA

VOL XII, 2
SECTIO A

# Instytut Matematyli <br> Unimerytet Manii Curio-Stłodomaicy, <br> W.CIEŚLAK, J.ZAJAC 

## The Visotropy Geometry of Curves

Geometria visotropowa krywych

1. Introduction. In the paper [1] a complemented group of the isotropy group of a non-zero vector $v \in R^{n}$ has been considered. Here this group will be called the visotropy group and denoted by $B_{n}(v)$.

We recall that matrices which belong to $B_{n}(0)$ are of the form

$$
\begin{equation*}
\left[\delta_{j}^{i}+\nabla^{i} c^{i}\right], \tag{1}
\end{equation*}
$$

where $c \in R^{n}, \operatorname{det}\left[\delta_{j}^{i}+v^{j} c^{i}\right]=1+\langle 0, c\rangle \neq 0$ and $<,>$ denotes the euclidean scalar product in $R^{n}$.

Affine mappings in $R^{n} \quad x \rightarrow A x+c$, where $A \in B_{n}(0)$ and $\in \in R^{n}$, will be called visotropy mappings.

It is easy to verify that

$$
\begin{equation*}
\langle v, A x\rangle=\operatorname{det} A\langle v, x\rangle \tag{2}
\end{equation*}
$$

for the arbitrary $A \in B_{n}(v)$ and $x \in R^{n}$.
For $a_{1}, \ldots, a_{n} \in R^{n}$ we put

$$
\begin{equation*}
\left(a_{1}, \ldots, a_{n}\right)=\operatorname{det}\left[a_{j}^{i}\right] . \tag{3}
\end{equation*}
$$

Let us consider a curve $t \rightarrow x(t) \in R^{n}$ of the class $C^{n+1}$. We note that the quantity

$$
\begin{cases}\int_{i_{1}}^{t_{3}}\left(\frac{\left(x, \dot{x}, \ldots,{ }_{(n-1)}^{x}\right)}{\langle v, x\rangle}\right)^{2 /\left(n^{2}-n\right)} d t & \text { for }\langle v, x>\neq 0,  \tag{4}\\ 0 & \text { for }<v, x>=0\end{cases}
$$

does not depend on parametrization and centrovisotropy mappings.

Similarly, the quantity
(5)

$$
\int_{i_{1}}^{t_{2}}\left(\frac{\left(\dot{x}, \bar{x}, \ldots,{ }_{(n)}^{z}\right)}{\langle v, \dot{x}\rangle}\right)^{2 /\left(n^{2}+n-3\right)} d x \quad \text { for }\langle v, \dot{x}\rangle \neq 0,
$$

does not depend on parametrization and visotropy mappings.
Using the invariants (4) and (5) we construct a theary of corvery the invariants will be found by the prolongation [3] of the vieotropy group.
2. Theory of plane curves.
a. The visotropy arc length. The visotropy mappings in $R^{2}$ are of the form

$$
\left\{\begin{array}{l}
X_{1}=\left(1+v^{1} s^{1}\right) X+v^{2} s^{1} Y+p^{1}  \tag{6}\\
Y_{1}=v^{1} s^{2} X+\left(1+v^{2} c^{2}\right) Y+p^{2}
\end{array}\right.
$$

where $a, p \in R^{2}$ and $1+\langle v, a\rangle \neq 0$.
Now we find the arc length of a carve $X \rightarrow Y(X)$. To do this we introdnce the notations $C=v^{1}+v^{2} Y^{\prime}, \lambda=a^{1}$. By prolongation of (6) we obtain

$$
\left\{\begin{array}{l}
Y_{1}^{\prime}=\frac{Y^{\prime}+C a^{2}}{1+C \lambda}  \tag{7}\\
Y_{1}^{\prime \prime}=\frac{1+\langle v, 4\rangle}{(1+C \lambda)^{3}} Y^{n} .
\end{array}\right.
$$

Since

$$
\begin{equation*}
d X_{1}=(1+C \lambda) d X \tag{8}
\end{equation*}
$$

so from the system of the equations (7) we mast find $\lambda$. Then we have

$$
\begin{aligned}
C^{4} Y_{1}^{\prime \prime} \lambda^{3} & +3 C^{8} Y_{1}^{\prime \prime} \lambda^{2}+\left(3 C^{2} Y_{1}^{\prime \prime}-C v^{1} Y^{\prime \prime}-v^{2} C Y_{1}^{\prime} Y^{\prime \prime}\right) \lambda+ \\
& +C Y_{1}^{\prime \prime}-C Y^{\prime \prime}+\nabla^{2} Y^{\prime} Y^{\prime \prime}-v^{2} Y_{1}^{\prime} Y^{\prime \prime}=0
\end{aligned}
$$

Substituting $\lambda=\frac{1}{C} \beta$ into the above equality we can write down

$$
\begin{align*}
C Y_{1}^{\prime \prime} \beta^{2} & +3 C Y_{1}^{\prime \prime} \mu^{2}+\left(3 O Y_{1}^{n}-\vartheta^{1} Y^{\prime \prime}-\vartheta^{2} Y_{1}^{\prime} Y_{1}^{\prime \prime}\right) \beta+  \tag{9}\\
& +C Y_{1}^{\prime \prime}-C Y^{\prime \prime}+\vartheta^{2} Y^{\prime} Y^{n}-\nabla^{2} Y_{1}^{\prime} Y^{n}=0 .
\end{align*}
$$

It is easy to see that $m_{0}=-1$ is a root of the equation (9) and we can rewrite (9) in the following form

$$
(\beta+1)\left(C Y_{1}^{\prime \prime} \mu^{2}+2 C Y_{1}^{\prime \prime} \mu+C Y_{1}^{n}-\vartheta^{1} Y^{\prime \prime}-\vartheta^{2} Y_{1}^{\prime} Y^{\prime \prime}\right)=0
$$

Simple calculations show that

$$
\begin{aligned}
& \mu_{1}=-1-\sqrt{\frac{G_{1}}{Y_{1}^{n}}} \sqrt{\frac{Y^{\prime \prime}}{C}}, \\
& \mu_{2}=-1+\sqrt{\frac{C_{1}}{Y_{1}^{\prime \prime}}} \sqrt{\frac{Y^{\prime \prime}}{C}}
\end{aligned}
$$

where $C_{1}=v^{2}+v^{2} Y_{i}^{\prime}$.
Substitating $\mu_{2}$ to the formala (8) we see that

$$
\sqrt{\frac{Y_{1}^{\prime \prime}}{C_{1}}} d X_{1}=\sqrt{\frac{Y^{\prime \prime}}{C}} d X .
$$

Hence we obtain the visotropy arc length of a carve $X \rightarrow Y(X)$ as

$$
\begin{equation*}
d v=\sqrt{\frac{Y^{\prime \prime}}{v^{1}+v^{2} Y^{\prime}}} d X . \tag{10}
\end{equation*}
$$

If a curve is given in thẹ parametric form $t \rightarrow x(t)=\left[\begin{array}{l}x^{1}(t) \\ x^{2}(t)\end{array}\right]$, then the formula (10) is

$$
\begin{equation*}
d s=\left(\frac{(\dot{x}, \bar{x})}{\langle v, \dot{x}\rangle}\right)^{1 / 2} d t . \tag{11}
\end{equation*}
$$

The formula (11) coincides with (5) for $n=2$.
b. The curvature of a plane curve and its geometric interpretation.
$1^{0}$ The centrovisotropy curvature Consider a carve $t \rightarrow x(t) \in R^{2}$ such that $\langle 0, x\rangle \neq 0$ and $(x, \dot{x}) \neq 0$. Let

$$
v=\left[\begin{array}{c}
-v^{2}  \tag{12}\\
v^{1}
\end{array}\right] .
$$

It is easy to see that

$$
\begin{equation*}
\langle x, 0\rangle=(x, w) \tag{13}
\end{equation*}
$$

for every $x \in R^{2}$.
For the natural centrovisotropy parameter o we have the identity

$$
\begin{equation*}
\frac{\left(x, x^{\prime}\right)}{\langle 0, x\rangle}=1, \tag{14}
\end{equation*}
$$

where ' denotes differenciation with respect to the natural parameter.
From (13) and (14) it follows immediately

$$
\left(x, x^{\prime}-\infty\right)=0
$$

and

$$
\begin{equation*}
x^{\prime}=\kappa_{c} x+\infty \tag{15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
k_{c}=\frac{\left(w, x^{\prime}\right)}{(w, x)} \tag{16}
\end{equation*}
$$

or in an initial parametrization

$$
\begin{equation*}
\kappa_{c}=\frac{(\infty, \dot{x})}{(x, \dot{x})} ; \tag{17}
\end{equation*}
$$

the fanction $\kappa_{c}$ will be called a centrovisotropy curvature.
Now we will give a geometric interpretation of the centrovisotropy curvature. Let

$$
\begin{equation*}
x_{0}=x\left(l_{0}\right) \quad, \quad x_{h}=x\left(l_{0}+h\right) \tag{18}
\end{equation*}
$$



We will show that

$$
\begin{equation*}
\kappa_{c}\left(t_{0}\right)=\lim _{B \rightarrow A} \frac{\text { area } \triangle C A B}{\text { area } \triangle A O B} \tag{19}
\end{equation*}
$$

where area $\triangle P Q R=\frac{1}{2}(\overrightarrow{Q P}, \overrightarrow{Q R})$.
Using the Taylor expansion $x_{h}=x_{0}+\dot{x}_{0} h+\cdots$ we obtain

$$
\lim _{B \rightarrow A} \frac{\text { area } \triangle C A B}{\operatorname{ares} \triangle A O B}=\lim _{h \rightarrow 0} \frac{\left(w, x_{h}-x_{0}\right)}{\left(x_{0}, x_{h}\right)}=\lim _{h \rightarrow 0} \frac{\left(w, \dot{x}_{0}\right) h+\cdots}{\left(x_{0}, \dot{x}_{0}\right) h+\cdots}=\frac{\left(w, \dot{x}_{0}\right)}{\left(x_{0}, \dot{x}_{0}\right)}=\kappa_{c}\left(l_{0}\right) .
$$

$2^{\circ}$ The visotropy curvature. For the natural visotropy parameter o we have

$$
\frac{\left(x^{\prime}, x^{\prime \prime}\right)}{\left\langle v, x^{\prime}\right\rangle}=1
$$

Hence

$$
\left(x^{\prime}, x^{\prime \prime}-\varpi\right)=0
$$

and

$$
\begin{equation*}
x^{\prime \prime}=\kappa x^{\prime}+\infty ; \tag{20}
\end{equation*}
$$

the function $\kappa$ will be called a visotropy curvature.
Consides the indicatrix of tangents of the carve $x$ (if the initial points of all the tangert vectors are shifted to the origin, their new end paints trace out a curve called the indicatrix of tangents [2], [3] ). Let's denote by $\hat{s}$ and $\hat{k}_{\mathrm{c}}$ the centrovisotropy arc length and curvature of the indicatrix. Using (20) we obtain

$$
\frac{d \hat{s}}{d 0}=\frac{\left(x^{\prime}, \frac{d}{d_{0}} x^{\prime}\right)}{\left(x^{\prime}, \infty\right)}=\frac{\left(x^{\prime}, \kappa x^{\prime}+\infty\right)}{\left(x^{\prime}, \infty\right)}=1 .
$$

Thas the visotropy arc length of a curve coincide ( up to a constant) woth the centrovisotropy arc length of its indicatrix.

Moreover we have

$$
\hat{k}_{c}=\frac{\left(w, \frac{f}{d_{0}} x^{\prime}\right)}{\left(w, x^{\prime}\right)}=\frac{\left(\varpi, \kappa x^{\prime}+w\right)}{\left(w, x^{\prime}\right)}=\kappa .
$$

It means that the visotropy curvature of a carve coincides with the centrovisotropy of its indicatrix.
c. Counterpart of Frenet formulas of plane curves. Let

$$
\left\{\begin{array}{l}
t=x^{\prime} \\
z=0 .
\end{array}\right.
$$

Then with respect to (20) we obtain

$$
\left\{\begin{array}{l}
s^{\prime}=n t+s \\
s^{\prime}=0 .
\end{array}\right.
$$

They are "Frenet formalas" of the plane visotropy geometry. Now we will prove the fundamental theorem of the visotropy theory of plane curves.

Theonem 1. Let $\xi$ be the function defined in an open interval I that contains 0. Further, let $n_{0}=\left[\begin{array}{c}w^{2} \\ w^{2}\end{array}\right]$ be a non-zero vector and $x_{0} \in R^{2}$. Then for $v=\left[\begin{array}{r}-v^{2} \\ w^{1}\end{array}\right]$ there exists a curve $z$ defined in I such that:
$1^{0} x(0)=x_{0}$,
$2^{0} \frac{(t, \pi)}{\langle v, t\rangle}=1$ in $I$, where $t, n$ are the moving frame of $x$,
$3^{0}$ the visotropy curvature $n$ of $x$ is equal $\xi$.
Proof. Consider a system of the differential equations

$$
\left\{\begin{array}{l}
t^{\prime}=\xi t+a \\
a^{\prime}=0
\end{array}\right.
$$

with an initial condition $n(0)=m_{0}, t_{0}=0$. It is easy to see that $\frac{\left(t_{0}, n_{0}\right)}{\left\langle v, t_{0}\right\rangle}=1$ and $\left(\frac{(t, a)}{\langle v, t\rangle}\right)^{\prime}=0$. It implies $2^{\circ}$.

By simple verification we can show that

$$
x(0)=\int_{0}^{x} t(x) d x+x_{0}
$$

is a required carve.
d. Curves with a constant visotropy curvature. Assume that $\pi=0$. Integrating (20) we obtain

$$
\begin{equation*}
x(\theta)=\frac{1}{2} s^{2} v+e a+b \tag{21}
\end{equation*}
$$

or

$$
\left\{\begin{array}{l}
X=-\frac{1}{2} v^{2} v^{2}+a a^{8}+b  \tag{22}\\
Y=\frac{1}{2} v^{2} v^{2}+a a^{2}+b^{2}
\end{array}\right.
$$

where $\langle v, a\rangle \neq 0$.
If $\boldsymbol{v}^{2} \neq 0$, then from (22) we have

$$
\begin{align*}
v^{2}\left(v^{1}\right)^{2} X^{2} & +\left(v^{2}\right)^{8} Y^{2}+2 v^{1}\left(v^{2}\right)^{2} X Y+  \tag{23}\\
& +\left(-2 v^{1} v^{2}<v, b>+2 v^{2} a^{2}<v, a>\right) X+ \\
& \left.+\left(-2\left(v^{2}\right)^{2}<v, b>-2 a^{1} v^{2}<v, a\right\rangle\right) Y+ \\
& \left.+v^{2}<v, b>^{2}+2 a^{1}<v, b><v, a>-2 b^{1}<v,\right\rangle^{2}=0 .
\end{align*}
$$

The equation (23) represents a parabola.
Now we assume that $\kappa=$ const $\neq 0$. By itegration of $(20)$ we obtain

$$
\begin{equation*}
x(0)=-\frac{1}{x} x 0+\frac{1}{x} e^{x \theta} c+b \tag{24}
\end{equation*}
$$

or

$$
\left\{\begin{array}{l}
X=\frac{1}{\kappa} s v^{2}+\frac{1}{\kappa} s^{\pi v} s^{1}+b^{1}  \tag{25}\\
Y=-\frac{1}{\kappa} s v^{1}+\frac{1}{\kappa} e^{\kappa z} s^{2}+b^{2}
\end{array}\right.
$$

where $\langle v, c\rangle \neq 0$.
Erample. Let's consider the logarithmic curve :

$$
Y=\ln X, \quad\left\{\begin{array}{l}
x^{1}(t)=t \\
x^{2}(t)=\ln t \text { for } t>0 .
\end{array}\right.
$$

Because

$$
\begin{aligned}
(\dot{x}, \bar{x}) & =-\frac{1}{t^{2}} \\
\langle v, \dot{x}\rangle & =v^{2}+v^{2} \frac{1}{t},
\end{aligned}
$$

then we can take a vector 0 , which satisfies the inequality $\langle 0, \dot{x}\rangle\langle 0$.
We will consider two cases:
I. $\theta^{1}=0$.

Since $v^{2}=0$, we must take $v^{2}<0$. Let $p=-v^{2}$. Then we have

$$
\left(\frac{(\dot{x}, \tilde{x})}{\langle v, \dot{x}\rangle}\right)^{1 / 2}=\frac{1}{\sqrt{p}} \frac{1}{\sqrt{6}} .
$$

Hence we obtain

$$
\theta=\frac{2}{\sqrt{p}} \sqrt{t} \text { and } t=\frac{p}{4} t^{2} \text {. }
$$

Thas the logarithmic carve, in the natural visotropy parametrization, has the following form

$$
\left\{\begin{array}{l}
x^{1}(\theta)=\frac{p}{4} \theta^{2} \\
x^{2}(0)=\ln \left(\frac{p}{4} \theta^{2}\right) \text { for } \theta>0
\end{array}\right.
$$

From these equations we can calculate the visotropy curvature: $\kappa=-\frac{1}{3}<0$.
II. $v^{2}=0$.
$v^{2}=0$ implies that $v^{1}<0$. For $q=\sqrt{-v^{3}}$ we have

$$
\left(\frac{(\dot{x}, \vec{x})}{\langle v, \dot{x}\rangle}\right)^{1 / 2}=\frac{1}{q t}
$$

and

$$
=\frac{1}{q} \ln t \quad \text { or } \quad t=e^{\theta \theta}
$$

By that we obtain the parametrized form of the logarithmic curve

$$
\left\{\begin{array}{l}
x^{1}(0)=e^{0} \\
x^{2}(0)=90
\end{array}\right.
$$

We can verify that $k=q$. Thus the logarithmic carve has a constant visotropy curvature $\kappa=\sqrt{-v^{1}}$, for every vector $v$ such that $v^{1}<0$ and $v^{2}=0$.

We note that by subatituting $b^{1}=b^{2}=0, a^{2}=\kappa=\sqrt{-v^{2}}, a^{2}=0$ into the formala (25), we obtain our logarithmic curve, as well.

In the same way we can show that the exponential corve $Y=e^{x}$ has a constant visotropy curvature for every vector $v$ such that $v^{1}=0$ and $v^{2}>0$.
8. Theory of curves in the s-dimensional space.
a. The visotropy curvature and torsion. Let's consider a curve
$\bullet \rightarrow x(0) \in R^{3}$ such that $\left\langle v, x^{\prime}\right\rangle \neq 0$. Differentiating the identity

$$
\begin{equation*}
\frac{\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)}{\left\langle v, x^{\prime}\right\rangle}=1 \tag{26}
\end{equation*}
$$

we can find

$$
\begin{equation*}
x^{\prime V}=\alpha x^{\prime}+\beta x^{m}+\gamma x^{m \prime} \tag{27}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\beta=-\frac{\left(x^{\prime}, x^{m n}, x^{\prime v}\right)}{\left\langle v, x^{\prime}\right\rangle}  \tag{28}\\
\gamma=\frac{\left\langle v, x^{n}\right\rangle}{\left\langle\theta, x^{\prime}\right\rangle} .
\end{array}\right.
$$

We can verify that

$$
\begin{equation*}
\alpha=\gamma^{n} \div\left(\gamma^{2}\right)^{x}-\beta \gamma \tag{29}
\end{equation*}
$$

From the above formulas it follows that $\alpha, \beta, \gamma$ are invariants of visotropy mappings and parametrizations.

We will denote by $x \wedge y$ the vector product of vectora $x, y \in R^{2}$. Now we caul rewrite the formala (26) as follows $\left\langle x^{\prime}, x^{n} \wedge x^{m}-0\right\rangle=0$. Hence

$$
\begin{equation*}
x^{\prime \prime} \wedge x^{m}-0=\kappa x^{\prime} \wedge x^{\prime \prime \prime}+\lambda x^{\prime} \wedge x^{n} \tag{3a}
\end{equation*}
$$

It is easy to see that

$$
\left\{\begin{array}{l}
\pi=\gamma  \tag{31}\\
\lambda=-\frac{\left\langle v, x^{m \prime \prime}\right\rangle}{\left\langle v, x^{\prime}\right\rangle} .
\end{array}\right.
$$

The function $\kappa$ is said to be a visotropy curvature. Moreover, we can verify that

$$
\begin{equation*}
\lambda+k^{\prime}+\pi^{2}=0 \tag{32}
\end{equation*}
$$

The formalae (31) and (32) follow from (30).
The function

$$
\begin{equation*}
r=\beta+i \tag{33}
\end{equation*}
$$

will be called a visotropy torsian.
b. Counterpart of Frenet formules in the visotropy geometry. Let

$$
\left\{\begin{array}{l}
t=v  \tag{34}\\
\mathrm{~m}=\frac{1}{\left\langle v, x^{\prime}\right\rangle} \vee \wedge\left(x^{\prime} \wedge x^{n \prime}\right) \\
b=\frac{1}{\left\langle\theta, x^{\prime}\right\rangle} \nabla \wedge\left(x^{\prime} \wedge x^{n \prime \prime}\right)
\end{array}\right.
$$

The vectors $t, \mathrm{~m}, \mathrm{~b}$ are linearly indepandent, because

$$
(b, n, b)=\langle v, v\rangle \neq 0 .
$$

The formalas (27)-(34) imply

$$
\left\{\begin{array}{l}
t^{\prime}=0  \tag{35}\\
n^{\prime}=-c a+b \\
b^{\prime}=r a+r b .
\end{array}\right.
$$

They are "Frenet formulas" of the visotropy geometry.
Now we prove the main theorem of our theary Let I denote an open interval that contains 0 .

Theorem 2. Let's acsume that

- the functions $\xi$, 1 are defined in $L, \xi$ has a continuous first derivative bus $\eta$ is continuous;
- the vectore $a_{0}, b_{0}$ are linearly independent and $t_{0}=a_{0} \wedge b_{0}$;
- the veetor $e$ satisfies a condition $\left\langle t_{0, ~},\right\rangle \neq 0$.

Then for $=\xi_{0}$ there exists one and only one curve $a$ defined in $I$, which passes through the arbitrary fired point in $R^{3}$, with following properties:
$1^{0} x$ has the natural visotropy parameter, $x^{\prime}(0)=c$;
$2^{0} t(0)=t_{0}$ and $\frac{(t, n, b)}{\langle v, t\rangle}=1$ in $L$ where $t, n, b$ are the moving frame of $z$;
$3^{0}$ the visotropy curvature $k$ and the visotropy torsion $r$ of the curve $x$ satisfy $k=\xi, \quad i=\%$.

Proof. Let's consider a system of differential equations

$$
\left\{\begin{array}{l}
b^{\prime}=0  \tag{36}\\
z^{\prime}=-\xi a+b \\
b^{\prime}=\varphi a+\xi b .
\end{array}\right.
$$

Since $t_{0}=m_{0} \wedge b_{0}$ and $v=t_{0}, s o \frac{\left(t_{0}, n_{0}, b_{0}\right)}{\left\langle v, t_{0}\right\rangle}=1$.
We note that $(n \wedge b)^{\prime}=0, s o n \wedge b=$ const. We put

$$
\begin{equation*}
0=t=\Omega \wedge b=t_{0} \tag{37}
\end{equation*}
$$

Now we have $(t, m, b)=\langle\emptyset, t\rangle=\langle 0, v\rangle \neq 0$. Thas the solution of (36) is a system of linearly independent vectors.

We define a curve $s$ by the differential equation

$$
\begin{equation*}
x^{\prime}(\theta)=-\frac{1}{\mu(s)} \int_{0}^{0} \mu(x) m(x) d x+c, \tag{38}
\end{equation*}
$$

where

$$
\mu(s)=\exp \left(-\int_{0}^{0} \xi(x) d x\right)
$$

Since $\langle\eta, n\rangle=0,80$

$$
\left\langle\theta, z^{\prime}\right\rangle=-\frac{1}{\beta} \int \mu\langle\theta, n\rangle+\langle v, c\rangle=\langle\nu, c\rangle \neq 0 .
$$

Fram (36) and (38) we can find

$$
\begin{equation*}
x^{n}=\xi x^{\prime}-m . \tag{39}
\end{equation*}
$$

It implies that $\pi=\xi$. Then in the same way we obtain

$$
\begin{equation*}
x^{\prime \prime \prime}=\left(k^{\prime}+k^{2}\right) x^{\prime}-b \tag{40}
\end{equation*}
$$

and hence

$$
\lambda=-\kappa^{\prime}-\kappa^{2} .
$$

Now we are able to show that

$$
\frac{\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)}{\left\langle v, x^{\prime}\right\rangle}=1 .
$$

Using the formolas (39) and (40) we see that

$$
\left(x^{\prime}, x^{\prime \prime}, x^{\prime \prime \prime}\right)=\left(x^{\prime}, \xi x^{\prime}-m,-\lambda x^{\prime}-b\right)=\left(x^{\prime}, \mathrm{a}, \mathrm{~b}\right)=\left\langle x^{\prime}, a \wedge b\right\rangle=\left\langle x^{\prime}, 0\right\rangle .
$$

Differentiating (40) and then making ase of (36), (39), (40) we get

$$
\begin{aligned}
x^{I V} & =\left(-\lambda^{\prime}-\lambda \xi\right) x^{\prime}+(\lambda-\eta) \mathrm{n}-\xi \mathrm{b}=-\frac{\left(x^{\prime}, x^{m \prime \prime}, x^{I^{v}}\right)}{\left\langle 0, x^{\prime}\right\rangle}=\frac{\left(x^{\prime}, \mathrm{b},(\lambda-\eta) \mathrm{a}\right)}{\left\langle v, x^{\prime}\right\rangle}= \\
& =-(\lambda-\eta) \frac{\left(x^{\prime}, \mathrm{n}, \mathrm{~b}\right)}{\left\langle v, x^{\prime}\right\rangle}=\eta-\lambda .
\end{aligned}
$$

It means that $r=\%$. It ends our proof.

## REPERENCES

[1] Cieslak, W., Kieres, A., On a Complemented Groep of the Eotropy Group, Am. Univ. Meriee Curie-Stodowste, vol.XXXXIV, 1 (1890), 1-8.
[2] Laugwitz, D. , Differential and Riamamian Geornetry, Acadomic Press, New Yortz and London 1835.
[3] Sirokow, P. A. Sirokow, A. P. , Affice Differential Geometry, Moncow 1960 (Rumien)

## STRESZCZENIE

W pracy toj podajang teori krywych phalich i srojwymiarowych w pewnej podjeometaii geomstrii afimicracj. W bednagj geometrii oknelono ow spoób niezmionmicay parametr naturalny,
 nobai.

## SUMMARY

In this paper a theory of plane and spece curvee in a eubgeometry of affine geometry is doveloped. Natural paramoter, as well en curvature and torsion are defined which aro invariant and define the cuve to come extent.

