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1. R. A, Fisher [3] presents the following theorem: If xy, x, ..., x,
are independent random variables and all normal (0,1) and if

(1) Yi= Z bij x;

where {b;;} (i,j=1,2,..,n) is orthogonal and normalized matrix, then
the variates y; are independent and normal (0,1) and the following re-
lationship holds:

(2) Do Dighs
:1

A more general theorem, which is often used, says: If x;, xo, ..., x, are
Independent random variables and all normal (m o), and if

n "

(3) y=—= N, w= N bz, (k=2,3,..,n)

'n— e

i=1 Jj=1

where {b;;} is orthogonal and normalized matrix with

byy=bja=... =b,=1yn,
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then y; is normal (my n,0) and Y, are normal (0,¢0) for k=2,3, ..., n,
and also

(4) 2 &=y
or
’ ¥ o “l D
(4) Y @—zr= Yy
where -
nr = \* b o

Each of n-1 components of the right side of identity (4") is based upon
a single degree of freedom, since the variable yi/o (k=2,3,...,n) is
distributed as chi-square with one degree of freedom. It is evident that
by orthogonality of martrix {b;;} and by the form of the variable y, given
in (3) we have

Z bii=10 (i=2,3,..,n).

=1

A linear combination of x’s for which

Nb,=0
J=1
will be called comparison.

Hence, the right side of identity (4’) is the sum of squares of n-1
mutually orthogonal comparisons, each based upon a single degree of
freedom. Since the orthonormalized matrix {b;;} given in (3) may be
defined in an infinite number of ways, the left side of identity (4’) may
be also defined in the same number of ways.

J.O. Irwin [4] gives one of these ways determining the matrix {b;;}
by means of the following relations:

1 +1
b,,=by,=—=-+-=by = — by=bp=--=b, 1= — —,
1 12 in I/'n ’ r1 = br br r—1 I/T(T——l)
bl

yrir—1)

(r=2,3, ...,,n). This autor finds (1930) an indentity related to this matnx
which may be found in Burnside’s textbook [1].

R.E. A.C. Paley [5] gives some methods of constructing the ortho-
gonal matrices with elements equal to +1 and —1.
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In this paper I present a simple method of constructing sets of mu-
tually orthogonal comparisons; this method may be also used to construct
orthogonal matrices; it is based upon the theorem of the number theory
concerning the systematic expansion of natural numbers to any integer
numeration base, [6], and is graphically illustrated in Fig. 1, 2 and 3.
Moreover, using relation (4’) I deduce identities (14) and (14"). The method
may be used in the analysis of variance (cf. sec. 3).

2a. First, we are going to deal with the construction of sets of mutually
orthogonal comparisons taking two values as the base of comparison.
This may be reached by means of the following graphical construction.

Let the values of variates defined in sec. 1 be designated as xy, x3, ... Tp.
Moreover, let n points determined by these observation be plotted along
the horizontal axis in the order given above. The points will be named
sets of the zero order, the pairs of points will be named sets of the first
order, the four points-sets of the second order, and in general sets con-
sisting of 2‘ points will be named sets of the i-th order (i—0, 1, 2, ..).

Proceeding from the left to the right side of the sequence of a's let us
link the successive pairs of points by means of single arcs i.e. x; with x,
x3 with x;, etc. i.e. the sets of the first order are formed by linking the
sets of the zero order. To each such conjunction its strictly determined
comparison is assigned. Thus, the following comparisons of the first order
will be assigned to the above-given conjunctions:

(1 ) g

Y =X, — Iy, Y b P R

where the upper index denotes the order of the set obtained from linking
and the lower index denotes the ordinal number of the set (i.e. of the
comparison). The observations x; corresponding to points x; (i=1,2,...)
and appearing at the left end of the arc of conjunction will be multiplied
by +1, and those occuring at the right end of this arc will be multiplied
by —1, unless some restrictions are taken.

It is evident that after all conjunctions between the sets of the zero
order have been carried out, there remains at most one point unlinked;
this fact is noted as ¢g=0, 1. It is also clear that the number of the sets
of the first order (i.e. the number of pairs or number of conjunctions)
will be equal to ny = E (n/2), where the symbol E denotes entier. Thus

(5) n=2n, +c,.

Further, let us form the sets of the second order (i.e. the sets including
four points) by linking successively the sets of the first order from the
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left to the right side, and let us assign to these conjunctions the com-
parisons of the second order:

ytlﬂ = (x, + x,) — (x5 + ), y.(:-_n = (x5 + x4) — (X7 + Zy), ... .

To distinguish the comparisons of the second order from those of the
first order the corresponding conjunctions are marked in the figure by
means of double arcs (cf. Fig. p. 12). The number of ‘these conjunctions
is nyg = E (ny/2) and at most one set of the first order may be left unlinked.
In this way we obtain n, sets of the second order and ¢, =0, 1 unlinked
set of the first order; we have therefore

(6) n,=2n,+c,.

This process of linking is continued; the sets of the third order are
formed by linking the sets of the second order, the sets of the fourth
order are obtained by linking the sets of the third order, and so om; to
each conjunction its corresponding comparison is assigned with the
observations x having the coefficients defined on page 7.

The procedure of linking and of forming corresponding comparisons
must evidently have its end. Let the last conjunction be the conjunction
of the p-th order of the form

Y= +x,+  + xa) —(Xa:1+Ta 2+ - + T24)

where d stands for 27—,
Since 2d — 2* of points are included in this comparison, n, =1, and

(7) Np 1 =2MNp+Cp1=2+Cp_1

where the number of unlinked sets of the (p — 1)-th order is determined
by ¢p_,=0,1. The first phase of linking and forming the comparisons
is finished. We have obtained the finite sequence of relations (5)- (7)
which in the number theory is known as the result of the applicability
of the algorithm permitting the expansion of the natural number n to the
base two (cf. [6]). By this sequence the expansion of the number n is
obtained in the form:

8 mn=2n4+c,=202n;+c,)tc,="=2P+cp-1:2°""+ -+, 2'+¢,2°

where ¢p—_,,€p—y,...,c=0,1.

In this manner we have obtained N=mn; tmy +... t np_, +n, conjunc-
tions (or comparisons) and among them n; conjunctions of the i-th order
(i=1,2,..,p). These conjunctions (comparisons) will be named con-
junctions (comparisons) of the first type.
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If in the expansion (8) the coefficients ¢ which are equal to zero are
omitted, then this expression may be written in a simpler form:

(9) n=2"+4+2%4... 4 2%,
where p=1u; > uy>...> u, >0, and

(10) t=co+c,+ -4cp—1+1.

The graphical configuration obtained from performing conjunctions
is uniquely determined by expansion (9). In fact, it results from (9) that
the configuration includes t disjoint sets: the first of these sets is of the
p = u,-th order, the second of the u,-th order, etc., and the last is of the
u,-th order. It is also evident that the comparisons of the first type cor-

responding to the above-given conjunctions constitute the comparisons
within mentioned t sets.

Now, we are going to prove that these comparisons are mutually
orthogonal.

Proof: Note that two arbitrary comparisons chosen from t disjoint sets
are mutually orthogonal, since they include different observations. Thus
it remains to prove that the comparisons formed within the set of the
k-th order (each of the disjoint sets is of this form as it is seen in (9))
constitute a set of mutually orthogonal comparisons.

To attain this it is sufficient to prove that two arbitrary comparisons
within the set of 2* points are orthogonal. The i-th comparison of the w-th
order belonging to the set of the k-th order has the form:

(11) y‘,-""=(xs 1+Ts 24+ h)—(Tsini1+ Tsins2+ -+ + Toni)

where for brevity it is noted s = (i—1)2¥ and h =2*"! (i—1, 2, ..., 2k ¥;
w=1,2,..k).

Consider here two cases: (a) when the comparisons belong to the sets
of the same order, and (b) when they belong to sets of different orders.

In the first case the comparisons are orthogonal since they include
disjoint sets (i.e. without common observations x). In the second case let
us suppose that the sets have some common points. The comparisons
corresponding to these sets are also orthogonal. In fact, since all observa-
tions occurring in the comparison of a lower order have in the comparison
of a higher order the coefficients equal to +1 or to —1, then the sum of
products of these coefficients of corresponding observations in both
comparisons must be equal to zero. This proves the proposition.
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Since the i-th set represents 2~/ comparisons i=1,2,..,k) in a set
of the k-th order, the number of all comparisons in this set is
k
N ogr-i— gk,
=1
This fact proves that all comparisons determined in a set of the k-th
order constitute a complete set of mutually orthogonal comparisons, i.e.
they provide all orthogonal comparisons for 2* observations.
Thus, it is proved that the sets of the first type represent a complete
set of comparisons which includes

! t
(12) N=n4n+t - tnp=D @ —1)= Y 2% —¢
i=1 =1

mutually orthogonal comparisons.

Now let us perform the conjuctions and determine corresponding
orthogonal comparisons between t sets not yet linked; to them belong
the sets of the u;-th order (i=1,2,..,t). The mentioned conjunctions
and comparisons will be called conjunctions and comparisons of the third
type. The comparisons of the second type appear only to the base a > 2;
these will be defined in sec. 2b.

A simple method of linking sets of the u;-th order is as follows. The
set of the u,-th order is linked by means of one conjunction with the set
of the u,-th order, then the total set obtained from this linking, denoted
by (uy, ug), is linked with the set of the wus-th order; then the total set
(w4, ug, u3), which includes all preceding sets, is linked with the set of the
u4-th order, and so on. In this manner we obtain t-1 conjunctions.

The comparison in the form:

(13) y=(x,+x+ - +xr)— s_,.ti_l(x’i‘1+x’i et T s )

where r;=2"4-2%+...42% and §;,1=2%+1, (i=1,2, .., t-1) corresponds
conjuction of the total set (uy, uy, ..., u;) with the set of the wu;.1-th order.
The number of type of comparison is given by the upper index (Roman
numeral) of y.

We will prove that the comparison y'}! is orthogonal to each of N
comparisons of the first type.

Proof: Since the comparisons including different observations are
evidently orthogonal, it is sufficient to consider only comparisons which
have some observations in common. The latter are mutually orthogonal
on the basis given in the preceding proof (let this basis be called B basis).
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In fact, the coefficients of all the observations appearing in the comparison
of the first type are identical with those in the comparison of the third
type (this follows from the definition), i.e. they are equal to + 1 if the
comparison of the first type includes the observations belonging to the left
end of the ccnjunction of the third type, and they are equal to —r;si+1,
if the comparison of the first type includes the observations belonging to
right end of the conjunction of the third type. Thus the sum of products
of the coefficients of the correspcnding observations of the comparisons
in question is equal to zero; this proves that the comparisons of the first
are orthogonal to those of the third type.

Now we will prove that the comparisons of the third type are mutually
orthogonal.

Proof: Let us give two comparisons of the third type:

y" and gy, where i<k (i=1,2,..,t—2; k=2,3,..,t—1).

Note that the coefficients of the comparisons y(!'" and y{" included
in the first r; observations are identical and equal to 1. On the other hand,
when the comparison y!"" has in the remaining s;., observations the
coefficients which are equal to —r; s;+1 then in the corresponding ob-
servations the comparison y{" has its coefficients also equal to 1. Hence
it is evident that the sum of products of the coefficients of the observations
in the two examined comparisons is equal to zero. The proof is finished.

Now we are going to prove that the total number of comparisons of
the first and of the third type obtained so far is n-1.

In fact, on account of (10) we have:

N+@t— =M +n,~ - +np 1+n,)+t—1=
=(2n,+c)+2n, +¢))+ -+ 2np+cp1)— M, +na+ - + np 1 +np)

and using n, == 1 and equalities (5) - (7) we obtain n-1.

In this way the complete set of mutually orthogonal comparisons has
been determined. The graphical construction (cf. Fig. 1) presented above
constitutes a simple method of obtaining set of mutually orthogonal com-
parisons and may be found from the expansion of the natural number n
to the base two. It also presents a method of constructing an orthogonal
matrix which can be found directly from the configuration of conjunctions
in the graph. The coefficients of observations included in comparisons
are the elements of a row of an orthogonal matrix; all the elements of the
last i.e. of the n-th row of a matrix are equaly to 1. As usual, the ortho-
normalized matrix is obtained by dividing all numbers of every row of
this matrix by the square root of the sum of squares of these numbers.
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If the orthogonal matrix (which is constructed according to the above-
given method) is assumed to be normalized, we obtain on account of (4'),
(11), (13) and expansion (9) the identity in the form:

n ! up 1 ‘2""_" -’«'a'j*'-rl—l fl’jizrt—l b
19 Ye—ar=3Yr¥ | Y a- 3 x|+
i=1 h=1 i=1 LIRS ‘k::gi/‘+1 k:gij‘/i-—i‘fl
[ _'w—-l Tw x
2w Tw—1 1
+ S B 2 Ls— wu Z- Ls
w2 Tw®Tw—1 s=1 o S=rey_1+1

where
Tm — 2!‘. +2u’+ T +2"m’ g//=(J—1)'2l and fl=2l (m=1)2v"'st)'

In particular, when n =2 the identity is of simpler form:

c » Jo—i | &ij+fi—y gij+/i 1
Y
(14') 2 (xi—x)*= b} f, Y Z Tp— § T
=1 i=t I =1 ] k=g;i+1 k=gii+fi_1-1

Example 1. The configuration of n—1 =13 conjunctions between
n = 14 =23+ 22+ 2 points is illustrated by Fig. 1.

L o ~~a

~, \\
f\h\ \?\
0 n 2 13 “

~
J 2 3 “ 5 6 7 8 9 [}

Fig. 1

Conjunctions corresponding to the comparisons of the third type are
presented in Fig. 1 by means of the broken arc and conjunctions of the
first type are presented by means of a single, double or triple continuous
arc if the corresponding comparison is of the first, of the second or of
the third order respectively. The expansion of number 14 to the base two
includes three components: 23,22 and 2. According to (9) and to the
method described above the graph in Fig. 1 represents three sets of com-
parisons (or conjunctions) of the first type of the u, =3-rd, uy=2-nd,
and u; = 1-st orders respectively, and t—I =— 2 conjunctions of the third
type linking the conjunctions of the first type.

2b. Now we are going to present a method of constructing sets of
mutually orthogonal comparisons for n observations in the case when we
are interested in forming group comparisons including a observations
2 <a<n).
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The construction presented in sec. 2a to the base 2 will be generalized
here for the arbitrary base a > 2. Now the fundamental conjunction
includes not two observations as previously but the set of a—1 conjunc-
tions between a observations, according to the method of sec. 2a.

The proposed configurations of funda-
mental conjunctions for different values
of a are presented in Fig. 2.

Before the graphical method of link-
ing n points to the base a is presented we
will introduce certain definitions general-
izing those of sec. 2a. Each of the n points
(observations) xy, xy, ..., x, ordered on the
axis of coordinates will be called, as in = -~
the preceding section, a set of the zero R croi e T VT T
crder, moreover, the sets including a Fig. 2
points (fixed fundamental sets) will be
called sets of the first order, and in general sets including a' points will
be called sets of the i-th order (i =0, 1, 2, ...).

We link the points within each set of a points and construct the
corresponding mutually orthogonal comparisons to the base 2 exactly as
in sec. 2a (cf. Fig. 1 and 2). Thus we have a—1 mutually orthogonal com-
parisons in such a set. It remains to present the method of constructing
the comparisons between sets including a points each.

This method is similar to that given in sec. 2a, where a=2. It is as
follows: In the ordered set of n points we separate the subsets of a points,
proceeding from the left to the right side and we link the points by means
of single arcs (cf. Fig. 3). This process gives E (n/2)=n, sets of the first
order and ¢,—0,1,2,..., a—1 unlinked points. We obtain the relation
similar to (5) in the form:

Base & Fundamental conjunctions

p

(5%) n=an, + c,.

Moreover, linking sets of the first order (single arcs are linked by
means of double arcs; cf. Fig. 3) to the chosen base a provides E (ny,2) = na
sets of the second order. To each conjunction we assign a comparison
whose observations included at the left end of the arc should have identical,
Positive, and minimal integers; the coefficients of the observations at the
right end of the arc should be identical and negative integers satisfying

the condition that the sum of all coefficients of comparison should be
equal to zero.
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The relation between the numbers of conjunctions (or compansons)
of the first and of the second order is

(6") n, =an, + ¢,

where ¢; =0, 1, 2, ..., a—1 denotes that in forming the sets of the second
order there may remain at most a—1 unlinked sets of the first order.

The process of linking is continued. We construct the sets of the third
order by linking the sets of the second order to the base 2; similarly we
construct the sets of a higher order from the sets of the preceding order.
It is evident that this process is identical with the well-known algorithm
of expansion of any natural number n to the base a. Hence, the discussed
procedure must have its end. Assume that a set of the p-th order is a set
of the highest order obtained in the process of linking. Thus the last
relations is

(7) ' Np.1=anp + Cp—1,
where
cp-—1=0,1,2,...,a—1 and co,=np,=1,2,...,a—1 (cf. [6]).

On the account of the sequence of equalities (5”) - (7°) the expansion
of the number n to the base a is obtained by simple calculations in the
form:

(8" n=cpa® + cp—1a’~ '+ -+ c,a' + ¢, a°,
where
ci=20,12,..,a—1 (1=0,1,2,..,p—1) and cp=1,2,...,a—1.

Omitting in expansion (8) the coefficients ¢ equal to zero and taking
.p=1u,, the number n, as in sec. 2a, can be presented as

(91) = Cu, a" + Cu, a* + -+ Cu’a"‘,
where
Cuyy Cuyy ooy €y =1,2,..,a—1 and p=u,>u,>--->u >0

Let us note that in the process of constructing sets of the first, second
and higher orders to the base a a set of the u;-th order includes a*’ points,
and that the coefficients c,;, given in the expansion (9") indicate the
number of obtained sets of the u;-th order (i=1,2,...,,t). Thus in our
sequence of conjunctions, which will be called the conjunctions of the
first type, c4; sets of the u;-th order are obtained (i=1,2,...,1). Accord-
ing to the presented method the conjunctions are constructed within these
sets only.

Since a—1 mutually orthogonal comparisons are obtained within the
set of a points. the number of the mutually orthogonal comparisons (con-
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junctions) within n, sets of the first order is evidently equal to(a—1)n,.
Generally, the number of mutually orthogonal comparisons within the n;
sets of the i-th order is (a—1)n;. All comparisons constructed so far con-
stitute (a—1) (ny +na+...+n,) comparisons of the first type.

It is easy to see that in the graphical configuration there are c,; unlinked
sets of the wu;-th order (i=1,2,...,t), the total of which is equal to
T = cu,+Cup+cu, sets (cf. (9')).

We will prove that all sets of points of the first type are mutually
orthogonal; their corresponding comparisons are marked in the drawing
(cf. Fig. 3) by means of single, double, triple, etc. arcs.

Proof: Since two arbitrary comparisons belonging to two of T disjoint
sets are evidently orthogonal (as they include different observations) it is
sufficient to consider the comparisons within the set T. The disjoint sets
include a* points, and it remains to prove that the comparisons obtained
from linking a“ points are mutually orthogonal.

To prove this let us consider a* points where k is an arbitrary natural
number. It is evident that the present method of constructing the com-
parisons gives a*~' sets (conjunctions) of the i-th order (i=0,1,2, ..., k).
Since the number of mutually orthogonal comparisons between a sets is
a—1 (cf. sec. 2a), the sets of the i-th order include (a—1)a*~/ mutually
orthogonal comparisons (i =1, 2, ..., k). The sum of these comparisons is
equal to

k ]
S (@—1)a* ' = (a—1) va"“‘=a”— 1.

=1 l‘-‘..'»_lr

Comparisons including different observations are naturally orthogonal.
Comparisons which are of the same order and have certain observations x
in common are orthogonal, which follows from sec. 2a.

Let us then consider two arbitrary comparisons of different orders
but with some number of common observations. For the sake of brevity
let the comparisons including the greater and the smaller number of
observations be noted by letters W and M respectively. It follows from
the definition of comparison that all observations x included in comparison
M have identical coefficients in comparison W. This property will be
marked by letter B. Let us note that the two comparisons M and W with
the property B are orthogonal. In fact, the sum of products of coefficients
of corresponding observations in comparisons M nad W is equal to zero
since the sum of coefficiens of comparison M (by the definition of com-
parison) is equal to zero, and the coefficients of comparison W are
identical.
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We have proved that the comparisons formed within set of a* points
are mutually orthogonal; thus all comparisons of the first type are
mutually orthogonal.

Let us continue our construction. Let us introduce comparisons of the
second type. These are comparisons corresponding to conjunctions obtained
by linking the disjoint sets of the same order to the base 2. Thus c,; sets
of the u;-th order are linked by means of the c,,—1 conjunctions of the
second type (i—=1,2,..,t).

Afcording to property B all comparisons of the second type (there
are ) (c,;, — 1) comparisons of this type) are mutually orthogonal and

=1
are also orthogonal to all comparisons of the first type.

Finally we present the last group of conjunctions. It includes the con-
junctions of the third type obtained by linking each of t sets of

(15) Cu, @", Cu, @™, ..., Cy, @"t

points (cf. expansion (9°)) with the total set including the sum of all sets
preceding it.

Let the i-th total set including the first i sets of sequence (15) be noted
by the symbol G;. The comparison of the third type (marked in Fig. 3
by a dotted arc) in the form

(16) yi”” = Cu; 4 (x, | Tyt - +l‘z,~) == - u?] (x2,+1 + &2t + xz,~+1)
a

where :
2= cup @ (=1,2,.,t—1)
k=1
is assigned to the linking of the (i+1)-th set of sequence (15) with the
set G;.

Note that the coefficient z;/a“+1 given in (16) is an integer since
ug > uy > ... > u, =0 (cf. (9°), which is in accordance with the require-
ment of the construction of comparisons.

The number of comparisons of the third type is evidently equal to t—1.
Now we will prove that arbitrary comparison of the third type is orthogonal
to each of the previously considered comparisons of the first and second
type.

Proof: Let arbitrary comparison of the third type be denoted by the
symbol R and let arbitrary comparison of the second or of the first type
be denoted by the symbol P. According to the definitions of comparisons
R and P all observations included in comparison P ‘have coefficients
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identical with those occurring in comparison R and equal to c4, ., (ef. (16))
if conjunction P appears at the left end of the conjunction R, ar equal
to —2z;a~%+1 if comparison P appears at the right end of conjunction R.
Thus comparisons R and P as having property B are orthogonal. The proof
is completed.

Now let us prove that comparisons of the third type are mutually
orthogonal.

Proof: Let us take two arbitrary comparisons of the third type: y{'!"
and y{™ (cf. (16)), where let i<k (i=1,2,..,t—2; k=2,3,..,t—1).
It is easily seen that when'comparison y{"" has the coefficients of z; ob-
servations equal tocs, ,, then comparison y{ has the coefficients of
these observations equal to cs,_,. On the other hand, when the coefficients
in comparison y!"" of their remaining ¢, ,,a“:1 observations are equal
to—z;a7"i +1, then the corresponding coefficients of observations in com-
parison y{"" are equal tocu,,,. The coefficients of the remaining obser-
vations in comparison y{!" are not examined, because their coefficients
in y!"" are equal to zero.

Consequently, the sum of products of coefficients of corresponding:
observations in the i-th and k-th comparisons of the third type is equal

iy q 2

Cujy1* Cupyy*2i—Cu; 4 @ uisy Cursr =0

The proof that all presented comparisons of the first, second and third
types constitute a set mutually orthogonal comparisons is completed. To
show that they present also a complete set of comparisons, i.e. n—1 com-

P

parisons, it is sufficient to sum (a—1) }'n; comparisons of the first type,
t =1

then }'c,,—t comparisons of the second type, and finally t—1 com-
=1

parisons of the third type. In fact, using equalities (5)-(8") and the
relation

! [
‘Y c,,,=é_jc, and np=c¢p
i=1 i=0
we obtain
P ; t A 3 v
(a-l)EnmL{Z c—t)+t—D=@—1) X m+ ) e—1=
i=1 i=1 ! i=1 j=0

P p
=Z(a"i+cl—l)—£ ni—1+4+c¢cp=n—1
i=1 =
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The following example illustrates the method of constructing sets of
mutually orthogonal comparisons presented in sec. 2b.

Example 2. The graph in Fig. 3 indicates the manner of linking n—= 17
points when the base of the expansion of the number 17 is equal to a = 3.
Then 17==1-32+2-3+2. Three types of conjunctions which result di-
rectly from the expansion of number n to the base a are clearly seen in
the graph.

R i
~

.,.\.

.'-.“ \.
X '-.\ X
/."\\
" ! b
Chavetony 20
7 (1
g O TEETE 7 8 9. A0SR 18, W

% ”

Fig. 8

- - conjunctions forming sets of
the first order

conjunctinons of the first
conjunctions forming sets of | type

the second order

----- conjunctions of k sets of | conjunctions of the second
‘dentical orders (1<<k<<a—1) } type

""" conjunctions of disjoint sets
separated by signs “plus” in
the expansion of the number
n to the base a

| conjunctions of the third
type

Using the configuration presented in Fig. 3 and applying the method
indicated in sec. 2b we can immediately construct all n —1 = 16 mutually
orthogonal comparisons. The coefficients appearing in these comparisons
constitute also elements of rows of the orthogonal matrix with 17 rows
and 17 columns (all elements of the last row are equal to 1). The matrix
is of the form given in Table 1, where non-specified elements are equal
to zero. The normalized matrix can be obtained like in sec. 2aq, p. 11.

3. Applications. As we have shown in sec. 2a and 2b the method of
constructing mutually orthogonal comparisons can be illustrated graphi-
cally. The obtained configuration makes it possible to determine imme-
diately and explicitly the orthogonal matrix (then also the orthonormal
matrix) or to determine explicitly the corresponding comparisons.

It can be applied in working out the numerical data obtained from the
experiment based upon one of the known mathematical models (for
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instance upon the model of randomized complete blocks). If the compari-
sons obtained according to the described method represent the degrees
of freedom which are the matter of interest to the experimenter, he can
use them in the analysis of results of experiments by means of the
analysis of variance; he can perform the breakdown of the sum of squares
for the treatments into the sums of squares with single degrees of freedom.
This breakdown constitutes the basis to obtain the particular conclusions
on the existence of significant differences between the treatments.

For instance, in problems connected with the interpretation of ex-
perimental data obtained from the factorial design of type 2° (where each
of p factors appears at two levels 0 and 1; cf. [2]) an important role is
played by such mutually orthogonal comparisons which determine the
main effects and the interactions of the investigated factors. In these
comparisons the coefficients of observations are equal to 1 or —1. It may
be proved that each of these comparisons can be presented as a linear
combination of simple effects, [2], which are also comparisons. In the
case of the significance of interactions the above-mentioned simple
factorial effects can be compared by the experimenter. Therefore the
partition of the sum of squares for n treatments into simple mutually
orthogonal comparisons appears to be necessary. If the experimenter is
interested in comparisons between groups of treatments of the same
magnitude a > 2 he may use the comparisons suggested in sec. 2b.

_ Now we shall present an example of the application of the comparisons
given in sec. 2a and of the identity (14’). Consider a factorial experiment
bas:ed on the model of randomized blocks when each of the p==3 factors
“A”, “B” and “C” appears at two levels 0 and 1. Then there are in all
n == 2" combinations arranged in the standard order: abe, be, ab, b, ac. ¢, a,
(1) (cf. [7]). According to the method described in sec. 2a let us form
n—1 =17 mutually orthogonal comparisons:

Y, = abc — be, Ys = (abc + bc) — (ab + b),

Yy =ab—b, Yys=(ac +c)—(a + 1),
Ys=ac—oc, y,=(abc + bc + ab + b)—(ac + ¢ + a+1).
yd=a_(1)v

Comparisons y,, Y2, Y3 and y, represent the simple effects of factor ,,A”,
the next three comparisons correspond to the effects of factor “C”, and
the last comparison constitutes the total effect of factor “B.
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Let each of the eight considered combinations be equal to the total
obtained by summing the individual results in r replications (blocks) of
the experiment. Then, on account of identity (14’), we obtain
ity Yty ity v

27 +72*‘-r +2’-r
where I; is the mean of the i-th combination (i=1,2,...,23), x is the
general mean and the symbol X denotes the summation of all nr="71r
observations. The significance of each of the seven terms of the identity
can be easily verified by means of the well-known test F.

Consider that the method of constructing the orthogonal matrix pre-
sented in this paper may be also used in the case when the set of n points
is partitioned into the disjoint subsets, or in more complex cases.

As it is known, breakdown of the sum of squares into the sum of
squares with single degrees of freedom is particularly desirable in the
computational procedure of the experiments with one replication, in
which the error is determined by the mean square of higher order inter-
actions (it is assumed that the components of this mean square are homo-
geneous). If it is shown in such experiment that some mean squares with
single degrees of freedom constructed according to the method presented
in this paper are homogeneous, their sum can be also considered as
a correct estimate of error on the condition that the comparisons cor-
responding to these mean squares are non-significant.

2 (Ti—xPr=
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Streszczenie

W niniejszej pracy przedstawiam graficzng metode konstrukeji zbio-
row poréwnan wzajemnie ortogonalnych miedzy n obserwacjami (por.
rys. 1, 2 i 3), ktéra stanowi zarazem metode konstrukcji macierzy orto-
gonalnej o n wierszach i n kolumnach (por. Tab. 1).
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Nadto zaznaczam S$cisle powiazanie tej metody ze znanym z teorii liczh
twierdzeniem o systematycznych rozwinigciach liczb naturalnych przy
dowolnej zasadzie numeracji a = 2. Ze wzgledu na to, iz podstawowe po-
réwnanie okresla sie jako réznice miedzy dwiema obserwacjami, metoda
konstrukeji jest oparta na zasadzie a=—=2 (paragraf 2a). Uogdlnienie na
przypadek dowolnej naturalnej zasady a > 2 znajduje sie¢ w paragrafie 2b.

W przypadku a =2 podaje explicite tozsamo$¢ wyrazajaca podzial
sumy kwadratéw odchylen pojedynczych obserwacyj od $redniej arytme-
tycznej na n—1 skladnikéw wyznaczonych zgodnie z przedstawiona me-
toda konstrukcji poréwnan wzajemnie ortogonalnych.

Pewne zastosowania podanej metody sa omowione w paragrafie 3.

Peszwome

B 3Toit paGore A npeaJiaralo rpaduyecKmii MeToy ITOCTPOEHUA B3aUMHO
OPTOIOHAJIBHBIX MHOXKECTB CpaBHEHMit MexkAay n HabmopeHuamyu (cp. puc.
1, 2 u 3), KOTOpBII ABJIAETCA BMECTE C TEM METOAOM KOHCTPYMPOBaHUA
OPTOrOHAJIbHO} MaTPMIILL C T cTpokKamu U n croabuamu (cp. Tabu. 1).

Ceepx TOTO A O0TMEYal0 TECHYIO0 CBA3b METOJa ¢ M3BECTHOII M3 Teopum
YMuCeJl TEOPEMOI O Pa3JIOXKEHMM HATYpaJIbHBIX YMCEJ IIPU IIPOM3BOJLHOM
OCHOBaHMM cyéra a—2. BBuay TOro, 4To OCHOBHOE CpaBHEHME Ompene-
JiIsieTcs, KaK pPa3’HOCTh MEXAYy ABYyMS HabJ/IOJeHMAMM, METO] KOHCTDPYMUPO-
BaHUA omupaerca Ha ocHoBamum a =2 (§ 2a). O6oblIeHMe Ha ciy4ait npo-
M3BOJIBHOTO OCHOBAaHMA (HATYpaJIbHOro umcjia) a > 2 Haxomures B § 2b.

B ciayyae a=2 s npuBOXKY ABHO BBIPAXXEHHOE TOXKIECTBO, TPENCTAB-
JAIOLIee pa3ToxKeHue CyMMbl KBaJpPaTOB OTKJIOHEHMII OT cpegHero apud-
METUMYECKOr0 Ha T — 1 KOMIIOHEHTOB, OIIpeJeJIEHHbIX COIJIACHO C mNpen-
CTaBJIEHHBIM METOAOM KOHCTPYMPOBaHMA B3aMMHO OPTOrOHANBHBIX CpaB-
HEeHMI.

HexkoTopble mpuMeHeHMA MTPEAJIOKEHHOT0 METOa OrOBOPEHEI B § 3.



