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On Certain Method of Constructing Sets of Mutually Orthogonal 
Comparisons

O pewnej metodzie konstrukcji zbioru ortogonalnych porównań 

Об одном методе построения множества ортогональных сравнений

1. R. A. Fisher [3] presents the following theorem: If xi,x2.....x„
are independent random variables and all normal (0,1) and if

(1) yi=^bijXj

where {b/#} (i, j = 1, 2,..., n) is orthogonal and normalized matrix, then 
the variates y; are independent and normal (0,1) and the following re
lationship holds:

n n

(2) 2 x" = Z •
1=1 tel

A more general theorem, which is often used, says: If Xj,X2, ...,xn are 
Independent random variables and all normal (m a), and if

(3) j/,=— Yx,-, y»= Vb/tyXy.
I « &

where {b;,} is orthogonal and normalized matrix with

bn = b,2 = ... = b,„ = 1/k'n ,

(fc = 2,3.....n)
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then yt is normal (myn,a) and yk are normal (0, <r) for fc = 2, 3,n, 
and also
(4) VI
or

(4')

where

n n

(Xi — x}-= ^5 y'f
1=1 7=2

n

i=l

Each of n-1 components of the right side of identity (4') is based upon 
a single degree of freedom, since the variable y2k/a (fc = 2, 3,n) is 
distributed as chi-square with one degree of freedom. It is evident that 
by orthogonality of martrix {b;,} and by the form of the variable y( given 
in (3) we have

n
2 b‘j = 0 (i = 2, 3,.... n).

7=i
A linear combination of x’s for which

E b" = °
7=1

will be called comparison.
Hence, the right side of identity (4') is the sum of squares of n-1 

mutually orthogonal comparisons, each based upon a single degree of 
freedom. Since the orthonormalized matrix {b;y} given in (3) may be 
defined in an infinite number of ways, the left side of identity (4') may 
be also defined in the same number of ways.

J. O. Irwin [4] gives one of these ways determining the matrix {bi(} 
by means of the following relations:

b| j = b12 == ’ ’ ■ == bln == /— , bfl = br2 == • ■ • = br, r—1 = /  >
yn yr(r—1)

brr = -(r-1) 
I r (r-- 1)

(r = 2,3, ...,n). This autor finds (1930) an indentity related to this matrix, 
which may be found in Burnside’s textbook [1].

R. E. A. C. P a 1 e y [5] gives some methods of constructing the ortho
gonal matrices with elements equal to +1 and —1.
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In this paper I present a simple method of constructing sets of mu
tually orthogonal comparisons; this method may be also used to construct 
orthogonal matrices; it is based upon the theorem of the number theory 
concerning the systematic expansion of natural numbers to any integer 
numeration base, [6], and is graphically illustrated in Fig. 1, 2 and 3. 
Moreover, using relation (4') I deduce identities (14) and (14'). The method 
may be used in the analysis of variance (cf. sec. 3).

2a. First, we are going to deal with the construction of sets of mutually 
orthogonal comparisons taking two values as the base of comparison. 
This may be reached by means of the following graphical construction.

Let the values of variates defined in sec. 1 be designated as xlt X2,... xn. 
Moreover, let n points determined by these observation be plotted along 
the horizontal axis in the order given above. The points will be named 
sets of the zero order, the pairs of points will be named sets of the first 
order, the four points-sets of the second order, and in general sets con
sisting of 2' points will be named sets of the i-th order (i —0,1, 2,...).

Proceeding from the left to the right side of the sequence of x's let us 
link the successive pairs of points by means of single arcs i.e. xi with X2, 
X3 with x4, etc. i.e. the sets of the first order are formed by linking the 
sets of the zero order. To each such conjunction its strictly determined 
comparison is assigned. Thus, the following comparisons of the first order 
will be assigned to the above-given conjunctions:

(i)y\ = »1 — æ2,

where the upper index denotes the order of the set obtained from linking 
and the lower index denotes the ordinal number of the set (i.e. of the 
comparison). The observations x,- corresponding to points x, (i = l, 2,...) 
and appearing at the left end of the arc of conjunction will be multiplied 
by +1, and those occuring at the right end of this arc will be multiplied 
by —1, unless some restrictions are taken.

It is evident that after all conjunctions between the sets of the zero 
order have been carried out, there remains at most one point unlinked; 
this fact is noted as co = 0,1. It is also clear that the number of the sets 
of the first order (i.e. the number of pairs or number of conjunctions) 
will be equal to nt = E (n/2), where the symbol E denotes entier. Thus

(5) n = 2 n1 +c„

Further, let us form the sets of the second order (i.e. the sets including 
four points) by linking successively the sets of the first order from the
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left to the right side, and let us assign to these conjunctions the com
parisons of the second order:

y'f* = (x, + x2) — (xs + x4), y^= (xs + x„) — (x7 + x8).....

To distinguish the comparisons of the second order from those of the 
first order the corresponding conjunctions are marked in the figure by 
means of double arcs (cf. Fig. p. 12). The number of these conjunctions 
is «2 — E (n,/2) and at most one set of the first order may be left unlinked. 
In this way we obtain n2 sets of the second order and ct = 0,1 unlinked 
set of the first order; we have therefore

(6) n, = 2na+c,.

This process of linking is continued; the sets of the third order are 
formed by linking the sets of the second order, the sets of the fourth 
order are obtained by linking the sets of the third order, and so on; to 
each conjunction its corresponding comparison is assigned with the 
observations x having the coefficients defined on page 7.

The procedure of linking and of forming corresponding comparisons 
must evidently have its end. Let the last conjunction be the conjunction 
of the p-th order of the form

y,p} = (Xj + X2 H------ H Xd) — (Xd + 1 + Xrf . 2 H------H X2d)

where d stands for 2P_1.
Since 2d = 2P of points are included in this comparison, np = 1, and

(7) np~i =2np + cp-i = 2 + cP-i

where the number of unlinked sets of the (p — l)-th order is determined 
by cp_t—0, 1. The first phase of linking and forming the comparison^ 
is finished. We have obtained the finite sequence of relations (5) - (7) 
which in the number theory is known as the result of the applicability 
of the algorithm permitting the expansion of the natural number n to the 
base two (cf. [6]). By this sequence the expansion of the number n is 
obtained in the form:

(8) n = 2n, +c0 = 2(2na + c,) + c0 = • • • = 2p+cp-, ■ 2P~I + • • • + c, 21+c02° 

where cP-x ,cp-2,c0 = 0,1.
In this manner we have obtained N — ni + n2 + ... + np_j + np conjunc

tions (or comparisons) and among them n,- conjunctions of the i-th order 
(«= 1,2,p). These conjunctions (comparisons) will be named con
junctions (comparisons) of the first type.
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If in the expansion (8) the coefficients c which are equal to zero are 
omitted, then this expression may be written in a simpler form:

(9) n = 2“’ + 2“’ + • • • + 2"',

where p — Ui > u2 > ... > u, 0, and

(10) t = c0 + c,-f-•• • + Cj>_i+1,

The graphical configuration obtained from performing conjunctions 
is uniquely determined by expansion (9). In fact, it results from (9) that 
the configuration includes t disjoint sets: the first of these sets is of the 
p = Ui-th order, the second of the U2~th order, etc., and the last is of the 
uz-th order. It is also evident that the comparisons of the first type cor
responding to the above-given conjunctions constitute the comparisons 
within, mentioned t sets.

Now, we are going to prove that these comparisons are mutually 
orthogonal.

Proof: Note that two arbitrary comparisons chosen from t disjoint sets 
are mutually orthogonal, since they include different observations. Thus 
it remains to prove that the comparisons formed within the set of the 
Jc-th order (each of the disjoint sets is of this form as it is seen in (9)) 
constitute a set of mutually orthogonal comparisons.

To attain this it is sufficient to prove that two arbitrary comparisons 
within the set of 2k points are orthogonal. The i-th comparison of the w-th 
order belonging to the set of the fc-th order has the form:

(11) 2/1W, = (Xs + 1 + X* + 2 4------ |-Xj h)-- (Xj + A + l + Xi + A + îH------- Hx2ft,j

where for brevity it is noted s — (i—1) 2W and h = 2“’-1 (i = 1, 2,..., 2*““’; 
w = l,2,..., fc).

Consider here two cases: (a) when the comparisons belong to the sets 
of the same order, and (b) when they belong to sets of different orders.

In the first case the comparisons are orthogonal since they include 
disjoint sets (i.e. without common observations x). In the second case let 
us suppose that the sets have some common points. The comparisons 
corresponding to these sets are also orthogonal. In fact, since all observa
tions occurring in the comparison of a lower order have in the comparison 
of a higher order the coefficients equal to +1 or to —1, then the sum of 
products of these coefficients of corresponding observations in both 
comparisons must be equal to zero. This proves the proposition.



10 Wiktor Oktaba

Since the i-th set represents 2*“' comparisons (i = l,2.....k) in a set
of the fc-th order, the number of all comparisons in this set is

k
V 2*-z = 2*—1.

i=i

This fact proves that all comparisons determined in a set of the fc-th 
order constitute a complete set of mutually orthogonal comparisons, i.e. 
they provide all orthogonal comparisons for 2* observations.

Thus, it is proved that the sets of the first type represent a complete 
set of comparisons which includes

t t
(12) N = n, + n2 + • • •+np = 2? (2“' —1)= Z 2u, —t

t=t z=i
mutually orthogonal comparisons.

Now let us perform the conjuctions and determine corresponding 
orthogonal comparisons between t sets not yet linked; to them belong 
the sets of the U;-th order (i = 1, 2,..., t). The mentioned conjunctions 
and comparisons will be called conjunctions and comparisons of the third 
type. The comparisons of the second type appear only to the base a > 2; 
these will be defined in sec. 2b.

A simple method of linking sets of the u;-th order is as follows. The 
set of the U|-th order is linked by means of one conjunction with the set 
of the u2-th order, then the total set obtained from this linking, denoted 
by (iq, u2), is linked with the set of the u3-th order; then the total set 
(ui, w2, u3), which includes all preceding sets, is linked with the set of the 
•u4-th order, and so on. In this manner we obtain t-1 conjunctions.

The comparison in the form:

(13) = (x, + x24--------(- Xr.) — -r-'- (Xrz+1 + Xrj+2 H------- H Xr(. +s. + 1)
S/ + 1

where r, = 2"' + 2"’ + ... + 2“' and S/+i = 2“'+i, (i = 1, 2,..., t-1) corresponds 
conjuction of the total set (u4, u2,u;) with the set of the u/+i-th order. 
The number of type of comparison is given by the upper index (Roman 
numeral) of y.

We will prove that the comparison y*1}1* is orthogonal to each of N 
comparisons of the first type.

Proof: Since the comparisons including different observations are 
evidently orthogonal, it is sufficient to consider only comparisons which 
have some observations in common. The latter are mutually orthogonal 
on the basis given in the preceding proof (let this basis be called B basis).
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In fact, the coefficients of all the observations appearing in the comparison 
of the first type are identical with those in the comparison of the third 
type (this follows from the definition), i.e. they are equal to + 1 if the 
comparison of the first type includes the observations belonging to the left 
end of the conjunction of the third type, and they are equal to —r,/s/+i, 
if the comparison of the first type includes the observations belonging to 
right end of the conjunction of the third type. Thus the sum of products 
of the coefficients of the corresponding observations of the comparisons 
in question is equal to zero; this proves that the comparisons of the first 
are orthogonal to those of the third type.

Now we will prove that the comparisons of the third type are mutually 
orthogonal.

Proof: Let us give two comparisons of the third type:

y’11" and yJJ11*, where i<k (i=l,2,...,t— 2; k = 2, 3,.... t—1).

Note that the coefficients of the comparisons y(jn) and y^111* included 
in the first r; observations are identical and equal to 1. On the other hand, 
when the comparison y J111’ has in the remaining s,+1 observations the 
coefficients which are equal to —r,/s/+i then in the corresponding ob
servations the comparison y^11'1 has its coefficients also equal to 1. Hence 
it is evident that the sum of products of the coefficients of the observations 
in the two examined comparisons is equal to zero. The proof is finished.

Now we are going to prove that the total number of comparisons of 
the first and of the third type obtained so far is n-1.

In fact, on account of (10) we have:

N -f- (t — 1) = (n, + n2 + • • • -(- rip i + np) +1 — 1 =
= (2n, +c„) + (2n2 + c,) -|------ H (2np + Cp_i) — (n, + n2 d------ (- np a + np)

and using n„ = 1 and equalities (5) - (7) we obtain n-1.
In this way the complete set of mutually orthogonal comparisons has 

been determined. The graphical construction (cf. Fig. 1) presented above 
constitutes a simple method of obtaining set of mutually orthogonal com
parisons and may be found from the expansion of the natural number n 
to the base two. It also presents a method of constructing an orthogonal 
matrix which can be found directly from the configuration of conjunctions 
in the graph. The coefficients of observations included in comparisons 
are the elements of a row of an orthogonal matrix; all the elements of the 
last i.e. of the n-th row of a matrix are equaly to 1. As usual, the ortho- 
normalized matrix is obtained by dividing all numbers of every row of 
this matrix by the square root of the sum of squares of these numbers.
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If the orthogonal matrix (which is constructed according to the above
given method) is assumed to be normalized, we obtain on account of (4'), 
(11), (13) and expansion (9) the identity in the form:

t "h
(14) (x, — x)s = £ EyE

i=i h-1 i=l I' >=1
Xk— T xk

k=Kij+l *=«//+//—1+1
+

zV 2“°
w-2 —t

rw—1 
2 Tw-1 Xs
5=1

where
rm=2“,+2“’+-- + 2"m, g,y = (j-1) ■ 2‘ and f, = 2' (m=l,2..... t).

In particular, when n — 2p the identity is of simpler form:

+
i=rw_1 + 1

a p !p—i

14') £ (Xi — X)2 = - £
Bij+fi—l Sij+/i

2 Xk— 2 xk 
k=Sij+1 k=gij+fi -1 + 1

Example 1. The configuration of n—1 = 13 conjunctions between 
n = 14 = 23+22+2 points is illustrated by Fig. 1.

Conjunctions corresponding to the comparisons of the third type are 
presented in Fig. 1 by means of the broken arc and conjunctions of the 
first type are presented by means of a single, double or triple continuous 
arc if the corresponding comparison is of the first, of the second or of 
the third order respectively. The expansion of number 14 to the base two 
includes three components: 23,22 and 2. According to (9) and to the 
method described above the graph in Fig. 1 represents three sets of com
parisons (or conjunctions) of the first type of the Ui = 3-rd, 1x2 = 2-nd, 
and U3 — 1-st orders respectively, and t—1 = 2 conjunctions of the third 
type linking the conjunctions of the first type.

2b. Now we are going to present a method of constructing sets of 
mutually orthogonal comparisons for n observations in the case when we 
are interested in forming group comparisons including a observations 
(2 < a < n).
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The construction presented in sec. 2a to the base 2 will be generalized 
here for the arbitrary base a > 2. Now the fundamental conjunction 
includes not two observations as previously but the set of a—1 conjunc
tions between a observations, according to the method of sec. 2a.

The proposed configurations of funda
mental conjunctions for different values 
of a are presented in Fig. 2.

Fund«nentsl con|unctiont

Before the graphical method of link
ing n points to the base a is presented we 
will introduce certain definitions general
izing those of sec. 2a. Each of the n points 
(observations) Xi, x2, ..., x„ ordered on the
axis of coordinates will be called, as in ----
the preceding section, a set of the zero ----
order, moreover, the sets including a 
points (fixed fundamental sets) will be
called sets of the first order, and in general sets including a’ points will 
be called sets of the i-th order (i — 0, 1, 2,...).

Fig. z

We link the points within each set of a points and construct the 
corresponding mutually orthogonal comparisons to the base 2 exactly as 
in sec. 2a (cf. Fig. 1 and 2). Thus we have a—1 mutually orthogonal com
parisons in such a set. It remains to present the method of constructing 
the comparisons between sets including a points each.

This method is similar to that given in sec. 2a, where a — 2. It is as 
follows: In the ordered set of n points we separate the subsets of a points, 
proceeding from the left to the right side and we link the points by means 
of single arcs (cf. Fig. 3). This process gives E (n/2) = n( sets of the first 
order and c0 = 0,1, 2,..., a—1 unlinked points. We obtain the relation 
similar to (5) in the form:

(5') n - an, + c0.

Moreover, linking sets of the first order (single arcs are linked by 
means of double arcs; cf. Fig. 3) to the chosen base a provides E (ni/2) = n,> 
sets of the second order. To each conjunction we assign a comparison 
whose observations included at the left end of the arc should have identical, 
positive, and minimal integers; the coefficients of the observations at the 
right end of the arc should be identical and negative integers satisfying 
the condition that the sum of all coefficients of comparison should be 
equal to zero.
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The relation between the numbers of conjunctions (or comparisons) 
of the first and of the second order is 
(6') n, = an., + c,,
where ct = 0, 1, 2,a—1 denotes that in forming the sets of the second 
order there may remain at most a—1 unlinked sets of the first order.

The process of linking is continued. We construct the sets of the third 
order by linking the sets of the second order to the base 2; similarly we 
construct the sets of a higher order from the sets of the preceding order. 
It is evident that this process is identical with the well-known algorithm 
of expansion of any natural number n to the base a. Hence, the discussed 
procedure must have its end. Assume that a set of the p-th order is a set 
of the highest order obtained in the process of linking. Thus the last 
relations is
(7') rip-i = anp + cp~\,
where _ , .

cp-i=0, l,2,...,a —1 and cp = np — 1, 2, ...,a—1 (cf. |6|).
On the account of the sequence of equalities (5') - (7Z) the expansion 

of the number n to the base a is obtained by simple calculations in the 
form:
(8') n = cp ap + Cp-i ap_1 -|---- + Cj a1 + c0 a°,
where

c, = 0,1, 2, ...,a—1 (i = 0,1, 2.....p—1) and cp —1,2,...,a— 1.
Omitting in expansion (8Z) the coefficients c equal to zero and taking 

p = u1( the number n, as in sec. 2a, can be presented as
(9') n = c„, a"1 + cu, a“» 4------H c„t a"i,
where

cWl,cOl,...,cn,= l,2,...,a —1 and p = u, > u2 > • • • > u, > 0.
Let us note that in the process of constructing sets of the first, second 

and higher orders to the base a a set of the U;-th order includes a“< points, 
and that the coefficients cU(. given in the expansion (9Z) indicate the 
number of obtained sets of the u-th order (i = 1, 2,...»t). Thus in our 
sequence of conjunctions, which will be called the conjunctions of the 
first type, cU(. sets of the u,-th order are obtained (i — 1, 2,..., t). Accord
ing to the presented method the conjunctions are constructed within these 
sets only.

Since a—1 mutually orthogonal comparisons are obtained within the 
set of a points, the number of the mutually orthogonal comparisons (con
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junctions) within n, sets of the first order is evidently equal to (a—l)nj. 
Generally, the number of mutually orthogonal comparisons within the n,- 
sets of the i-th order is (a—l)n;. All comparisons constructed so far con
stitute (a—1) (ri|+7i2 + ...+np) comparisons of the first type.

It is easy to see that in the graphical configuration there are ca/ unlinked 
sets of the U;-th order (i = 1, 2,.... t), the total of which is equal to 
T = cai + cU2+c„, sets (cf. (9')).

We will prove that all sets of points of the first type are mutually 
orthogonal; their corresponding comparisons are marked in the drawing 
(cf. Fig. 3) by means of single, double, triple, etc. arcs.

Proof: Since two arbitrary comparisons belonging to two of T disjoint 
sets are evidently orthogonal (as they include different observations) it is 
sufficient to consider the comparisons within the set T. The disjoint sets 
include a"‘ points, and it remains to prove that the comparisons obtained 
from linking a"< points are mutually orthogonal.

To prove this let us consider ak points where k is an arbitrary natural 
number. It is evident that the present method of constructing the com
parisons gives ak~‘ sets (conjunctions) of the i-th order (i = 0,1, 2,..., k). 
Since the number of mutually orthogonal comparisons between a sets is 
a—1 (cf. sec. 2a), the sets of the i-th order include (a—1) ak~‘ mutually 
orthogonal comparisons (i = 1, 2,..., k). The sum of these comparisons is 
equal to * k

(a — 1) ak~‘ — (a — 1) a*-' — a* — 1.
«=i i=i

Comparisons including different observations are naturally orthogonal. 
Comparisons which are of the same order and have certain observations x 
in common are orthogonal, which follows from sec. 2a.

Let us then consider two arbitrary comparisons of different orders 
but with some number of common observations. For the sake of brevity 
let the comparisons including the greater and the smaller number of 
observations be noted by letters W and M respectively. It follows from 
the definition of comparison that all observations x included in comparison 
M have identical coefficients in comparison W. This property will be 
marked by letter B. Let us note that the two comparisons M and W with 
the property B are orthogonal. In fact, the sum of products of coefficients 
of corresponding observations in comparisons M nad W is equal to zero 
since the sum of coefficiens of comparison M (by the definition of com
parison) is equal to zero, and the coefficients of comparison W are 
identical.
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We have proved that the comparisons formed within set of ak points 
are mutually orthogonal; thus all comparisons of the first type are 
mutually orthogonal.

Let us continue our construction. Let us introduce comparisons of the 
second type. These are comparisons corresponding to conjunctions obtained 
by linking the disjoint sets of the same order to the base 2. Thus c«(. sets 
of the u,-th order are linked by means of the co<-—1 conjunctions of the 
second type (i = 1, 2,..., t).

According to property B all comparisons of the second type (there t
are £ (cUi — 1) comparisons of this type) are mutually orthogonal and

(=i
are also orthogonal to all comparisons of the first type.

Finally we present the last group of conjunctions. It includes the con
junctions of the third type obtained by linking each of t sets of

(15) c0,a“>, cu,au‘, aut

points (cf. expansion (9')) with the total set including the sum of all sets 
preceding it.

Let the i-th total set including the first i sets of sequence (15) be noted 
by the symbol G,. The comparison of the third type (marked in Fig. 3 
by a dotted arc) in the form

(16) yj11" = CBf+, (x, | X2 4------ f- XZ(.)----- -- (Xz, + 1 + 4------- h xZ/+1)
a

where

Zi= Cuk a k (i= 1,2, 1)
*=i

is assigned to the linking of the (i4-l)-th set of sequence (15) with the 
set Gj.

Note that the coefficient z,/a“<+i given in (16) is an integer since 
Ui > u2 > ... > uf^0 (cf. (9')), which is in accordance with the require
ment of the construction of comparisons.

The number of comparisons of the third type is evidently equal to t—1. 
Now we will prove that arbitrary comparison of the third type is orthogonal 
to each of the previously considered comparisons of the first and second 
type.

Proof: Let arbitrary comparison of the third type be denoted by the 
symbol R and let arbitrary comparison of the second or of the first type 
be denoted by the symbol P. According to the definitions of comparisons 
R and P all observations included in comparison P have coefficients
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identical with those occurring in comparison R and equal to cU/+1 (cf. (16)) 
if conjunction P appears at the left end of the conjunction R, or equal 
to —2/a-“'-ri if comparison P appears at the right end of conjunction R. 
Thus comparisons R and P as having property B are orthogonal. The proof 
is completed.

Now let us prove that comparisons of the third type are mutually 
orthogonal.

Proof: Let us take two arbitrary comparisons of the third type: yi111* 
and y'"" (cf. (16)), where let i < Jc (i = l,2,t—2; k = 2, 3,..., t—1). 
It is easily seen that when' comparison yj.in| has the coefficients of z; ob
servations equal toc„(.+t, then comparison ygn) has the coefficients of 
these observations equal to cHfc+1. On the other hand, when the coefficients 
in comparison yVn) of their remaining cU(+1a“/+i observations are equal 
to — Zi a~u‘’+i, then the corresponding coefficients of observations in com
parison y»1" are equal toc«ft+1. The coefficients of the remaining obser
vations in comparison yj,111’ are not examined, because their coefficients 
in y<in> are equal to zero.

Consequently, the sum of products of coefficients of corresponding 
observations in the i-th and fc-th comparisons of the third type is equal

C“/ + l ' C“4 + l ■ Zi c»l + l a ' 1 ’ , C“* + l = 0-a

The proof that all presented comparisons of the first, second and third 
types constitute a set mutually orthogonal comparisons is completed. To 
show that they present also a complete set of comparisons, i.e. n—1 com-

p
parisons, it is sufficient to sum (a—1) £ n-, comparisons of the first type,

t i=i
then J’c»,.— t comparisons of the second type, and finally t—1 com-

i=i
parisons of the third type. In fact, using equalities (5') - (8') and the 
relation

‘ p
V/, cU( = /, c, and np = cp

i=i i=o
we obtain

p I ' \ p p
(d— 1) T m + I 5^ c„.— t +(t—l) = (a — 1) n, + £ cj—l =

/=i ' /=1 y=o
p p

= £ (an/ + c/_i) — n, — 1 + cP = n — 1. 
/=i i=i

2
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The following example illustrates the method of constructing sets of 
mutually orthogonal comparisons presented in sec. 2t>.

Example 2. The graph in Fig. 3 indicates the manner of linking n — 17 
points when the base of the expansion of the number 17 is equal to a — 3. 
Then 17 = 1-32+2-3 +2. Three types of conjunctions which result di
rectly from the expansion of number n to the base a are clearly seen in 
the graph.

- conjunctions forming sets of 
the first order 
conjunctions forming sets of 
the second order

conjunctinons of 
type

the first

------ conjunctions of k sets of
dentical orders (1^/c^a—1) {conjunctions of the second 

type
conjunctions of disjoint sets 
separated by signs “plus” in 
the expansion of the number 
n to the base a

conjunctions of the third 
type

Using the configuration presented in Fig. 3 and applying the method 
indicated in sec. 2b we can immediately construct all n —1 = 16 mutually 
orthogonal comparisons. The coefficients appearing in these comparisons 
constitute also elements of rows of the orthogonal matrix with 17 rows 
and 17 columns (all elements of the last row are equal to 1). The matrix 
is of the form given in Table 1, where non-specified elements are equal 
to zero. The normalized matrix can be obtained like in sec. 2a, p. 11.

3. Applications. As we have shown in sec. 2a and 2b the method of 
constructing mutually orthogonal comparisons can be illustrated graphi
cally. The obtained configuration makes it possible to determine imme
diately and explicitly the orthogonal matrix (then also the orthonormal 
matrix) or to determine explicitly the corresponding comparisons.

It can be applied in working out the numerical data obtained from the 
experiment based upon one of the known mathematical models (for
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instance upon the model of randomized complete blocks). If the compari
sons obtained according to the described method represent the degrees 
of freedom which are the matter of interest to the experimenter, he can 
use them in the analysis of results of experiments by means of the 
analysis of variance; he can perform the breakdown of the sum of squares 
for the treatments into the sums of squares with single degrees of freedom. 
This breakdown constitutes the basis to obtain the particular conclusions 
on the existence of significant differences between the treatments.

For instance, in problems connected with the interpretation of ex
perimental data obtained from the factorial design of type 2P (where each 
of p factors appears at two levels 0 and 1; cf. [2]) an important role is 
played by such mutually orthogonal comparisons which determine the 
main effects and the interactions of the investigated factors. In these 
comparisons the coefficients of observations are equal to 1 or —1. It may 
be proved that each of these comparisons can be presented as a linear 
combination of simple effects, [2], which are also comparisons. In the 
case of the significance of interactions the above-mentioned simple 
factorial effects can be compared by the experimenter. Therefore the 
partition of the sum of squares for n treatments into simple mutually 
orthogonal comparisons appears to be necessary. If the experimenter is 
interested in comparisons between groups of treatments of the same 
magnitude a> 2 he may use the comparisons suggested in sec. 2b.

Now we shall present an example of the application of the comparisons 
given in sec. 2a and of the identity (14'). Consider a factorial experiment 
based on the model of randomized blocks when each of the p — 3 factors 
A , B and “C” appears at two levels 0 and 1. Then there are in all 

n 2 ! combinations arranged in the standard order: abc, be, ab, b, ac c, a, 
(1) (cf. [7]). According to the method described in sec. 2a let us form
n 1 = 7 mutually orthogonal comparisons:

y, = abc — be, y5 = (abc + be) — (ab + b),

y2 = ab — b, y6 = (ac + c) — (a + 1),

l/s = ac c, y, = (abc + be + ab + b) — (ac + c + a +1).

y« = a —(1),

Comparisons ylt y2, y3 and y,t represent the simple effects of factor „A", 
the next three comparisons correspond to the effects of factor “C”, and 
the last comparison constitutes the total effect of factor “B”.
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Let each of the eight considered combinations be equal to the total 
obtained by summing the individual results in r replications (blocks) of 
the experiment. Then, on account of identity (14'), we obtain

y _ti+a+a + a , yg + yg, _yL
[ ‘ ’ 2r + 2a-r + 2’-r

where x, is the mean of the i-th combination (i — 1,2,..., 23), x is the 
general mean and the symbol 2 denotes the summation of all nr — lr 
observations. The significance of each of the seven terms of the identity 
can be easily verified by means of the well-known test F.

Consider that the method of constructing the orthogonal matrix pre
sented in this paper may be also used in the case when the set of n points 
is partitioned into the disjoint subsets, or in more complex cases.

As it is known, breakdown of the sum of squares into the sum of 
squares with single degrees of freedom is particularly desirable in the 
computational procedure of the experiments with one replication, in 
which the error is determined by the mean square of higher order inter
actions (it is assumed that the components of this mean square are homo
geneous). If it is shown in such experiment that some mean squares with 
single degrees of freedom constructed according to the method presented 
in this paper are homogeneous, their sum can be also considered as 
a correct estimate of error on the condition that the comparisons cor
responding to these mean squares are non-significant.
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Streszczenie

W niniejszej pracy przedstawiam graficzną metodę konstrukcji zbio
rów porównań wzajemnie ortogonalnych między n obserwacjami (por. 
rys. 1, 2 i 3), która stanowi zarazem metodę konstrukcji macierzy orto
gonalnej o n. wierszach i n kolumnach (por. Tab. 1).
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Nadto zaznaczam ścisłe powiązanie tej metody ze znanym z teorii liczb 
twierdzeniem o systematycznych rozwinięciach liczb naturalnych przy 
dowolnej zasadzie numeracji a 2. Ze względu na to, iż podstawowe po
równanie określa się jako różnicę między dwiema obserwacjami, metoda 
konstrukcji jest oparta na zasadzie a — 2 (paragraf 2a). Uogólnienie na 
przypadek dowolnej naturalnej zasady a> 2 znajduje się w paragrafie 2b.

W przypadku a = 2 podaję explicite tożsamość wyrażającą podział 
sumy kwadratów odchyleń pojedynczych obserwacyj od średniej arytme
tycznej na n—1 składników wyznaczonych zgodnie z przedstawioną me
todą konstrukcji porównań wzajemnie ortogonalnych.

Pewne zastosowania podanej metody są omówione w paragrafie 3.

Резюме

В этой работе я предлагаю графический метод построения взаимно 
ортогональных множеств сравнений между п наблюдениями (ср. рис. 
1, 2 и 3), который является вместе с тем методом конструирования 
ортогональной матрицы с п строками и п столбцами (ср. Табл. 1).

Сверх того я отмечаю тесную связь метода с известной из теории 
чисел теоремой о разложении натуральных чисел при произвольном 
основании счёта а 2. Ввиду того, что основное сравнение опреде
ляется, как разность между двумя наблюдениями, метод конструиро
вания опирается на основании а = 2 (§ 2а). Обобщение на случай про
извольного основания (натурального числа) а > 2 находится в § 2Ь.

В случае а = 2 я привожу явно выраженное тождество, представ
ляющее разложение суммы квадратов отклонений от среднего ариф
метического на п— 1 компонентов, определенных согласно с пред
ставленным методом конструирования взаимно ортогональных срав
нений.

Некоторые применения предложенного метода оговорены в § 3.


