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1. Introduction. Notations.

Let f (2) be a function regular for |z| <R and let C, denote the map
of the circle [z|=7r (r <R) by f (2). Besides, let L(r) and S (r) denote the
length of C, and the area of Riemann surface of f(2) enclosed by C,
respectively. If f(0) =4 0, then C, are simple closed Jordan curves for
small * and the isoperimetrical inequality holds:

(1.1) 8(r)==L%*r) 4nS(r) >0,
or :

L*(r)
(1.2) q(r) 475 120"

The left-hand sides of (1.1) and (1.2) may be called isoperimetrical defects
of first and of second kind respectively. In a previous paper [1] (due to
the former of both authors and to M. Biernacki) a hypothesis was
announced that the isoperimetrical defect of second kind be an increasing
function of 7 € (0, R). In the same paper a weaker result concerning (1.1)
has been proved: the isoperimetrical defect of the first kind is either
a strictly increasing function of r e (0, R) or it vanishes identically (for
f (z) being a bilinear function). This statement was proved under the
assumption: f'(z) 70 for |z|<<R. The above mentioned hypothesis and
its conclusion concerning d(r) are two different statements of the fact
that the curves C, monotonically deviate from the circular shape as r
increases.
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In this paper we give an example of a function regular and univalent
in the unit circle for which q (r) decreases strictly for r ¢ (r,, 1), 0 <7, <1.
In this counter-example, however, the map of |z|<<1 is not a convex
domain, so that the question concerning the monotonity of q(r) remains
still unanswered for functions representing the unit circle on convex
domains.

2. A formula for q'(r).

We now prove that
2

=rfx(r,(~))if’(re“’)|'-' de,

0

d L(r)
2.1 —
(2.1) dr
the curvature x(r,0) of C, at w=7f(r e'?) is to be taken positive (negative)
if the centre of curvature of C, lies on the interior (exterior) normal.
Since
21

Lny=r [ |f(re®) de,
0

SO
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L'(r) = ‘ If'(re'®) do + ' rif(rei®) 218IF | 49
g t

or
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0 0
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T )

and the right-hand side is a well known expression for the curvature
x(r,0) of C, (see [3], p. 105).
Besides,

' 2

Sr)= | ado | 'f(0e™)de
0 0
and a differentiation gives

(2.3) q'(r) =5 G - 1|if (re®)2do.

2u
1 rL%r) (|28 x(r,0)
42 S'(r) ' L(
0
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This formula for q'(r) helps us to construct the desired counter-example.
It suffices to find a function f(z) such that for a value r <R there is

2S(r) max z(r, @)
o

Lir) &

We now prove the

Lemma. If the univalent function w==f(2) regular for |z|<1 re-
presents the unit circle on the domain G being the interior of a simple,
closed and rectifiable Jordan curve C with a continuous curvature x = x(s)
(s is the length of the arc of C), then the curvature x(r,0) of C, tends to
the curvature of C at f(e'?) uniformly as r — 1 (O being fixed).

Proof. The lemma can be easily proved by using the following,
well known result, due to W. Seidel [4].

,Let w==f(2) be a univalent (schlicht) function, regular for |z|<1,
which represents the unit circle on the interior of a simple, closed and
rectifiable Jordan curve C with a continuous tangent, i. e. the angle
y = y (s) between the tangent of C and the real axis is a continuous func-
tion of the length of arc s on C. If, moreover, y(s) is Lipschitzian:

w(s +h)—yp(s) <Kh (K =const.),

then f(2) and f'(z) are continuous in the closed circle |z|<C1. Besides,
f'(2) does not vanish in the closed circle and is absolutely continuous on
2ie=1",

Since x(s)=dy(s);ds is continuous, so y(s) is Lipschitzian and all the
conditions of Seidel s theorem are fulfilled. Let y(r,0) denote the
angle between the tangent of C, at w =f(re'®) and the real axis. We have

,tr' A
(2.4) % (r, @)= (d;. - 0'%(,1_0’_0) zf (2)
Since
Sidn 128 ds _ ¢ (oi®
#(8) = ds and d@——\f (e'?)

exist and are continuous, the derivative

dy 0 p(1,8) dy ds

) 6~ 06 ds do— & IfE)

exists for all ® and is continuous on |z|=1 as a function of @. In view
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of continuity and non-vanishing of f’ (2) in the closed circle and by (2.4)
and (2.5) it suffices to prove that

(2.6) lim —— 12— =
We have

w(r,0) = arg lizf (3] = 5 + 6+ arg f (2
and therefore
V’(‘h@)-@:% + ‘3 {logjf(z)’.

We see that p(r,0)— 6O being the imaginary part of a function regular
for |2|<1 and continuous in the closed circle may be expressed as the
Poisson integral of its boundary values. The boundary values are
obviously »(1,0) — 0 since the angles on the boundary are preserved and

we have
2n
1 1—7*
(2.7) w(r,@)—O—-z—an*;j;_m@_—a) ly(1,a) —alda.
0

Since 0y(1,0)/00 exists and is continuous, the differentiation and then
an integration by parts give
2n

oy(r,®0) 1 d 1 —18 n
00 "2;:} o@{l_;,é_—z—;g;@_;)}lw(l,a)——alda_
£ 1 !.10
=T
——Z’;fa{l-%f’—wcos'(e—a)‘lw(l'"] alda=
0
2n
B P Sler LSl i)
2= 1+"-2TCOS(0——a)i Oa llda
0
and hence
ih dis /0 — 1—r a'l’(l.a)drx

2
e .
00 27 ) 1+ r*—2rcos(@—a) Oda
0

The continuity of dy(1,)/00 as a function of @ and the well known beha-
viour of Poisson integral of a function continuous on the boundary
imply the uniform convergence:

dy(r,0)_,0y(1,0)
00 06
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as 7 — 1. The continuity of |2f(2)|™" in the closed ring 0 <4 < 2| <
and thus the uniform convergence:

[rif @e®)|]" =If ()

and the relations (2.4) and (2.5) prove the lemma.
We now define the univalent function w = X+ iY ={ (2) as an arbitrary
univalent function representing the unit circle |2/]<<1 on the interior

N
Al1 @
1
Y |
8 4/’.1 'M
E O & 2 3 1 &
\ 7
B’ ;M'
!
D I
A
Fig. 1

of a simple, closed and rectifiable curve C with continuous curvature,
C being defined as follows. The arc AEA’ of C is a semicircle:
=—)1—Y? (—1 <Y <1), the arc AB is an arc of a quartic:

Y=Y(X)——§6X‘+ X3 ;XZ-{-I (0 <X < 3),
the arc A’B’ is symmetric to AB with respect on the real axis OX. From
the points B (3,!/4) and B’ (3, — /4) we draw two straight line segments
BM and B’M’ parallel to the real axis and of the length !/21 (the value
l shall be determined below). Now, the entire curve C is composed of two
parts symmetric to each other with respect on the straight line MM’. It
is easy to verify that the curvature » = x(s) of C is céntinuous and that
|%(s)| < 1. This inequality is an immediate consequence of the inequality

sup |Y'(X)| = sup |[X—1)(X—3)|=1.
X ¢[0.3)

The area of the part AA’B’'B of the interior of C is equal to 3,3. Let a,
be the length of the arc AB and let L and S denote the length of C and
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the area of the interior of C respectively. If we put sup x(s) = xmax, wWe
obtain

33 1
2 8 o __2(”+?+?l) 4
L  2n+4a,+20 5

for 1> 9 (since a, > 3). Now, f'(2) is a continuous function in the closed
circle [2]<1, S(r) and L(r) are continuous, too, and tend to S and L
respectively.
Besides, the uniform convergence: x(r,0) 23 x(1,0) for r — 1 implies:
llr{l (SEP hd (T; @)) = »%ma. and therefore
- 2S()supx(n®) yg, y
r-»l L(r) L 5

and this means that
2S(r)supx(r,©®)
)

L(r) =5

for re kro, 1) and this gives q'(r) <0 for re€ (7, 1) in view of (2.3). There-
fore L®(r)/4 xS (r) decreases strictly for re(r, 1),

3. An inequality for convex domains.

The foregoing counter-example is based on the construction of a simple,
closed and rectifiable curve C with continuous curvature for which
2 S %max/L <<1. We now show that the construction of a convex curve
for which such an inequality holds, is impossible. In other words, for
convex curves we have always S > 1/2L omin, 0min=1 xmax being the
least radius of curvature. A similar upper bound for S can be also given.

Suppose, the closed convex curve C with a continuous and non-vanish-
ing curvature x(p) may be defined by the parametric equations x = x(y),
y=1y(y), the parameter p being the angle of the tangent with the Ox
axis. Denote L and S the length of C and the area enclosed by C res-
pectively. Then

1
3.1 nin
(3.1) 5 Lo, S

with the sign of equality in any case for a circle only.
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Proof. Put h(y)==x(y)cosy + y(y)siny. This means h(y) is the so
called function of support, see [2], p. 24 or [3], p. 106. We can suppose
that the origin lies in the interior of C, and then h(y) 0. We have

1 0
(3.2) o(y) = xTﬂ—h(W)+ h”(y) > 0.
2‘.‘: 2.70
(3.3) L= | |h(p)+hr"@ldy= | h(y)dy,
0 ({]
1 '.’:i
(3.4) S=+ | R Ih(y +h“@Idy,
0

since x =h (y)cosy — h'(y)siny, y=h(y)siny + h'(y) cos y, see [2], p. 65.

The equalities (3.2) - (3.4) give immediately S>> 4 omin- L. The isoperi-
metrical inequality L® ™ 4=z S, (3.2) and (3.3) give L*=L-2xp >4aS§, or
!oL S with the sign of equality in any case for a circle only.
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Streszczenie

Niech w =f (z) bedzie funkcjq holomorficzng w kole |z|<<R i niech
C, bedzie obrazem okregu |z|=r (r <R), okreslonym przez funkcje
w = f (2). Niech L(r) oznacza diugos¢ krzywej C,., zas S (r) pole obszaru
powierzchni Riemanna funkecji f(2), ograniczonego krzywa C..

Jesli f(0) # 0, wowczas C, sa krzywymi Jordana bez punktéow wielo-
krotnych dla r dostatecznie maltego. W pracy [1] pierwszy z autorow wy-
kazal, ze ,defekt izoperymetryczny 1-go rodzaju”: §&(r)=L*r)—4 = S(r)
jest badz funkcjg $cisle rosngca od r, badz tez 6 (r) = const (dla funkcji
utamkowo liniowej).
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W pracy niniejszej podajemy przyklad funkcji odwzorowujacej jed-
nolistnie kolo |z|<<1 na pewien obszar domkniety, ograniczony krzywa
o cigglej krzywiznie x przy czym ,defekt izoperymetryczny 2-go ro-
dzaju”: q(r)=L*(@r)/4x S(r) —1 nie jest funkcja monotoniczng od r. Dowadd
opiera sie na konstrukciji pewnej krzywej, dla ktérej zachodzi nier6wnosc:
2S(1)maxx/L(1)<<1.

W dalszym ciggu dowodzimy, ze nie istnieje krzywa wypukla, dla kté-
rejby taka nieréwnosé¢ miala miejsce.

Pe3wome

IIyere w = f(2) ecTb pyHKUUA roJIoMOpdHasa B Kpyre (2| << R, n nycts
C. ectb ofpa3 oOKpyxHoctM |2|=1 (r<<R), ompenenéHHblit pyHKUMEN
w==1T(2). llyctb L(r) ob6o3Hauaer anuny xpusoin C,, a S(r) — niowans
orpaHuyeHHoi Kpusow C, o6JacTu pMMaHOBOM MOBEPXHOCTH PYHKInM f(2).

Ecom f'(0) 3£ 0, To C, cyTb kpusble 2KopnaHa 6€3 MHOrOKpPaTHBIX TOYeK
AJIA NOCTAaTOYHO MaJjoro 7. B paGote [1] mepBhIii U3 aBTOPOB noka3aJ, 4YTO
,u3onepumerpudeckuit nedext 1-ro popa’: 6(r) = L*(r) — 4x S(r) ectb nam
byHKLUMA OT T cTporo Bo3pacrawomas uau xke & (r) = const. (naa apobGHo-
JuHeHo yHKUMN).

B 3T1oit pabore Mel maém mnpumep cyHKIMY, oTobpaxkalolleir OHO-
JUCTHO KpYr |2| <X 1 Ha HEKOTOPYI0 3aMKHYTyI0 06JIaCTh, OrpaHMYEHHYIO
KPHWBO} C HENPEPBLIBHOIO KPMBU3HOIO ¥, NPUYEM ,,U30MEpPUMETPUYECKNA
nedekT 2-ro poxa” q(r)=L3(r)/4nS(r)—1 He saABIAETCA MOHOTOHHOIO
dyHKumeit or r. Jloxa3aTeJbCTBO OIMPAETCA HA IOCTPOEHMM HEKOTOPOit
KPMBOj1, IJIA KOTOpOi ¥MmeeT mecTo HepasBeHcTBo 2 S (1)maxx/L(1)<<1.

Jasee MBI AOKa3bIBaeM, YTO He CYLIeCTBYeT BBIMyKJadA KpuBad, AJA
KOTOpOi TakKoe HepaBEHCTBO MMeJio Obl mMecTo.
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