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Radial and Optimal Selections of Metric Projections onto Balls

Abstract. We characterize differentiability of radial selections of metric projections onto balls, 
and derive (estimations of) their best Lipschitz constants for Banach spaces Lp (2-convex spaces, 
respectively). Moreover, the optimal selections are determined for several normed lattices, which 
enabled to prove Ky Fan’s approximation principle for order intervals in the Banach lattice L°°.

1. Introduction. Let X be a normed linear space, and let 

B = {x € X : ||x|| < 1}

be the unit ball in X. Denote by P : X —> 2s the metric projection onto B,

P(x) = {z e B : ||i - z|| = inf ||x - j/||}.

Since
||a: - x/||®|||| = ||x|| - 1 < ||x|| - Hlfll < ||x - J/||,

whenever x B and y € B, it follows that P(x) / 0 for every x € X, and that the 
mapping

(1.1) if x £ B, 
if x € B,

is a selection of the metric projection P, which is said to be a radial projection [4,16], 
Clearly, P is a multivalued mapping if and only if X is not strictly convex.

It is well-known, and elementary to prove that the radial selection R is Lipschitz 
continuous, and that the best Lipschitz constant

(1-2) W =

satisfies the inequality 1 < k(X) < 2. Moreover, de Figueiredo and Karlovitz [4] 
and Thele [16] proved that identities k(X) = 1 and k(X) = 2 hold if and only if the 
Birkhoff’s orthogonality is symmetric (this is equivalent to X being an inner-product 
space, whenever the dimension of X is greater than 2), and iff X is not uniformly 
non-square, respectively.
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If X is not strictly convex, then we define the optimal Lipschitz constant by

k„(X) = inffcP(X),

where the infimum is taken over all selections P oiV and fcp(A’) is defined as in (1.2). 
Further, a metric selection T of P is said to be optimal if k0(X) = k-r(X). Clearly, 
we have 1 < k„(X) < k(X) < 2, and ko(X) = k(X) if X is strictly convex.

In this paper, we first characterize differentiability of radial selections, and derive 
the constants k(Lp) for 1 < p < oo and estimates of k(X), whenever X is 2-convex. 
Next, we show that there exist optimal selections T R of metric projections P 
: X —> 2b in several normed linear spaces with k(X) = 2 for which kr(X) is equal to 
1. The result is applied to prove Ky Fan’s approximation principle for nonexpansive 
mappings on order intervals in the Banach lattice L°°.

2. The differentiability of radial projections. Denote by r(x, h) and R'(x)h 
directional derivatives of the norm and radial selection R which are defined by

II*+«*>11-11*11
t(2-1)

and

(2-2)

r(x,/i) = lim 
t—o+

R'(x)h = lim
o+

R(x + th) — R(x)

respectively. Clearly, if ||x|| < 1, then R'(x)h = h. In the following, we study the 
derivative R'(x)h for x € X\B, where B is the unit ball.

Lemma 2.1. Let x B be an element of a normed linear space X. 
derivative R'(x)h exists and

Then the

R'(x)h
h — r(x, h)R(x) 

IM

for all heX.

Proof. Let x £ B and h S X. Since t(x,/i) exists [12], and x + th B for 
sufficiently small t, we have

R(x + th) — R(x)
lim ------------------------
(-«0+ t

= lim 
t->o+

x + th x
11*11 /tLll* + «*>ll

<||x||/i + x(||r|| - ||x + </i||)
lim 
t-*o+

= i|3?(/» - r(x, h)R(x)),

which completes the proof. ■
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Theorem 2.1. Let X be a normed linear space. Then the radial projection R 
is Gateaux differentiable on X\B if and only if X is a smooth space.

Proof. The operator R'(x) : X —> X from Lemma 2.1 is continuous, whenever 
INI > 1. Indeed, by (2.1) we have

||Ä'(x)Zii - Ä'(ar)A2|| < jjL(||/»i “ M + ll-ZNIN*,/»i ) “ N^-Ml)

< 1 + HM
INI

l|/»,-M-

Next, the operator R'(x) is linear if and only if h —> r(x, h) is a linear functional on 
X. Since r(Ax, h) - r(x, h) for every A > 0, it follows that h -> r(x, hj is linear for

x / 0. Finally, the last statement is equivalent to smoothness of X [7]. ■
Recall that a (smooth) normed linear space X is said to have the Frechet differ

entiable norm if

»3) limh + 3"-IM-r(^)=0
||/»||

for all x / 0. For such spaces X, the above characterization can be improved as 
follows.

Theorem 2.2. Let X be a normed linear space. Then the radial projection R is 
Frechet differentiable on X\B if and only if the norm of X is Frechet differentiable.

Proof. For the proof of sufficiency, we have to show that 

(2-4) fW := R^ + h)-R^-R'^)h 0 h 0

whenever ||x|| > 1. By Lemma 2.1 and (1.1) we obtain

ll/(/»)|| = ____ LA
INI VII* + Ml 11*11/

s(Hx + ft|| - 11*11 -T(*,/t))

INl’llMI

(2.5)
*(||* + Ml - INI) ( i______LA

INIIIMI VII* + Ml 11*11/

1 1 
II* + /»II INI

+< 2
||x + Ml - INI -N*./»)

IIMI
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This in conjunction with (2.3) proves (2.4). Conversely, suppose that (2.4) holds for 
all x € X with ||x|| > 1. Then we get

(2-6) ll/WII >
||j + h|| - ||z|| - r(s, h)

11^1111*11 ll* + MI ||x||

in a similar way as (2.5). Hence we obtain (2.3) in the case when ||x|| > 1. This 
directly implies that r(Ax, h) = r(x, h) exists in the Frechet sense for all A > 0, which 
completes the proof of (2.3) for all x 0. ■

An additional property of R can be established if X is uniformly smooth, which 
is equivalent [2] to the fact that the limit

lim II*+*M|-11*11
i-o t

exists uniformly for all x and h in the unit sphere. Clearly, this is equivalent to the 
existence of this limit uniformly for all x and h in each sphere Sr = {z : ||z|| = r} of 
radius r > 0. In this case, the norm of X is said to be uniformly Frechet differentiable. 
By analogy, we say that R is uniformly Frechet differentiable if the limit

R(x + th) — Rx
lim----------------------
i—o t

exists uniformly for all x, h in each sphere Sr with r > 1.

Theorem 2.3. The radial projection R is uniformly Frechet differentiable if 
and only if X is uniformly smooth.

Proof . If ||x|| = Hi/ll = r > 1 and |/| < 1, then we have

| 1 _ J_| = 111*11 ~ II*+ *MI < |*|
l||* + *M ||x|| I ||x + </i||||x|| - (l —|t|)r’

Hence one can insert th for h in (2.5) and (2.6) to finish the proof. ■

3. Best Lipschitz constants for 2-convex spaces. A normed linear space 
X is said to be 2-convex [13] if there exists a constant c > 0 such that the inequality

(3-1) <j(ll*ll2 + M2) x-y
2

x + y 
2

c

holds for all x, y £ X. Clearly, we always have c < 1. The estimation k(X) < 2 
can be improved, whenever X is 2-convex. In order to do this, we need the following 
lemma.

Lemma 3.1. If X is 2-convex, then

(3.2) ||(1 - t)x + h/||2 < (1 - t)||x||2 + t||y||2 - ct(l - t)||x - jz||2
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for all x, y S X and, 0 < t < 1, where c is as in (3.1).

Proof. The inequality was proved in [15] for an abstract Lp-space X with 1 < 
P < 2 and c = p — 1. However, the proof applies without any change to our more 
general case. ■

Theorem 3.1. Let X be a 1-convex normed linear space. Then we have 

2
*(*)<

c+1’

where c is as in (3.1).

Proof. By the Thele formula [16], we have

k(X) = sup : x,y e X, ||x|| = IIjzII = 1, xLy, A e R
}■1^

Ai||

where xLy means that the distance dist(x,y) of x to the one-dimensional subspace 
y = span{y} spanned by y is equal to 1. Therefore, the Thele formula can be rewritten 
in the form

(3.3) k(X) = sup | : a,y € X, ||z|| = ||y|| = dist(x,y) = l|,

where x = span{x}. Now, suppose that i, y € X and ||z|| = ||t/|| = dist(x,y) = 1. 
Next, insert y — x — z into (3.2) and use ||z]| = 1 to get

t < f||x - z||2 - cf(l - f)||z||2 - (||x - tz||2 - ||x||2).

Dividing this inequality by t and letting t —♦ 0, we obtain

1 < |[z - z||2 - c||z||3 - 2r(z, —z).

Since 0 E y and ||x|| = 1, we conclude that m = 0 is a best approximation in y to x. 
Hence we get r(x, —z) > 0 and

(3.4) 1 < III - zir - cllzll

for all z G y. Now, suppose additionally that the best approximation to y in x is 
equal to /3x with /3 / 0. Then it follows from (3.4) that

rf2 = Hy -/?x||2 = |/?|2 x-y- >|/?|2|l + c 

where d = dist(y,x). On the other hand, we have

(1+chí)
= |/?|2 +c,

\ß\ = ||/M > IMI - llv - ßx\\ = 1 - d.
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Therefore, we get
d2 > (1 - d)2 + c,

which yields

( * d dist(y, x) ~ c +1

Note that this inequality is also true when /J — 0, which follows directly from the fact 
that

in this case. Hence one can take the supremum in (3.5) to finish the proof. ■
The theorem yields the following estimate for best Lipschitz constants of Banach

spaces Lp = Lp(£l, E,p), where (ii,E,p) is a positive measure space.

Corollary 3.1. The estimate

k(Lp) < - max {p — 1, 1}
P

•4

holds, whenever 1 < p < oo.

Proof. The best constant c = c(Lp) in (3.1) is equal to p— 1, whenever 1 < p < 2
[15]. Hence Theorem 3.1 gives

k(Lp)< 2/p.

If p > 2, then we can apply the Franchetti identity k(X) = k(X*) [5] and the last 
inequality to get

k(Lp) = fc(L',/(',-1)) < 2(P~ 1),
P

which completes the proof. ■
Note that the estimate of k(Lp) is exact, whenever p = 2, and that it is asymp

totically sharp as p —♦ 1 and p-» oo.

4. Best Lipschitz constants for Lp. In this section we derive k(Lp) for the 
real Banach spaces Lp = Lp(Sl, E, p), whenever 1 < p < oo and (fl, E, p) is a positive 
measure space. By usual isometric embeddings [11], it follows that the assumption - 
Lp is over the real field - does not restrict the generality. Since k(X) = 1 for each 
space X of dimension 1, it will be also assumed below that the dimension of Lp is 
greater than 1, which is equivalent to the existence of disjoint measurable sets A and 
B in ft such that A U B = ii and p(A)p(B) > 0. The main result of this section is 
included in the following theorem.

Theorem 4.1. If 1 < p < oo, then

k(Lp) = max [/”-’ -(- (1 - f)',-,],/'[tVtr-O + (1 _ t)i/(r-i)]<’,-,>/’’>
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For the proof of Theorem 4.1, we need the following results about best Lip- 
schitz constants k(lpi) of the Banach spaces which consists of all real n-tuples 
x = (xi,... , xn) equipped with the norm

11*11 =

Lemma 4.1. The inequality

k(Lp) > k(l')

holds for each space Lp — Lp(il,^, p).

Proof. Choose disjoint measurable sets A and B such that A U B = ft and 
p(A)p(B) > 0, and define the subspace

M = MM'1’ + : Q, 0 G R}

of Lp. Since we have
11*11 = (l«lP + l/*lF)1/P

for every x € M, it follows that M is isometrically isomorphic to l2. Hence Thele’s 
formula (3.3) yields

fc(Lp) > :x,y€ M, ||z|| = Hvll = dist(x,y) = 1 j =

which completes the proof. ■

Lemma 4.2. The functions

g(z) = |z - A|p + A2|z|p + A3z

and
g'(z) = p\z - A|',-2(z - A) + A2p|z|p_2z + A, 

have at most two common real zeros, whenever p > 2, A 0 and A2 < 0.

Proof. Suppose that g and g' are equal to zero at some points z\ < z2 < 23. 
Then one can apply Rolle’s theorem to conclude that the first derivative g'(z) has (at 
least) five distinct real zeros, and that the second derivative

n*)=P(P-D(i*-Ar2 + A2|2r2) 

has four distinct zeros <*. Since A 0 and A2 < 0, we have t* 0 and

= (-A,)1/'”-2’ (¿ = 1,2,3,4).
tk
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This contradicts the fact that the function t —♦ |t — A|/|t| has exactly three intervals 
of the (strict) monotonicity. ■

Lemma 4.3. The identity

holds for all n >2 and p > 2.

Proof. By Lemma 4.1 we have

w > ¿(/J).

To prove the reversed inequality, denote

3n = l/OW

and use Thele’s formula (3.3) to get

(4.1) s„ = min {distp(y, x) : x, y G lp, ||x|| = ||j/|| = dist(x, y) = 1}.

The proof will be completed if we show that sn > «2- For this purpose, suppose that 
s„-i > 52 and n > 2. Without loss of generality, we may only take the minimum in
(4.1) over all vectors x = (xj,... , r„) such that x< / 0 for i = 1,2,... , n. Indeed, if 
the minimum is attained for a vector x with a coordinate x, equal to zero, then the 
minimal value of

distp(y,x) - Ij/J’’ + inf |j/t - Ax*|i’

is attained whenever y, = 0. To verify this assertion, one can suppose that |j/J 1 
and take y = (y — j/<e^)/||j/ — j/,ej||, where e,- is the zth unit vector. Then we have 
||V|| = 1, x-Ly, xLyiei, x±.y, and dist(y, x) < disf(j/,x), which yields our assertion. 
Thus s„ = sn_i in this case, which finishes our inductive proof. Since dist(x,y) = 
||x|| = 1, it follows that 0 is the best approximation in y to x. Consequently, by the 
characterization [9] of best approximations in Z£, the condition dist(x,y) = 1 in (4.1) 
is equivalent to

(4.2) 57 lx*lP 2xkyk = 0. 
t=i

Hence (4.1) can be rewritten in the equivalent form

(4.3) s„ = mins„(A)

with

n
sn(A) = min - A|p,

i=i
(4-4)
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where the minimum is taken over all real numbers z* = yk/xk and a* = >
0(fc = l,...,n) which satisfy the following conditions:

n n n
(4.5) 5?***= i’ 57atl**ip =57akZk - °-

Jt=l t=l k=l

Now denote by A, a = (cq,... , a„), and z — (zi,... , z„) a solution of minimization 
problem (4.3)-(4.5), and consider the function

n n n n
F(A,a,z) = ^2- AIP + Ai(57a* - x) + (57atlZtlP “ !) + A3 57°i2:*-

t=l Jt=l k=l *=1

Then the Euler equations:

(4.6) ¿a*|zt-A|'-3(zfc-A) = 0,

fcssl

(4.7) |zjt — A|p + A, + A2|zt|p + A3zt=0,

(4-8) - A|p-2(z* - A) + A2pat|«k|p-2«t + A3a* = 0

hold for fc = 1,... , n, whenever (A, a, z) is the solution of (4.3)-(4.5). If we multiply 
equations (4.7) ((4.8)) by a* (zjt, resp.) and take the sum of them over k, then we 
can use (4.3)-(4.5) to get

«n + Ai + A2 = 0 

and
n

p57 «*|z* - A|p-2(zt - A)[(zt - A) + A] + A2p = ps„ + A2p = 0.
fc=l

Hence A2 = — s„ < 0 and Ai = 0. This in conjunction with (4.7)-(4.8) and the fact 
that ak > 0 yields

|*k - A|p + A2|zt|p + A3z* = 0 

and
p|zt - A|p-2(zjt — A) + A2p|zt|p~2Zfc + A3 = 0

for k = 1,... ,n. Since n > 2, it follows from Lemma 4.2 that either A = 0 or Zk = Zj 
for some k j. In the first case, we have s„ = sn(A) = 1 and k(l?) = 1, which leads 
to the contradiction with fc(/£) > 1. In the second case, identities (4.4)-(4.5) yield 
sn(A) = sn_i(A). By the induction hypothesis, it follows that s„ = sn-l > s2, which 
completes the proof. ■

Lemma 4.4. If p > 2 then

k(lr2) = max [<p-* +(1 - t)p-*]1/p [t1/(p~1) +(1 -t)1/(p-1)](p-1)/p.
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Proof. By (4.1) we have

(4-9) fc(Z') = :
dist(y,x) III/ - Az||

for some uniquely determined A, where the maxima are taken over all x = (z, s) and 
y = (u,v) in Zp with ||z|| = ||j/|| = dist(x,y) = 1 and z, s 0. It follows from (4.2) 
that the restriction dist(x,y) = 1 is equivalent to

(4-10) |p 2zu + |s|p 2sv = 0.

Additionally, by the characterization of best approximations in Zp [9], the number A 
in (4.9) is the unique solution of the equation

(4-11) z|u — Az|p 2(u — Az) + s|u — As|p 2(v — As) = 0.

Since z, s 0 and ||y|| = 1, it follows from (4.10) that u, v / 0. Further, if x, y and 
A satisfy (4.10) and (4.11), then the same is true for a = (—z, q=s), b = (—u, q=t>) and 
A. Moreover, we have dist(b, a) = ||r/ — Az||. Therefore, we can assume that z, s > 0. 
Hence (4.10) yields uv < 0. By the symmetry, we can assume that u < 0 and v > 0. 
This in conjunction with (4.10) and the identity ||y|| = 1 yields

and
z\p(p-0 -i/p

u = —

Hence one can use the identity ||x|| = 1 to obtain

zv — su

(4-12)

(z”-sï ( zr "1= U I------- r — 5 1
V u / V SP“1 /

Since ||y — Aa:|| > 0, it follows from (4.11) that

(u — Az)(v — As) < 0

and
u — Az 
As — v

= r with r -(;)s\ l/(p-l) 
z>

Hence we get
u + rv

and
z + rs

distp(y,x) = |u — Az\p + | As — v|p = (1 + rp)|As — v|p

I z^-su IP = /(p_n + _ su(r.
z + rs I ' '

= (l + r*)|

A =
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This together with (4.12) and the identity sp = I — zr := 1 — t gives 

- + (1 -1)'-1]1/’’ [*»/<*-*> + (1 - <)*/(p-D]

which completes the proof. ■

Proof of Theorem 4.1. By the Franchetti formula k(X*) = k(X) [5] and the 
fact that fc(L2) = 1 for the Hilbert space L2, we can assume that p > 2. Therefore, 
in view of Lemmas 4.1 and 4.3, we have

(4-13) k(l') = k(lp) < k(Lp)

for every integer n > 2. For the proof of reversed inequality, suppose that e > 0 and 
£, y € Lp = Lp(tl, E, fi). Since the subspace of all simple functions in Lp is dense in 
Lp, there exist simple functions xt and yt such that

(4-14) ||a: -x«||<f and ||j/- J/«|| < €.

Moreover, we can write these simple functions in the form

n n
xt=^2xkxAli and yf=^ykXAk,

*=1 *=1

for some integer n, where xk, yk G R and are characteristic functions of pairwise 
disjoint measurable subsets Ak (k = 1,... , n) of fi. Hence xe and y( can be iden
tified in the usual way with the elements (xkfi(Ak)) and (ykfj,(Ak)) of the space 
Consequently, we obtain

URr, - || < fc(^)||®< - y< ||-

This in conjunction with (4.13)-(4.14) and inequality k(X) < 2 yields 

||7Lr - 72j/|| < ||Jfcr - flxJI + fc(Z*)||are ~ !/«ll + \\Ry* ~

< 4f + fc(/£)(||x< - i|| + ||z - y|| + ||y - v«||)

<8e + fc(/;)||i-y||.

Letting e —+ 0, we get
fc(L”) < k(lp).

Hence one can apply (4.13) and Lemma 4.4 to finish the proof. ■
An exact computation of the maximal value of the function 

hp(t) = [<’’-* + (i - f)"-*]1/p[/»/(p-1) + (1 - o < t < 1,
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occurring in Theorem 4.1, seems to be a hard problem except for a few values of p. 
More precisely, it is easy to compute that fc(L2) = 1 and

fc(z,3/2) = ifc(i3) = i(7\/7 + 17)1/3.

For example, if p = 3/2 then the function

^3/2(0 = { [1 + 20(1 - t)] [1 - 2<(1 - t)] }’/3 , 0<t<l, 

attains its maximum at the point

= 3-\/l + 2v/7

Corollary 4.1. If 1 < p < 00 then

hp(tp) < k(Lp) < 2'p~2''p,

where
0.08345 [l — (2 — p)583] if 1 < P < 2 

otherwise.

Proof. Since tp G (0,1), the lower estimate is a direct consequence of Theorem 
4.1. Further, if 1 < p < 2 then maximal values of the functions

/(t) = P’-1+(l-<)'-1 and ff(t) = t1/(’,-1)+(l-f)1/(’,-1), 0<<< 1,

are attained at the points t = 1/2 and t — 0, respectively. In the case p > 2, the same 
is true for the points t = 0 and t = 1/2. Hence by Theorem 4.1 we get

k(Lp) < max{/ ’̂,(l/2)iz(’’-,)/’,(0), f1/p (0)g{p~i)/p (1/2)} = 2'p~2Vp, 

which completes the proof. ■
Note that estimates given in Corollary 4.1 are exact in the case p = 2, and that 

they are asymptotically sharp as p —» 1 and p —+ 00. Moreover, the lower estimate 
hp(tp) is much more exact than the upper estimate 2^p~2^p. In fact, the numerical 
experiments show that

(4.15) |hp(tp) - Jt(Lp)| <4*10-6.

For example, if p = 3/2 then h3/2(t3/2) = 1.0957314 • • ■ and k(L3^2) = 1.0957314 • • ■. 
Moreover, the upper estimate 2^p~2^p is better than the estimate (2/p)max {p— 1.1} 
from Corollary 3.1. In Fig.l, we present the graphs of these estimates in the case 1 < 
p < 2. By (4.15) the graphs of hp(tp) and k(Lp) can not be distinguished at the pic
ture.
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Fig. 1. Estimates hp(tp) (dotted), 2<2 p^p (solid) and 2/p (dashed) of k(Lp) .

5. Optimal selections . Let X be a normed lattice with an order < and lattice 
operatons V and A, and let |x| = (i\Z0) + (iA0) denote the absolute value in X [11]. 
Moreover, let

J = [c,d]:={x€A' : c < x < d}

be an order interval with endpoints c,d £ X such that c < d. Replacing the unit ball 
B of X by J, we define the metric projection P: X -+ , the best Lipschitz constant
kp(X) of a selection P of P, the optimal Lipschitz constant fco(X), and the optimal 
selection T of P as in Section 1.

Theorem 5.1. Let J — [c, d] be an order interval in a normed lattice X. Then 
the mapping T : X —* J defined by

Tx = c\/ (d A x), x e X,

w an optimal selection of the metric projection P : X —» 2J. Moreover, we have 
kT(Xj = Jk0(X) = 1.

Proof. In a Banach lattice X, v/e have ||x|| < ||j/|| whenever |x| < |y|. Hence we 
have to show that

|x — c V (d A x)| < |z-z|

and
|c V (d A x) — c V (d A j/)| < |z - y |



58 H. K. Hsiao and R. Smarzewski

for all x,y € X and z € J. By Yudin’s principle of invariance of relations [8, p.279], 
it is sufficient to prove these inequalities for real numbers c,d,x,y,z with c < z < d, 
which is a consequence of the fact that c V (d A z) is equal to c, x, and d, whenever 
x < c, c < x < d, and d < x, respectively. ■

If X = C(S) is the normed lattice of all bounded continuous real valued func
tions on a topological Hausdorff space S, equipped with the sup-norm and the usual 
pointwise order, then B = [—e, e], where e(.s.) = 1 for all s 6 S. Hence Theorem 5.1 
yields the following result which is due to Goebel and Komorowski [6].

Corollary 5.1. The mapping T : C(S) —> B defined by

(Tx)(s) = max { — 1, min {1, z(s)}} ; x 6 C(S), s 6 S,

u an optimal selection of the metric projection P : C(S) —» 2s, and Ict(C(S)) = 1.

Clearly, the same results are also true in the classical normed lattices B(S) and 
L°°(S, S,p) of all real valued bounded functions on a set S and all real valued p- 
essentially bounded measurable functions on a set S with a positive measure p, re
spectively. It should be also noticed that Theorem 5.1 remains true for each sublattice 
Y of the lattice X, whenever c,d G X and c V (d A x) € Y for every x € Y. For ex
ample, let CO(S) be the sublattice of C(S), which consists of all x € C(S) such that 
the inequality |z(s)| < £ holds for each £ > 0 and for all s outside a-compact subset 
Q C S dependent on x and e. Then we get

Corollary 5.2. The mapping T : C0(S) —» B defined by

(Tx)(s) = max { — 1, min {1, z(s)}}; x € C0(S), s € S,

is an optimal selection of the metric projection P from CO(S) into its unit ball B, and 
kT(Co(S)) = l.

As a final application of Theorem 5.1, we prove Ky Fan’s approximation principle 
[3] for nonexpansive mappings F defined on an order interval J in L°°(S, E,p) (see 
[10] for related results and related references). For this purpose, recall that a mapping 
F : J —» X is said to be nonexpansive if ||Fz — Fy|| < ||z — j/|| for all x, y € J.

Theorem 5.2. Let J be an order complete order interval in an abstract M- 
space X with a unit e, and let F : J —> X be a nonexpansive mapping. Then there 
exists an element x € J such that

||Fz - z|| = inf ||Fz - y||.

Proof. Since X is order isometric to C(Q) for some compact Hausdorff space 
Q [11, p. 16], it follows from Theorem 5.1 that there exists an optimal selection T of 
the metric projection P : X —♦ 2J with kr(X) = 1. Hence the mapping TF : J —* J 
is nonexpansive. Therefore, one can apply Borwein-Sims’s fixed point theorem [1,
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Theorem 7.1] to get a point x £ J such that TFx = x. Since T is a selection of the 
metric projection V onto J, it follows that

||Fx — x|| = ||Fx — T(Fx)|| < ||Fx — j/||

for all y E J. Take infimum over y to complete the proof. ■
In the particular case when X = L°°(S, E,/x), the assumptions that J is order

complete and that X has a unit e are superfluous and Sine’s fixed point theorem [14] 
can be applied in the proof. Further, if J — B then the distance

d(Fx,B) = inf ||Fx - t/||,

occurring in Theorem 5.2, can be easily computed. Indeed, we have d(Fx,B) = 0, if 
Fx € B, and d(Fx,B) = ||Fx — 7ZFx|| = |]Fx|| — 1, otherwise. Finally, note that the 
results presented above remain true in a slightly more general case, when B = B(z,r) 
is a ball with a center z € X and a radius r > 0. For example, the formulae for the 
radial selection and its directional derivative should be translated to

Rx = z + r
X — z 

X - ¿11

R'(x)h =
and

rh — t(x — z, h)(Rx — z)
II®-¿II

whenever x £ B and h g X.
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