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of Small Degree

Abstract. Optimal inequalities of the form n ifik l^it | < 1 are obtained, where p(z) = 
flfcZ is an algebraic polynomial of degree n < 4 , such that |p(z)| < 1 for |z| < 1 .

As an application, we give a refinement of the classical inequality of S.Bernstein : |p((z)| < n for
N < i •

1. Introduction. We denote by p„ the class of algebraic polynomials of degree 
< n . Given p € pn , with p(z) = ajtz* , let ||p|| = max|z|=1 |p(z)| . Several results
relating the coefficients <io , ai , to ||p|| , are known. A classical inequality of
van der Corput and Visser [1] states that

n
(1) 2|<x0||a„| + ^2 |afc|2 < ||p||2 , p € p„ ,

Jk=O

which implies [8]

(2) l«o| + |a„| < ||p|| •

The inequality

(3) |a0|+||at|<||p||, k>l,

follows from a more general inequality [7, Exercise 9, p.172]

(4) |«o|2 + |a*|<l, k>l,

where /(z) := *s analytic *n l2l — 1 and |/(z)| < 1 in that disk. It is
known that the coefficient of |a*| in (3) cannot, in general, be replaced by a smaller 
number. The coefficient 1/2 in the inequality [3, p.94]

(5) |ao| + ^(|a*l + l«/l)l < IIpII -

where l<fc</,/>n + l — fc,isa fortiori best possible. However, this coefficient 
may be improved if we take into account the degree of p. In this direction we mention
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a striking result of Holland [6]: if P(z) = 1 + bj z + • • • + bn zn is a polynomial of degree 
< n for which ReP(z) > 0 when |z| < 1 then

(6) |6*| < 2cos(7r/(v+2)) ,

where v is the largest integer < (n/fc). Applying (6) to the polynomial P(z) = 
{IIPl|-P(*)}{||p|| — do} 1 > where ao may be supposed to be positive, we readily 
obtain

(7) |a0| + [2cosir/(v + 2)]-1|at| < ||p|| , fc > 1 ,

which is of course an improvement of (2) and (3). The equality in (6) is possible. See 
also [2].

The preceding inequalities lead us naturally to consider the general problem of 
finding an inequality of the form

n

< IIpII , pe p„.
k=0

In this paper we solve completely this problem for polynomials of degree < 4. 
Note that (8) may be applied to the polynomial znp(l/z) € p„ , whereby results the 
inequality

n
< ||p||, p e pn •

Jfc=0

2. Statement of results. The problem is trivial for n = 1 since, in that 
case, |a0| + |ai| = ||p||. For polynomials of degree 2, 3 and 4 we shall prove the 
following results, which all contain as particular cases (for the considered values of n) 
the inequalities (5) and (7).

Theorem 1. If p(z) = ao + a\z + a2Z2 then 

W lao| + £i|ai| + x2|a2| < ||p|| ,

where 0 < a;1 < l/v^2 , and 0 < x2 < 1 —2xJ . For any fixed x\ the value X2 = 1 — 2x2 
is best possible.

Remark. The attribute ’’best possible” is to be understood in the following 
sense: given any « > 0, we can find a polynomial pt(z) = ao(e) + ai(«)z + a2(e)z2 
such that

l«o(i)| + zi|ai(i)| + (1 -2r? + e)|a2(«)| > ||p«||.

A similar observation holds for Theorems 2 and 3.

Theorem 2. If p(z) — ao + a^z + a2Z2 + a3Z3 then

(10) |ao| + a:i|ai| + z2|a2| +®3|a3| < ||p|| ,
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where 0 < xi < (\/5 — l)/2 , 0 < £2 < VI ~ *1 ~ xi an^ 0<X3<(l — xi—Xi — 
2xxX2~ x2)(l.—X\)~l . For any fixed Xx and X2 the value X3 = (1 — xx — x2—2xxi2— 
arlXl — Xi)-1 »3 best possible.

Theorem 3. If p(z) = ao + a\z + a2Z2 + (¡3Z3 + CI4Z4 then

(11) |ao| + *1|ai| + i2|a2| + ar3|a3| + x4|a-t| < ||p|| ,

where 0 < xi < 11 >/3 , 0 < x2 < £ , 0 < £3 < \/l — 2x2 — £2 — 2x2 + 2x| + 4xjx| — 
xi — 2x\X2 and 0 < £4 < (2x| — 2x$ — X2 — 4x2£2 — 4xiX2£3 — 3*1 — 2x1X3 — xj + 
1)(1 — 2xj — X2)-1 . Here £ ¿3 the smallest positive root of the equation 2x3 — 2x2 — 
(1 + 4xj)x + (1 — 3xj) = 0 . For any fixed Xi ,£2 and x3 the value

£4 = (2xj ~ 2^2 ~ x2 ~ 4xj£2 — 4X1X2X3 — 3xj — 2x1X3 — xj + 1)(1 — 2xj — X2)-1

is best possible.

3. The method of proof. Given two analytic functions,

/(«) = 52“*** ’ = 1(2 b*** > W < 1 ’

k=0 fc=0

the function

(/ * &)(*) = 52 “*b*** ’ 1*1 < 1 ’
*=o

is said to be their Hadamard product. We denote by B„ the subclass of polynomials 
Q £ pn such that

to B„ if and only if the matrix

(12) ||p * Q|| < ||p||, for all p e p„ ,

and by the subclass of p„ consisting of polynomials Q with Q(0) = 1. We have 
the following characterization of polynomials in B° .

Lemma 1 [3, p.70]. The polynomial Q(z) = Za=o 6*2* , where b0 = 1, belongs

bi b2 ... bn \
1 bi ... b„~i

bn-i b„-2 • •• 1 /

Zj
bx

<bn

M(b0, bx,... , bn) :=

is positive semidefinite.

The following result from linear algebra is well known.
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Lemma 2 [5, Vol.l; p.337]. The hermitian matrix

/ ail ai2 • • • aim
I a2i a22 • • • 02m

: I : , atJ — aji ,

Qm2 • • • amm
)

and only if all the leading principal minors

an ai2 .. air
a2i a22 .. a2r

I 1 < r < m ,

arl ar2 .. ûrr

are positive.

We shall now illustrate, how Lemma 1 may be used to obtain optimal inequalities 
of the form (8), by giving an independant proof of (7). We may suppose k = 1 since 
the general case is obtained by considering the polynomial

I *
I ) = a0 + akzk + --- + akvzkv , u = exp(2ni/k) .

}=i

Hence we must show that

llao + Mi«11 = ||p(«) * (1 + 61z)|| < IIpII , P € P„ ,

for Ifejl < [2cos7r/(n + 2)]-1 , and that 1 + b*z £ for some 6* with |6J| >
[2cos7r/(n + 2)]“1 . So, we study the definiteness of the matrix Af(l,6i,0,... ,0). 
The leading principal minor of order r ,

1 6i 0 ... 0 0
6i 1 6i ... 0 0

0 0 0 ... 1 6i
0 0 0 ... frl 1

satisfies the recurrence relation D\ = 1 , Z)2 = 1 — |&i |2, and Dr = Dr-i — |6j |2Br-2 , 
+ l .It follows that

Dr =
(n-vi-4i6!i2y+> ^i-0-4i61py+1l,

1< r <n + 1.
0-4^ I2

Let Dr := 6(|6i |). The roots of 6(u) satisfy \Zl — 4u2 = i tan jir/(r 4-1) , 1 < J < r , 
i.e. u2 = [4cos2 jnl(r + l)]-1 . Thus the leading principal minors Br,l<r<n + 1, 
are positive if |6i| < [2cos7r/(r + I)]-1 • Since cos7r/(r + 1) < cosir/(n + 2) ,
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l<r<n + l,we obtain that 1 + b3z € B° if |bi | < [2cos7r/(n + 2)]-1 . Also, it is 
clear that Z?„+i < 0 for some b* with |6J| > [2cos7r/(n + 2)]_1 , which shows that 
1 + b*z £ B° . The value |Z>r | = [2cos7r/(n + 2)]-1 is, of course, a limiting case.

4. Proofs of the Theorems. An interesting point to note in the following 
proofs is that the largest values of xi ,X2,x3,%4 are attained (for n = 2,3,4) by 
evaluating the last principal minor, i.e. det(Af(l, 61,..., bn)). This is not necessarily 
the case for each x^ ,X2,x3, X4 inside the specified intervals. For example, let us 
find the best possible constant X2 such that |ao | + Xi|a2| < ||p||, for all P € £>3 • The 
leading principal minors of Af(l,0, 62,0) are 1,1,1 — |6i|2 and det(Al(l, 0,62,0)) = 
(1 — I&2I2)2 > 0. We see that the restriction on 62,162I < 1 i-e- 0 < x2 < 1, comes 
from the evaluation of the third leading principal minor.

Proof of Theorem 1. In view of Lemmas 1 and 2 , we study the definiteness 
of the matrix Af(l, ¿1, 62). The three leading principal minors are

1, 1 —|6,|2 and 1 - 2|6!|2 - I62I2 4-2Re(feiB2) .

The first minor is positive, the second is positive if |6i | < 1 and the third is certainly 
positive if

1 - 2|fc! I2 - |&2 I2 - 2|&! |2|&2 I = (1 + I62IXI - I62 I - 2|&! I2) > 0,

i.e. if I&2I < 1 — 2|6i |2 , with 1 — 2|i>i |2 > 0 . Also, given b* with |6*| < l/\/2 , we can 
find a % with |65| > 1 — 2|6J|2 such that 1 - 2|&T|2 - |6J|2 + 2 Re ((6J)2^) < 0 and 
so 1 + 6J 2 + 6J 22 B° . Thus we conclude that

||p(z) * (1 + 612 + &222|| = ||ao + aibiz + <1262 z2|| < ||p||

if |&21 < 1 — 2|6i |2 , with |6i | < l/\/2 , and that the value 1 — 2|&i|2 is optimal for any 
given 61 with |6i| < l/\/2 . This completes the proof of Theorem 1.

Proof of Theorem 2. We study the definiteness of the matrix M(l, by, 62,63). 
The leading principal minors of order 1, 2 and 3 have been considered in the proof of 
Theorem 1. The principal minor of order 4 is

det(M(l,6, ,62,63)) = 1 - 3|6i|2 + |6iJ4 - 2 Re (6? 63)
- 216212 + 4 Re (fe2&2) + 4 Re (b3 b2b3) + |6j1“

-2|>i|2|6a|2 — 2Re(616j63) — + |6j|2|6»|2.

As a function of arg 61 , arg 62 , arg 63 , this determinant is minimal for argfci = 
0 , arg 62 = rr , arg b3 = 0 . Thus, it is certainly positive if

1 - 3|6,|2 + |&!|4 - 2|6,|3|&31 - 2|&2|2 - 4|6,|2162I - 4|6i||62||63| + I6214 
- 2|&!|2|&212 - 2|6,H6212|63| - |6312 + |ti|2|&312 >0.

The left-hand member is a quadratic function of |i>31 whose discriminant is
4(1 — 2|£>i |2 — |1>2|2 — 2|£»i |21&21)2 • Taking this observation into account, we readily find
that det(Af(l, , 61 , 62 ,63)) > 0 if

1631 < (1 - |6i |2 - |6212 - |6.| - 216,11621X1 - |6,|)-’ ,



Optimal Inequalities for the Coefficients of Polynomials... 23

with 1 - |&i |2 - |&2|2 _ |ij | _ 2|fej 11£>21 > 0, i.e. |62| < \/l - |6i | - |&i |, with \/l — |6i | — 
|6i| > 0, i.e. |fr,| < (x/5- l)/2 .

We observe now that (v?5 - l)/2 < 1/^2 , and 0 - |6j| - |6J < 1 - 2|6j|2 for 
|&i| < \/3/2 . Referring to the proof of Theorem 1, this means that the conditions on 
|6i|,|62| are less rectrictive if we examine the sign of the principal minors of order 2 
and 3. This completes the proof of the first part of Theorem 2. It remains to prove that 
the value (1 —16, |2 — ¡¿>212 — |6j | — 2|6i 11621)(1 — |6i |)—1 , is best possible for any |6j |, l^l 
in the specified interval. But our reasoning shows clearly that det(A/(l, 6J, 62 , 6J)) 
is negative for some

|63*l > (1 - Ml2 - |6;r - I&TI — 2|6i||6J|)(l - |^|)-> , 

i.e. 1 + 6fz + b*z2 + b*3z3 # B° .

Proof of Theorem 3. We study the definiteness of the matrix 21/(1,61,63,63,64 ). 
The leading principal minor of order 5 is equal to
(13)

det(Af(l, &! , 62,63 , &4 )) = 1 - 4a2 + 3a4 - 362 - 2a262 
+ 264 - 2c2 + 262c2 + c4 - d2 + 2a2 d2 + b2d2 
+ 2a4d cos(w - 4x) + (2b2 d + 4a2b2d - 2b*d)cos(w - 2y)
— 6a2bd cos(w - 2x - y) + (6a26 - 4a46 + 2a263 + 4a2bc2
— 2a2bd2) cos(2i — y) + 2a2c2d cos(w + 2x — 2z)
— 2bc2d cos(w + y -2z) + 2b3c2 cos(3j/ — 2z) + (4acd
— 4a3cd + 4ab2 cd) cos(w — x — z) — 4a3c cos(3x — z)

— 4abcd cos(w + x — y — z) + (8a6c + 4a3 6c — 4ab3c — 4a6c3) cos(i + y — z)
— 8a62c cos(x — 2y + z) ,

where b\ = a exp ix , 62 = 6 exp iy , 63 = c exp tz , 64 = d exp iw , 0 < a,b,c,d <1. 
The minimal value of (13) is clearly attained for x = arg 61 = 0 ,«/ = arg 62 = 7T, z = 
®rg63 = 0 , and w = arg 64 = rr . Substituting these values in (13) we obtain a 
quadratic expression in d = |&41 whose relevant root is

r := (1 — 3a2 — 6 — 4a26 - 262 + 263 - 2ac - 4abc - c2)(l - 2a2 - 6)_1 .

Referring to the proof of Theorem 2, where it is proved that 6 < \Z~i — a—a for 0 < a < 
(\/5—1)/2 , we see that 1 - 2a2 - 6 > 0 for 0 < a < a/3/2 , with (y/5-1)/2 < ^3/2 . 
Thus, the root r is positive if its numerator is positive. This numerator is a polynomial 
in c of degree 2 whose positive root is s \/(l — 2a2 — 6)(1 — 262) —a —2a& if F(b) := 
263 - 262 -(l + 4a2)6 + (l-3a2) >0. Since F(0) = 1 - 3a2 >0 for 0 < a < 1/^3 , 
and F(l) = —7a2 < 0, we see that F(b) has a root lying in (0,1) if 0 < a < l/y/3 . 
Moreover, we observe that (13) is negative for some d > r if <2,6,c satisfy the 
conditions 0 < a < l/v/5 , F(b) >0 and 0 < c < ^(1 -2a26)(l -262) - a - 2ab. 
Finally, we prove that these conditions are more restrictive than the corresponding 
restrictions obtained by considering the sign of the leading principal minors of order 
— 4. Referring again to the proof of Theorem 2, it is sufficient to show that

(14) F(y/T--"a — a) < 0
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and

(15) 3 < (1 — a2 — b2 — a — 2ab)(l — a)-1 ,

for 0 < a < 1/a/3 < (\/5 —1)/2 . The inequality (14) holds since the smallest positive 
root of the equation — x — x) = 0 is x = 0,8019.... > l/\/3 . The inequality 
(15) is readily seen to be equivalent to

G(a, 6) := — 2a + 3a2 + 4a3 — 6a4 — b + 2ab + 3a2 b — 8a4b + 4ab2 
- 2a2b2 - 8a3b2 + 263 - 4ab3 - 2a2b3 - b4 < 0.

But
G(a, b) = (-1 + 2a2 + b)(2a - 3a2 + b - 4a2 b + b2 - 4ab2 -b3) ,

where it has been observed before that (the denominator of r) i.e. —1 + 2a2 + b < 0. 
Let g(b) := 2a — 3a2 + b — 4a2b + b2 — 4ab2 — b3 . We have g'(b) = 0 if only and only 
if b = 1 — 2a > 0 (or b = —(1 — 2a)/3 < 0) with 1 — 2a > \/l — a — a. Thus, g(b) is 
increasing in 0 < b < \/l — a—a. Since \/l — a—a is greater than the smallest positive 
root of F(b) by (14), we conclude that g(b) > </(0) = 2a — 3a2 >0,0<a<2/3. This 
completes the proof of Theorem 3.

Remark. In the limiting case a = 0, b = 1, both the numerator and denominator 
of the root r are zero. In that case our reasoning fails to give the corresponding 
inequality, namely |a0| + |a2| + |a4| < ||p|| , p 6 p4 .

5. An application to p„ . Despite the lack of generality of our results , we 
wish to point out that they can be used to obtain other inequalities valid over all 
the class p„ . In order to illustrate that, we need the following interpolation formula, 
which follows from the residue theorem applied to the integral

1 [ piw)dw .
----  <t> --------------—— -----------—r— , where p —> oo .2tti 7|w|=p (w - z)2 w(wn_1 - zn-1e''’')

Lemma 3. For all p £ , n >2, and 7 € R we have

a0 + (np(z) - zp'(z) - 2a0)expi7 + (zp'(z) - p(z) + a0)exp 2iy 
n — 1

= exp ¿7/(0 — 1) 52 {exP[—(2^tt + 7)»/(n - 1)] {sin2(2I-7r + 7)/2)} 

k=l

(16) x {sin2(2ix + 7)/2(n - 1)} ’p(z exp[(2fc7r + 7)»'/(n - 1)])J .

It follows from (16) that the polynomial

Q(w) = a0 + (np(z) - zp'(z) ~ 2a0)w + (zp'(z) - p(z) + a0)w2

is bounded by (n — 1 )||p|| for |w| < 1, |z| < 1. Applying Theorem 1 to Q(w), with 
an obvious change of notation, we obtain the following result.
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Theorem 1'. Let p € p„ ,n > 2, and 0 < x < l/\/2. We have, for |z| < 1 ,

(17) |a01 + æ|np(2) - zp'(z) - 2a0| + (1 - 2x2)\zp'(z) - p(z) + a0| < (n - l)||p||.

It is interesting to observe that (17), when applied top(z) = ao +aiz+a2z2 € p2, 
gives (9).For x = 0, (17) gives the known inequality [3; p.93]

(1§) |a0| + |zp'(z) -p(z) + a0| < (n - l)||p||, n > 2,

which is a refinement of the classical inequality |pz(.z)| < n||p|| , p G p„ , |z| < 1.
A great number of inequalities of type (17) may be obtained from Theorems 1,2 

and 3. Another example is deduced from Theorem 2 and the interpolation formula 
[4; Lemma 1]

ao + ((n - l)p(z) - zp'(z) + a„zn - 2a0) exp ¿7
+ (zp'(z) - p(z) - 2a„zn + a0) exp 2»7 + a„zn exp3t7 

n-2
= expt'7/(n - 2) ^2{exp[-(2fr7r + 7)t'/(n - 2)] {sin2(2fc7r + 7)/2)}

*=i
(19) x {sin2(2A:7r + 7)/2(n — 2)} *p(2exp[(2A:7r + y)i/(n — 2)])| .

where p € pn, n > 3.

Theorem 2'. Let p € p„ , n > 3, and xi,x2, X3 as in Theorem 2. We have , 
for |2| < 1,

!ao| + æi|(n - l)p(z) - zp'(z) + a„zn - 2a0|
(2°) + x2\zp’(z) - p(z) - 2anzn + a0| + X3|a„zn| < (n - 2)||p||.

The inequality (20), when applied to p(z) = ao + ajz + a2z2 + 03 z3 € £>3 , gives
(10).
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