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Computing the Distribution of the Poisson - Kac Process

Abstract. The paper presents a new method of computing the distribution of the Poisson - 
Kac process, based on comparing analytic and probabilistic formulas for the solutions of the two- 
dimensional Dirac equation. Both density (obtained previously by A. Janssen and E. Siebert [22]) 
and characteristic function are computed, which in turn leads to a new probabilistic formula for the 
solutions to the telegraph equation, and gives some information concerning asymptotic behaviour of 
the Poisson - Kac process.

Introduction. Let JVa(i), f > 0 be the Poisson process with the mean value 
ENa(t) = at , where a > 0 is a given positive number. The Poisson - Kac process is 
defined as

0.(0 = ’ (_1)N*(‘)) •

This process is a homogeneous Markov process when considered as a process 
with values in the group Q = R x {—1,1} with the multiplication rule (£, k) ■ (tj, I) = 
((I + r), kl) . The former means that (see [26]), for every non-negative t and h,
(*) the random variable 0„(t + h) >8 independent of the <7-field <x{0o(s) ,

0 < s < t} and
(**) the random variables 0a(< + /t) 07J(t) and 0a(/i) have the same distribution.

The system of equations:

(0.1)

dù(t,x) dù(t,x) .
= v——- + av(t, x) — au(t, r) ,

dt 
di{t,x) 

dt

dx 
dv(t,x) 

dx
-)- aü(t, x) — av(t, x) ,

was used by M. Kac [23-24] to prove the connection of the Poisson - Kac process with 
the equation:

(0.2)
d2u(t,x) t o du(t,x) 2d2u(t,x) 

dt2 + a dt = v dx2

Note that, for i/ = 1, the system constitutes the Kolmogorov backward equation 
of the considered process ([16], [22], [26]).
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Recall the association of the equation (0.2) with the system of differential equa­
tions

(0-2')

dx dt
where L, R, C, G are non-negative constants, LC 0; if the functions tZ, J satisfy 
(0.2') then

w(t, x) = exp U(t, x) (and u(t,x) = exp 2-
J(t,x))

satisfies (0.2) with v = {LC)~X^ and a = l/2[(R/£) — (G/C)]. Both (0.2) and (0.2') 
are often called telegraph equation or equation of transmission line. The solution to 
(0.2) with the initial conditions:

(0.2") = uj(i) , u(0,x) = u0(x) ,

is

111 
(0.3) w(t,x) = - £u0[z + i/<a(f)] + « £u0[a: - p£a(t)] + - E «i(x + vs) ds ,

J J J J-tM

where
£«(*) = f\-l)N^ ds .

Jo
Note that the above formula was proved by M. Kac [23-24] in the case when 

«1=0, the grup Q and the term depending on «i were introduced by J. Kisynski 
[26]. See also S.M. Ermakov et al. [6], p.171, H. Heyer [16], p.13, S. N. Ethier and 
T. G. Kurtz [5] pp.468-471, where references are given to R. J. Griego and R. Hersh 
[13-15], and M. A. Pinsky [31]. Compare S. Goldstein [12], M. Pinsky [30] and S. 
Kaplan [25].

Some generalizations of this result were given by A. Janssen and E. Siebert in 
[22], where furthermore the distributions of the variables £„(t), < > 0 are computed 
via the use of the convolution semigroup of measures on related to (0.1). The 
construction of the measures is based on the Phillips perturbation theorem [29]. It is 
shown there that the probability that £a(t) — < equals e~at and that apart from 
this point the random variable £o(f) has the density

(0.4) e-at | i0 + e-“‘ | I, («7?^) •

On the other hand, R. Gaveau et al. [11] suggested that the probabilistic 
approach involving the Poisson - Kac process should also work for so-called two- 
dimensional Dirac equation

du(t,x) du(t,x)

(0-5)
dt

dv(t,x)
dx 

dv(t,x)

+ 2 v(t,x) , 

+ 2 u(t,x) ,
dt dx

«(0,x) = «o(x) , v(0,x) = vo(x) ,
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(where z is a complex number). The problem was solved by Ph. Blanchard, Ph. 
Combe, M. Sirugue, M. Sirugue - Colin (see [1], where an abundant bibliography is 
given). Compare also T. Ichinose [18-20] and A. Bobrowski [2]. The paper [35], by 
T. Zastawniak is devoted to the same problem. Additionally, the autor presents a 
rigorous mathematical sense to the idea of analytic continuation between the solution 
of the telegraph and the two-dimensional Dirac equation, suggested in [11].

In this paper we compute the density (0.4) directly, solving the equation (0.5) 
(compare note on the page 523 in [22]). Observe that the equation (0.1), with v = 1 
and a replaced by a complex number z, is equivalent to (0.5) in the sense that 

(0.6) u(f,x) = e-Hu(t,x) , v(t, x) = e-I‘v(f,x) ,

where u,v and u,v are the solutions of (0.5) and (0.1), respectively. As a corollary 
we prove a probabilistic formula (new but similar to (0.3)) for the solutions of the 
telegraph equation.

In a variety of context and assumptions the authors of [7], [27-28], [32-33], [36-38] 
have been involved in the question of convergence, when a = v2 tends to infinity, of the 
solutions of the equations of the type (0.2). Equations in Hilbert and Banach spaces, 
the convergence of solutions and of their derivatives, the rate of the convergence, the 
boundary layer, several kinds of initial and boundary conditions were considered. The 
main result however, in our particular case, is that the solution of the problem (0.2), 
(0.2") tends to the solution of

9u(f,x) 1 d2u(t, x)
dt = 2 dx2 ’

In view of the formula (0.3) (with Mi = 0)

tz(0,x) = u0(x) .

we have then

lim
a—*oo

(0-7)

| £u0[* - \/ai«(*)] J 

u0(x + y) dy = E u0[x + w(<)]

where w(t), t > 0 is the standard Brownian motion. The above result is equivalent 
to the fact that the symmetrized random variable fa(t), t > 0

P(G(i) € B) = ¡P«.(t) € B) + jp«.(t) € -B)

multiplied by the term y/a converges in distribution to w(t), t > 0 .
Hence, the theorem that was expressed and proved in the language of functional

analysis or partial differential equations can also be considered as a theorem on con­
vergence of stochastic processes. Therefore the problem arises of whether it is possible 
to prove it by using standard probability methods. In order to solve the problem we 
find the characteristic function of the variable y/a^a(t) and then prove easily that it 
is pointwise convergent to the characteristicc function of the Gaussian distribution. 
Our proof states that \Za£a(t), t > 0 (without symmetrization) converges in dis­
tribution to the Brownian motion, too. Our result, thus, is somewhat stronger than 
(0-7).
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Note that M. Zlamal in his early works [36-38] used the Fourier analysis to esti­
mate the difference between solutions of heat and telegraph equations. His results are, 
on one hand, more general than ours is: for example instead of fixed coefficients he 
considered time and x dependent ones. On the other hand however, he was seemingly 
unaware of S. Goldstein’s and M. Kac’s works and accordingly of issuing probabilistic 
implications. Thus, whereas the method remains the same, the points of view, ap­
proaches to the problem and goals to reach are different. Different are also details of 
calculations.

1. Computing the distribution of the Poisson - Kac process . Let z 0
be a complex number. Let us recall that the Bessel functions Io,Ii are defined as 
follows

oo i 2 k
'•w - -Ei® I ,

*=0
1 /z\2*+l'■W = “EiKiTiJiG) .

Proposition 1. Let uo(æ)» vo(x) be functions of the class C1(R). The unique, 
vector valued, class C1(R+ x R) solution to the Cauchy's problem (0.5) is:

u(t,x) = uo(x ■*"*)■*■ y ! io (z\/t2 — s2) v0(a: — s) ds

+ / Jc-s2 _ s2) U°^ + ds ’

v(t,x) = v0(x — t) + f | io - •s2) uo(x + 5) ds

+L i 11 (2x/<2 "s2) v°(* ~a}ds-

Proof. We are going to prove that there exist functions f,g of class C1(D), 
where D =f {(s,t) e R2 : |s| < t} , such that for every uq(x), vq(x) of the class 
C2(R) the formula

(1-1)

u(t, 1) = u0(i +1) + J f(t,s)v0(x - s) ds + y p(t,s)u0( 

v(t,x) = v0(x-t) + y f(t,s)u0(x + s) ds +J ÿ(t,s)v0(

x + s) ds ,

x — s) ds ,

defines the class C1 solution to the problem (0.5).
Let us find the conditions for f,g. Setting «o 0, (1.1) gives

(*)

u(t,x) = y f(t,s)v0(x - s) ds ,

v(f,x) = v0(x - f) + y g(t,s)v0(x - s) ds .
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If this is to be the solution of (0.5), by the first equation of it, we need 

/•* d
f(t,t)v0(x-t) +f(t,-t)v0(x+t) + J — f(t,s)v0(x - s) ds

= j f(t,s)v'0(x — s) ds + ZVq(x -t)+ 2 y ¡,(t,s)v0(x-s)ds.

Integration by parts in the first term of the right-hand side of the above equality 
yields

[2/(f,i) - z]v0(x-o+y ra/u,s) df(t,s)
dt ds - v0(x — s) ds = 0

The function t>o being arbitrary, we need

(1-2)
rz, n z _ df(t,s) ,

= _9r_ = _âr_ + Zÿ(i’s)-

Analogously, by the second equation of (0.5), we need

g(*>
ds

us) 9«,-«) = o. =
dt

Furthermore, it is evident that (1.2) - (1.3) constitute not only necessary but also 
sufficient conditions for the formula (*) to define the solution of (0.5), provided vo(x) 
is of class CX(R).

On the other hand, observe that setting Do = 0 we obtain (1.2) and (1.3) once 
again. Thus, an simple argument based on linearity of (0.5) shows that if the functions 
f, g of class C\D) enjoy (1.2) - (1.3) then the formula (1.1) defines the solution of 
the Dirac equation, provided uo(x), v^x} are of class CX(R).

Now, the boundary conditions f(t,t) = z/2 , g(t,—t) = 0 , and the (common) 
domain D of /, g suggest the change of variables; p = t + s , q = t—s . The functions 
f,g are the solutions of (1.2) - (1.3) iff the functions F,G : R+ x R+ i—> C ,

are the solutions of

F(P,0) = - ,

G(0,9)=0,

dF(p,q) z , 
—dT~ - 2 ’

dG(p,q) z
’ 2 F(P’?) •

It is easy to solve the above equation. For

^(0,g) = 0, F(p,0) = ^
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&F(p,q)
dpdq

and

= jF(p,9)

so that,
z1 [v f z

F(p,q} = — Jq F(r,,r2) dridr2 + - ,

and succesive approximation (with Fo(p,q) — z/2) gives

Thus, remembering the definition of the Bessel functions Io,Ii we conclude that the 
functions

with the convention g(t, — t) = 0, g(t,t) = z2t/2 , are a solution to (1.2) - (1.3). 
Thus, by above remarks, (1.1) defines a solution to the Dirac equation.

The uniqueness of the solution is proved by the general theory of the hyperbolic 
systems; for the simple proof one can consult [35].

The role played by the functions f, g defined by (1.4) is explained in the suc­
ceeding two corollaries, which are expressed in the language of probability theory and 
generalized functions, respectively.

Corollary 1. Let a > 0 be a real number and N0(t), t > 0 be the Poisson 
process with the mean value ENa(t) = at . Set

(1-5)

A(*) = {w:JV.(w) = 1,3,5,...} , B(t) = {u, : Na(u,) = 2,4,6,... } .

Then for any continuous function w : R —> R we have

£{lx(()w[i + <„(<)]} = e_<“ / 7° (aV/<2 -a2) w(x + a) ds ,

£{1b(()w[x + ¿a(i)]} = I < e~at 11 (a\A2 ~s2) w(x + s) ds .
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and, consequently, for any Borel set S,

Prob(ut) &S]= e~atls(t) + [ e~at £ I0(ay/t2 - s2) ds 

+/
(1-6)

e-a< « * + a 
;,«]ns 2 \/t2 - s2

12 — s2) ds

Proof. By the Lemma 1 of [26] the solution of (0.1) (with v = 1) is

u(t,as) = e~a,u0(x + t) + £{lA(t)v0[x - ¿«(<)]} + E{lB(t)u0[x + <«(*)]} , 

v(t,x) = e~atv0(x -1) + E{l4(t)u0[z - £„(<)]} + £{1 B(Ovo[* - €«(<)]} •

On the other hand, by (0.6) and Proposition 1, the unique solution to this equation 
is

u(t, x) = e~atu0(x + t) + y e~at - I0(ay/t2 - s2)vq(x - s) ds 

+ <e“°‘^-^==== ^(ax/t2 -32)u0(x + s) ds ,

w(t,z) = e~atvo(x — t) + j e~at^ ^o(a\/t2~-s2)uo(x + s) ds

+ I e~ativ/j2~p: zi(a\/f2 -a2)u0(® - s) ds .

By comparing the two above formulas we obtain (1.5) and (1.6) as well.

The formula (1.6) was originally obtained by A. Janssen and E. Siebert in [22], 
p.522. The formulas (1.5) may be easily derived from their results, too. (See [22] 
p.522, the definition of the functions /i(x,+l), h(x, —1).) They were proved also 
directly from the probabilistic definition of the process (without the use of telegraph 
equation) by F. W. Steutel [34],

Now, let S+, S- be two distributions on R2 defined by

/»OO rOO

<S+,if>>= ¥>(i,t) dt , <S-,q>>= q>(t,—t)dt,
Jq jo

for all v? e Cg°(R2').

Corollary 2. The two-dimensional Dirac equation has a unique, vector valued, 
fundamental solution (f + S-, g + S+) with support in the forward cone D, where 
|s| <t.

Proof. In the sequel and f^f denote the derivative in the usual sense 
and in the sense of distributions, respectively.
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Observe first that, for 9? € C“(7?2) ,

d d dp dp
<^S+,p> + <^-S+,p> = - <S+,-s-> - <5+,^->

dt ds dt ds
= ~/0 dt ~ '

which shows that

(1-7)

Analogously, we prove

(1-8)

Furthermore,

<(S “ “ ”’’’>= //„<, [/(-> + “ w] is dt

=rdsdt~r rdtds~n
Jo J-t VS J-<x> J\a\ J j\s\<t

((J d\Ydt^-ds)^^^-

ip ds dt .

Using /(<,<) = /(t, -t) = z/2 and (1.2),

d d
<(ai"a;)/"Zi?’*’>=2<s+’*’>

Yet, remembering (1.8), this is

(5-«<«>■

Analogously we show that

which, together with (1.7) shows that

+ 9s) _ = ^(0'0) ’

as desired.
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In order to complete the proof observe that the map

D x D t-+ R2 , (t, x) x (s, y) t-> (s + t,x + y)

is proper and, consequently, the convolution of any two distributions with the supports 
in D is well-defined (for the definition we use and a proof of the above statement see 
[17] p.104). Thus the uniqueness of the solution one proves as in Th. 6.2.3., p.141 of 
[17]-

It is well-known (see [3] ch.VI. 8 and VI. 12, compare [7] p.167) that the unique 
solution of the telegraph equation (0.2) - (0.2") is

(1-9)

u(t,x)= (a+j (e a‘f I0(a\/t2 - s2)u0(x + ps) ds)

•i rt
+ -e_a‘ y fo(a\/<2 - s2)ui(x + vs) ds .

Using Corollary 1 and the above formula one can prove a result which is similar to 
(0.3).

Corollary 3. The solution of the telegraph equation (0.2) is given by 

u(M) = | ^«o[a: + ><«(<)] + -Eu0[x - P<a(t)]

+ i £{1a(<)Ui[z + «'61(<)]} , 

wfcere A(<) = {w : N(u) = 1,3,5,...} .

Proof. By the linearity of the telegraph equation, the result of M.Kac (i.e. 
(0.3) with Uj = 0), find the formula (1.9) it is enough to prove that

~ £{1a(«)«i[® + p(o(<)]} = | c“°‘ y I0(a\/t2 - s2)ui(i + ps) ds .

Since the above equation is equivalent to the first equation in (1.5) the proof is 
completed.

Let us show additionally that Corollary 1 enables us to prove the M. Kac’s 
formula, as well. Let us set

SQ = ay/t2 - s2 .

Using (1.9), with u, = 0 ,

Cl 1
u(t, a:) = - e-“' J I0(SQ)u0(x + vs) ds + - e~a,u0(x + vt)

+ 2 e~at / f ^2*, s2 Ii(SQ)uo(x + vs) ds + | e_a‘u0(z - vt) .
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Now, the equation

i e~a‘ J t + vs) ds
= 5 [5 e'“‘ /_t + "a) ds

+ | y ( h(SQ)u0(x + vs) ds

results in *
“(*’*) = c_0,y Io(SQ)uo(x + vs) ds

+ ^e~tttf A+ *<2 Zi(5Q)u0(j + vs) ds 

+ e_“‘ y /0(<SQ)u0(x + vs) ds

+ | e~at y 2 A($Q)«o(» + ds 

+ | e~a,u0(x + vs) + | e~atu0(x - vt) .

Performing the substitution s —> — s in the third and fourth integral, by (1.5), 
(compare [22] p.530),

u(t,x)= - £{ 1 A(t)«o[x + ^(a(t)]} + £{1b(I)Uo[x + «'£<.(*)]} + g e a*uo(x + vt)

+ £{1a(i)u0[i - »<„(<)]} + E{1 B(«)Uo[z - t'ia(t)]} + ? e °‘u0(i - vt)

Taking into account that £o(f) = t iff Na(t) = 0 , we obtain the desired result.

As we have mentioned before, the probabilistic formula for the solutions of the 
telegraph equation was proved for the first time by M. Kac [23-24], in the case when 
ui = 0. The result of J. Kisynski (0.3) ([26]), which extends the probabilistic approach 
to the general case, differs from Corollary 3 only in the term that depends on iq . 
The form of this term introduced above seems to be interesting. For example, we see 
that, when uq = 0 , the solution u(t,x) is, at the moment t , independent of the 
events w with the property that 2V„(<)(w) is even. Furthermore, from our formula 
it is evident that, when a —♦ 00 , the term that depends on Ui vanishes. This is, 
obviously, well-known (see Introduction) but it is not seen from (0.3).

Since the asymptotic behaviour of the solutions of the telegraph equation was 
examined by a number of authors, who employed various, often advanced methods, 
it may be found somewhat surprising that simple calculations presented in this paper 
may so easily lead us to results, that are in essence parallel to those proved before 
(see also Corollary 4). Note however that Corollary 3 was obtained by comparing the
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result that, was proved using a strictly probabilistic approach (Lemma 1, [26]) with 
the analytic formulas such like the equation (1-9) and formulas appearing in the proof 
of Proposition 1. Thus, as a matter of fact, in the proof of Corollary 3 (and Corollary 
4) both probabilistic approach presented in [26] and analytic methods employed in 
[3] were involved.

On the other hand, in some cases the formula (0.3) (with uo = 0) is much more 
convenient in applying, than Corollary 3 is. For example, it is obvious that u(i,x) 
should be twice differentiable with respect to t , provided ui is of the class C1. But, 
since the set A(<) varies together with t , the attempt of differentiation of the term 
appearing in Corollary 3 faces serious difficulties, even if ui 6 C^°. Such difficulties 
do not occur when we employ (0.3).

2. The Poisson - Kac process as a modified jump process on Q. We
would like to show a close relation between some modification of the jump process 
considered by W. Feller ([8] ch.10) and the Poisson - Kac process. For, let Na(t) , 
t > 0 be a Poisson process and let K be a stochastic kernel A'(-,-) on R (i.e., for 
x 6 R,K(x,-) is a probability measure on R). Let us consider a process which can 
be described as follows: we demand that the point x € R jumps according to the 
law K(x,-) when Na(t) jumps and that it moves with velocity+1 between jumps. 
W. Feller noted that such a process exists under the assumption that K(x, •) has a 
density k(x, •) . Then the probability that the process which starts at the point x 
will be, after a time t > 0, at the point x +t is equal e~a‘ (this is probability that 
W„(f) = 0 ); apart from this point it has a density h(t,x) . Furthermore,

(2.1) ~= ~dh^X~ ~ ah(t,x)+a ^h(t,y)k(y,x) dy ,

provided /i(<,x) is differentiable with respect to x.
In order to see the analogy between the above considered process and the Poisson 

- Kac process, note that, by (1.2) and (1.3), the functions / = e~atf , g = e~at are 
solutions of (0.1) and that this equation may be viewed as

(2’2) = -(XF)(f, 0) - aF(t, 0) + a [ F(t,01 )fc(01,0) d01 ,
J 6

where :
- Ç is the group defined in Introduction,
- X is the element of the one-dimensional Lie algebra corresponding to Q- to be 

more specific: X(g) is the tangent vector to the curve t —» (t, 1)0 ,
^(0,9i) is the ’’density” of the probabilistic measure concentrated at the point 
g , (where by the definition (x, 1) = (x, —1) ), i.e.

^^(f,0i)fc(0i,0) d0i = J°F(t,0ï)k(g,gi) d01 = F(f,0) .

(The fact that in our case the kernel A'(g, •) is deterministic constitutes the only 
difference between the two considered examples - but the existence of the Poisson - 
Kac process is obvious).
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- F = (/,g) , i. e. F(x, —1) = /(x), F(x, +1) = g(x) , is the density of 
Ba(f), t > 0 .
Indeed, in order to prove (2.2) it sufficies to note that (see Introduction)

(2-3) (UHM)
={ (t + s,+l) , 

(< -5,-1) ,
/ = +1 , 
/= -1 .

Thus, the operator X assigns to the function F: G *—> R , F = (f,g) the function 
XF = (—df /dx, dg/dx), as desired.

Hence, in the analogy to the process that was considered by W. Feller, the Poisson 
- Kac process can be thought as a process on G that jumps from the point (x, k) to 
(x,— k) when the Poisson process jumps; it moves along the integral curves (2.3) 
between jumps. The probability that the process that starts at the point g & G will 
be, after the time t > 0 , at the point (f, l)g is equal to e~a> , apart from this point 
it has the density (given by (1.4)) which satisfies (2.2).

3. The characteristic function of £„(<) . Now we will show the following 
proposition.

Proposition 2. The characteristic function y>a(f,£) of fo(f) equals

1 + t'< + a
[2 2y/a2 - (2

for all C/2 < a2 , and

+ e-«( iC, + a
.2 2v/a2 -<2.

cos \/C,2 — a2t + ■ —+ ?■— sjn Ç2 — a2t 
V(2-«2

for all Ç2 > a2 , and ipa(t, ±a) = e °‘(1 ± iat + at) .

Proof. Using (1.4) with z = a , and (1.6) we have:

?.(*, 0 = e~at ei(< + e~at /(<, s) e"‘ ds + e~at J'< g(t, s) ds .

Setting
F(U) = J' f(t,s)e"( ds , G(t,() = f^t,s)e"<ds,

we get

(3.1) ^(*,0 = e'°‘ + e-“F(t,<) + e~aiG(t,C) .

We would like to compute F and G. By the very definition and (1.2) with z 
replaced by a , (existence of the derivatives calculated below follows from (1.4) and
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the definition of F, G )

= e“</(t,t) + e-“4(t,-f) + y‘ ds

= ei,7(t,t) + e-*‘</(<,-<) + ds + a f fa»)** ds

t

-t

f(t,s)e',<’ds + a J g(t,s)e'“' 

= 2e1‘</(t,t)-i<F(t,() + aG(t,<).

Since f(t, t) = |, we obtain ultimately,

ds

(3’2) ^^ = -«W,O + aG(t,<) + ae“<.

Analogously, using (1.3) and g(t, —t) = 0,

(3.3) ^^=,<G(t,<) + aF(t,<).

Observe that in the equations (3.2), (3.3) the only derivative that appears is the 
derivative with respect to t. Therefore, they may be viewed as a system of ordinary 
differential equations with parameters a,( . Thus, by (3.2),

(3-4) G = ~[F' + *(F] - ei,( .
a

Performing substitution into (3.3),

F"+«2-a2)F = 0.

A general solution of this equation is

Ci, <2 < a2 , 
C3 cos y/(2 - a2t + Ci sin yj(,2 - a2t , (2 > a2 , 
C$t + Ce , (2 = a2 .

Since Prob{AT(O) > 0} = 0 , we see that 0 = F(0,<) = G(0,<) . Thus also, by (3.2), 
F'(0,C) = a ■ Hence

0 = Ci+C2, 
a = [Ci- C2]y/a^C ,

0 = C3 = Cg ,

a = Ci y/C,2 - a2 = C5 .
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Thus, for £2 < a2

F(t,0 , a ey/^»_____a e-y/^t
2y/a2 - <2 2y/a2 - <2

and, consequently, by (3.4),

1
T +G(U) =

so that,

»<
.2 2v/a2 - C2

¥>«(*,() = e'

4- e —at

.2 2\/a2 -<2.

2 2y/a2 —Ç2.

1 t'C + a
L2 2y/e^2

In the case £2 > a2 we proceed similarly:

-y/al-Ct

l * c + a ,y/a^t

= /z2 2 S’n _a2 * ’
V< - a2

G(t, <) = cos y<2 - a2 t + -T==== sin \/<2 - a2 t - e',( . 
V< - a2

As a result

= c" COS
y/(2 — a2 t 4---- *£ + a sin \/C2 — a2 t

yc2^2

as desired. The value of </>„(/, ±a) may be obtained in the same manner or, since 
tpa is a continuous function of ( , asa limit lim^_»±a </3a(fiC) • The proposition is 
proved.

The following corollary is a special case of the general results obtained by M. 
Fukushima - M. Hitsuda [9], M. Hitsuds - A. Shimizu [10] and R. Ellis [4].

Corollary 4. When a increases to infinity, then the process y/a£a(t), t > 0 
converges in distribution to the standard Brownian motion.

Proof. It suffices to prove that, for every t > 0 ,

lim ^„(t, y/aQ = exp a—*oo

i?
2

(pointwise with respect to £).
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have,
Given ( e R, t > 0 , for a large enough, (to be more specific: for a > £2) we

1 + y/ctiQ + a
.2 2y/a2 - a<2

-aif1 'fat +a
2 2\/a1 — a£2

= exp {at [0 - <2/a - l] }

+ exp {at {—v^l ~ 0/a - l] }

e\/as-o<J t

0a!-a(’ t

1+ »C/0+1
2 20-<2/0 

l »</0 +1 ■
L2 20 -<2/0j

Observe that the expressions in square brackets tend to 1 and 0 , respectively. Next,

and

Thus

as desired.

lim at 
a—*oo

0 < exp {at 0 — Ç2/a — lj j < 1 ,

1 J °° 0 - (2/a +1 2

lim ¥?a(t, 0() = exp (-0/2) ,

90,00 = e~al

+ e

Acknowledgment. The author would like to thank prof. J. Kisynski for sug­
gesting the problem of computing the density (0.4) by comparing the Kac - type 
formulas with analytical formulas for solutions of the systems like (0.1), (0.2) or 
(0.5).

Remark. After completion of the paper I was informed that the characteristic 
function of the process (£0), < < 0) was obtained, in a different way, by M. Pinsky 
in the monograph ’’Lecture on Random Evolutions” (World Scientific Press, 1991).
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