Jan SZYNAL (Lublin)

An Extension of Typically Real Functions

Abstract. For a fixed $\lambda>0$ let $T_{R}(\lambda)$ stand for the class of functions f defined by the formula $f(z)=\int_{-1}^{1} z\left(1-2 x z+z^{2}\right)^{-\lambda} d \mu(x)$, where μ is a probability measure on $[-1,1]$.

Obviously $T_{R}(1)$ coincides with the class of typically real functions. Some convolution and coefficient results previously established for $T_{R}(1)$ are extended to the class $T_{R}(\lambda)$.

1. Introduction

Let $A_{1}(D)$ denote the class of holomorphic functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\cdots \tag{1}
\end{equation*}
$$

in the unit disk $D=\{z:|z|<1\}$.
By $T_{R}(\lambda), \lambda \geq 0$ we denote the subclass of $A_{1}(D)$ consisting of functions f which have the integral representation

$$
\begin{equation*}
f(z)=\int_{-1}^{1} \frac{z}{\left(1-2 x z+z^{2}\right)^{\lambda}} d \mu(x) \tag{2}
\end{equation*}
$$

where μ is a probability measure on the interval $[-1,1]$.
If $S_{R}^{*}(\alpha),-\infty<\alpha \leq 1$, is the family of holomorphic functions of the form (1) which are starlike of order α in D and have real coefficients, then we see that the function

$$
\begin{equation*}
s_{\lambda}(z, x):=\frac{z}{\left(1-2 x z+z^{2}\right)^{\lambda}}, x \in[-1,1], z \in D \tag{3}
\end{equation*}
$$

is in $S_{R}^{*}(1-\lambda)$ because

$$
\operatorname{Re} \frac{z s_{\lambda}^{\prime}(z, x)}{s_{\lambda}(z, x)}=1-2 \lambda+2 \lambda \operatorname{Re} \frac{1-x z}{1-2 x z+z^{2}} \geq 1-\lambda, z \in D
$$

This fact implies that $T_{R}\left(\lambda_{1}\right) \subset T_{R}\left(\lambda_{2}\right)$ for $\lambda_{1}<\lambda_{2}$. Because $T_{R}^{\prime}(0)=\{z\}$ in what follow we assume $\lambda>0$.

Let us observe that $T_{R}(1)=T_{R}$ is the well-known class of typically-real functions [1], [6], [11]. Moreover, the class $T_{R}(\lambda)$ is a convex set in the space $A_{1}(D)$ which is a locally convex linear topological space with the respect to the topology given by uniform convergence on compact subsets of D. So by Krein-Milman theorem every convex functional on $T_{R}(\lambda)$ attains its extremal values on the extreme points of $T_{R}^{\prime}(\lambda)$ [6]. It has been proved by Hallenbeck [2] that
$T_{R}(\lambda)=\overline{\operatorname{co}} S_{R}^{*}(1-\lambda), \quad \operatorname{ext} T_{R}(\lambda)=\left\{s_{\lambda}(z, x): x \in[-1,1]\right\}$.
The following two results are known for typically-real functions:
Theorem A (Robertson [8]). If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z_{n} \in T_{R}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in T_{R}$, then

$$
\left(f *_{1} g\right)(z):=z+\sum_{n=2}^{\infty} \frac{a_{n} b_{n}}{n} \in T_{R} .
$$

Theorem B (Leeman [4]). If $f \in T_{R}$, then

$$
n-a_{n} \leq \frac{1}{6} n\left(n^{2}-1\right)\left(2-a_{2}\right), \quad n=3,4, \ldots
$$

Alternative proofs of Theorem A and Theorem B were presented by Krzyż and Złotkiewicz in [3] and by Ruscheweyh in [9] and [10].

In this note we extend in an appropriate way Theorem A and Theorem B to the class $T_{R}(\lambda)$. We will use convolution results of

Ruscheweyh [9] and Lewis [5] and the properties of Gegenbauer polynomials $C_{n}^{(\lambda)}(x), \lambda>0, x \in[-1,1], n=0,1, \ldots$, which are defined by the generating function

$$
\begin{equation*}
\frac{z}{\left(1-2 x z+z^{2}\right)^{\lambda}}=z \sum_{n=0}^{\infty} C_{n}^{(\lambda)}(x) z^{n}, z \in D, \lambda>0 . \tag{5}
\end{equation*}
$$

2. Statements of results

In what follow we will use the following notations:
$(\alpha)_{n}:=\alpha(\alpha+1) \ldots(\alpha+n-1), n=1,2, \ldots,(\alpha)_{0}=1, \alpha \neq 0$,

$$
\begin{equation*}
s_{\lambda}(z, 1)=\frac{z}{(1-z)^{2 \lambda}}=\sum_{n=1}^{\infty} A_{n}(\lambda) z^{n}, A_{n}(\lambda)=\frac{(2 \lambda)_{n-1}}{(n-1)!} . \tag{6}
\end{equation*}
$$

Theorem 1. If $f \in T_{R}(\lambda)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(2 \lambda)_{n-1}}{(n-1)!}, n=1,2, \ldots \tag{7}
\end{equation*}
$$

Inequality (7) is sharp and the extremal function has the form (6).
Theorem 2. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in T_{R}(\lambda)$ and $g(z)=$ $z+\sum_{n+2}^{\infty} b_{n} z^{n} \in T_{R}(\lambda)$, then

$$
\begin{equation*}
(f * \lambda g)(z):=\sum_{n=1}^{\infty} \frac{a_{n} b_{n}}{A_{n}(\lambda)} \in T_{R}(\lambda) . \tag{8}
\end{equation*}
$$

Corollary 1. If $\lambda=1$ then we have Robertson's result [8] (Theorem A).

Corollary 2. If $\lambda=1 / 2$, then we have the result that the class $T_{R}(1 / 2)=\overline{\operatorname{co}} S_{R}^{*}(1 / 2)$ is closed under Hadamard product.

Theorem 3. If $f \in T_{R}(\lambda)$, then the following sharp estimate holds

$$
\begin{equation*}
\frac{(2 \lambda)_{n-1}}{(n-1)!}-a_{n} \leq \frac{(2 \lambda+2)_{n-2}}{(n-2)!}\left(2 \lambda-a_{2}\right), n=3,4, \ldots \tag{9}
\end{equation*}
$$

For the function $f(z)=s_{\lambda}(z, x)$ we have

$$
\lim _{x \rightarrow 1^{-}} \frac{\frac{(2 \lambda)_{n-1}}{(n-1)!}-a_{n}}{2 \lambda-a_{2}}=\frac{(2 \lambda+2)_{n-2}}{(n-2)!}
$$

Corollary 3. If $f \in S_{R}^{*}(1-\lambda), \lambda>0$, then the sharp estimate (9) holds.

Corollary 4. If $C_{n}^{(\lambda)}(x), n=1,2, \ldots, \lambda>0$, is a Gegenbauer polynomial, then

$$
\frac{C_{n}^{(\lambda)}(1)-C_{n}^{(\lambda)}(x)}{C_{1}^{(\lambda)}(1)-C_{1}^{(\lambda)}(x)} \leq \frac{(2 \lambda+2)_{n-1}}{(n-1)!} \quad \text { for } x \in[-1,1]
$$

3. Lemmas

For the proof of Theorem 2 we need the following two lemmas.
Lemma 1 [9]. Let $V \subset A_{1}(D)$ with $W=\overline{c o} V$ compact. Assume there is a function h in $A_{1}(D)$ such that for all $f, g \in V$ we have

$$
\begin{equation*}
h *_{1 / 2} f *_{1 / 2} g \in W . \tag{10}
\end{equation*}
$$

Then (10) holds for all $f, g \in W$.

Lemma 2 [5]. Let $S^{*}(\alpha),-\infty<\alpha \leq 1$ denote the class of α starlike functions in D. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S^{*}(\alpha), g(z)=$ $z+\sum_{n=2}^{\infty} b_{n} z^{n} \in S^{*}(\alpha)$ then

$$
\begin{equation*}
\left(f *_{1-\alpha} g\right)(z)=\sum_{n=1}^{\infty} \frac{a_{n} b_{n}}{A_{n}(1-\alpha)} z^{n} \in S^{*}(\alpha) \tag{11}
\end{equation*}
$$

Lemma 3. Let

$$
\begin{aligned}
s_{n}: & =\sum_{k=0}^{n} \frac{(2 \lambda)_{k}}{k!}, \quad n=0,1, \ldots, \\
\sigma_{n}: & =\sum_{k=1}^{n} k \frac{(2 \lambda)_{k}}{k!}, n=1,2, \ldots, \\
\tau_{n}: & =\sum_{j=1}^{n} \frac{(j-1)!}{(2 \lambda)_{j}} \kappa_{j}, \\
\kappa_{j}: & =\sum_{k=1}^{j}\left(\frac{\lambda+k-1}{\lambda}\right) \frac{(2 \lambda)_{k-1}}{(k-1)!}, j=1,2, \ldots, n=1,2_{3} \ldots, .
\end{aligned}
$$

Then the following identities hold

$$
\begin{align*}
s_{n}=\frac{(2 \lambda+1)_{n}}{n!}, & n=0,1, \ldots, \\
\sigma_{n}=2 \lambda \frac{(2 \lambda+2)_{n-1}}{(n-1)!}, & n=1,2, \ldots, \tag{12}\\
\tau_{n}=\frac{n(2 \lambda+n)}{2 \lambda(2 \lambda+1)}, & n=1,2, \ldots .
\end{align*}
$$

Proof. The proof of all identities (12) is based on induction argument. We will prove the third equality of (12). Formula (12) for τ_{n} is true for $n=1$ and let us assume that it is true for $(n-1)$. Then we have

$$
\begin{aligned}
\tau_{n} & =\tau_{n-1}+\frac{(n-1)!}{(2 \lambda)_{n}} \kappa_{n}=\frac{(n-1)(2 \lambda+n-1)}{2 \lambda(2 \lambda+1)} \\
& +\frac{(n-1)!}{(2 \lambda)_{n}} \sum_{k=1}^{n}\left(1+\frac{k-1}{\lambda}\right) \frac{(2 \lambda)_{k-1}}{(k-1)!} \\
& =\frac{(n-1)(2 \lambda+n-1)}{2 \lambda(2 \lambda+1)}+\frac{(n-1)!}{(2 \lambda)_{n}} \\
& \times\left\{1+\left(1+\frac{1}{\lambda}\right) \frac{(2 \lambda)_{1}}{1!}+\cdots+\left(1+\frac{n-1}{\lambda}\right) \frac{(2 \lambda)_{n-1}}{(n-1)!}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(n-1)(2 \lambda+n-1)}{2 \lambda(2 \lambda+1)}+\frac{(n-1)!}{(2 \lambda)_{n}}\left\{s_{n-1}+\frac{1}{\lambda} \sigma_{n-1}\right\} \\
& =\frac{(n-1)(2 \lambda+n-1)}{2 \lambda(2 \lambda+1)}+\frac{(n-1)!}{(2 \lambda)_{n}}\left\{\frac{(2 \lambda)_{n-1}}{(n-1)!}+2 \frac{(2 \lambda+2)_{n-2}}{(n-2)!}\right\} \\
& =\frac{n(2 \lambda+n)}{2 \lambda(2 \lambda+1)} .
\end{aligned}
$$

which ends the proof.

4. Proofs of theorems

Proof of Theorem 1. From the integral representation (2) and (5) we find that

$$
\left|a_{n}\right| \leq \max _{-1 \leq x \leq 1}\left|C_{n-1}^{(\lambda)}(x)\right|
$$

Using the integral formula for Gegenbauer polynomials [7]

$$
\begin{aligned}
C_{n}^{(\lambda)}(x) & =\frac{(2 \lambda)_{n} \Gamma\left(\lambda+\frac{1}{2}\right)}{n!\Gamma\left(\frac{1}{2}\right) \Gamma(\lambda)} \\
& \times \int_{0}^{\pi}\left[x+\sqrt{x^{2}-1} \cos \varphi\right]^{n} \sin ^{2 \lambda-1} \varphi d \varphi, n=0,1, \ldots
\end{aligned}
$$

we get after some manipulation with Euler Gamma function that

$$
\begin{equation*}
\left|C_{n}^{(\lambda)}(x)\right| \leq \frac{(2 \lambda)_{n}}{n!} \quad \text { for } x \in[-1,1] \tag{13}
\end{equation*}
$$

which implies (7).
Proof of Theorem 2. Let $f, g \in T_{R}(\lambda)$. We will apply Lemma 1 and 2. In our case by (2) and (4) we have

$$
\begin{aligned}
V & =\left\{s_{\lambda}(z, x): s_{\lambda}(z, x)=\frac{z}{\left(1-2 x z+z^{2}\right)^{\lambda}}, x \in[-1,1]\right\} \\
W & =\overline{c o} V=T_{R}(\lambda)
\end{aligned}
$$

Let us put

$$
h(z)=\sum_{k=1}^{\infty} A_{n}^{-1}(\lambda) z^{n}, \quad A_{n}(1 / 2)=1
$$

Then we have

$$
\left(f *_{\lambda} g\right)(z)=\sum_{n=1}^{\infty} \frac{a_{n} b_{n}}{A_{n}(\lambda)} z^{n}=\left(h *_{1 / 2} f *_{1 / 2} g\right)(z) .
$$

If f and g are in V, then they are starlike of order $(1-\lambda)$ and by Lemma 2 so does $f *_{\lambda} g$, which implies $\left(h *_{1 / 2} f *_{1 / 2} g\right) \in W$. Applying Lemma 1 we end the proof.

Proof of Theorem 3. For $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in T_{R}(\lambda)$ we define the coefficients $B_{n}, n=1,2, \ldots$, by the relation

$$
\begin{align*}
n B_{n-1} & =n a_{n+1}-2(\lambda+n-1) a_{n}+(2 \lambda+n-2) a_{n-1} \tag{14}\\
a_{1} & =1, \quad a_{0}=0,
\end{align*}
$$

From (2) we know that

$$
a_{n}=\int_{-1}^{1} C_{n-1}^{(\lambda)}(x) d \mu(x), n=1,2, \ldots
$$

Using the recurrence formula for Gegenbauer polynomials [7]

$$
\begin{align*}
n C_{n}^{(\lambda)}(x) & -2 x(\lambda+n-1) C_{n-1}^{(\lambda)}(x) \\
& +(2 \lambda+n-2) C_{n-2}^{(\lambda)}(x)=0, n=2,3, \ldots \tag{16}\\
C_{0}^{(\lambda)} & =1, \quad C_{1}^{(\lambda)}(x)=2 \lambda x, \quad C_{n}^{(\lambda)}(1)=2 \lambda_{n} / n!
\end{align*}
$$

we find from (15') and (16) that

$$
\begin{aligned}
n B_{n-1} & =\int_{-1}^{1}\left[n C_{n}^{(\lambda)}(x)-2(\lambda+n-1) C_{n-1}^{(\lambda)}(x)\right. \\
& \left.+(2 \lambda+n-2) C_{n-2}^{(\lambda)}(x)\right] d \mu(x) \\
& =-2 \int_{-1}^{1}(\lambda+n-1)(1-x) C_{n-1}^{(\lambda)}(x) d \mu(x) \\
& =-\frac{\lambda+n-1}{\lambda} \int_{-1}^{1} C_{n-1}^{(\lambda)}(x)(2 \lambda-2 \lambda x) d \mu(x)
\end{aligned}
$$

By (13) we can write
(17) $n B_{n-1}=\left(1+\frac{n-1}{\lambda}\right) \frac{(2 \lambda)_{n-1}}{(n-1)!}\left[a_{2}-2 \lambda\right] \gamma_{n}, n=2, \ldots, \gamma_{1}=1$
where $\gamma_{n} \in[-1,1]$. From (14) we find

$$
\begin{equation*}
\sum_{k=1}^{n} k B_{k-1}=n a_{n+1}-(2 \lambda+n-1) a_{n}, n=1,2, \ldots \tag{18}
\end{equation*}
$$

After some calculations from (18) and (17) together with Lemma 3 one can get the following identity ($n \geq 2$)

$$
\begin{aligned}
a_{n}-\frac{(2 \lambda)_{n-1}}{(n-1)!} & =\frac{(2 \lambda)_{n-1}}{(n-1)!}\left(a_{2}-2 \lambda\right) \\
& \times\left[\frac{1}{(2 \lambda)_{1}} S_{1}+\frac{1!}{(2 \lambda)_{2}} S_{2}+\cdots+\frac{(n-2)!}{(2 \lambda)_{n-1}} S_{n-1}\right]
\end{aligned}
$$

where $S_{n}=\sum_{k=1}^{n}\left(1+\frac{k-1}{\lambda}\right) \frac{(2 \lambda)_{k-1}}{(k-1)!} \gamma_{k}$. Taking into account that $\left|\gamma_{n}\right| \leq 1, n=1,2, \ldots$, we have from the above relations

$$
\frac{(2 \lambda)_{n-1}}{(n-1)!}-a_{n} \leq \frac{(2 \lambda)_{n-1}}{(n-1)!}\left(2 \lambda-a_{2}\right) \tau_{n-1} \cdots
$$

Applying Lemma 3 we find (9).

REFERENCES

[1] Duren, P.L., Univalent functions, A Series of Comprehensive Studies in Mathematics 259, Springer Verlag 1983.
[2] Hallenbeck, D.J., Convex hulls and extreme points of families of starlike and close-to-convex mappings, Pacific J. Math. 57 (1975), 167176.
[3] Krzyí, J.G. and E. Zlotkiewicz, Two remarks on typically-real functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 30 (1976), 57-61.
[4] Leeman, G.B., A local estimate for typically-real functions, Pacific J. Math. 52 (1974), 481-484.
[5] Lewis, J.L., Convolutions of starlike functions, Indians Univ. Math. J. 27 (1978), 671-688.
[6] Pommerenke, Ch., Univalent functions, Vandenhoeck and Ruprecht, Góttingen 1975.
[7] Rainville, E., Special functions, Mac Millan Company, New York 1965.
[8] Robertson, M.S., Applications of a lemma of Fejér to typically-real functions, Proc. Amer. Math. Soc. 1 (1950), 555-561.
[9] Ruscheweyh, St., Convolutions in geometric function theory, Les Presses de l'Université de Montréal 1982.
[10] Ruscheweyh, St., Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19-23.
[11] Schober, G., Univalent Functions- Selected Topics, Lecture Notes in Mat., No.478, Springer-Verlag 1975.

Instytut Matematyki UMCS
Plac M. Curie Skłodowskiej 1
20-031 Lublin, Poland
e-mail: jsszynal@golem.umcs.lublin.pl

$$
\xi_{1}
$$

ANNALES
 UNIVERSITATIS MARIAECURIE-SKEODOWSKA LUBLIN - POLONIA

1. A. Bobrowski Computing the Distribution of the Poisson - Kac Process
2. C. Frappier and M. A. Qazi Optimal Inequalities for the Coefficients of Polynomials with Small Degree
3. L. Gajek and E. Lenic Moment Inequalities for Order and Record Statistics Under Restrictions on their Distributions
4. H. Hebda-Grabowska and B. Bartmańska On the Rate of Convergence of Functions of Sums of Infima of Independent Random Variables
5. H. K. Hsiao and R. Smarzewski Radial and Optimal Selections of Metric Projections onto Balls
6. S. Kołodyński On the Functional $z f^{\prime}(z) / f(z)$ over Functions with Positive Real Part
7. S. Kolodyński, M. Szapieland W. Szapiel On the Functional $f \mapsto \zeta f^{\prime}(\zeta) / f(\zeta)$ within Typically Real Functions
8. L. Kruk and W. Zięba On Almost Sure Convergence of Asymptotic Martingales
9. J. G. Krzyí Quasisymmetric Functions and Quasihomographies
10. B. Mond and J. E. Pečarić Remarks on Jensen's Inequality for Operator Convex Functions
11. E. Özcag and B. Fisher Some Results on the Commutative Neutrix Convolution Product of Distributions
12. J. Pečarić Remarks on Biernacki's Generalization of Čebys̄hev's Inequality
13. F. Rønning A Survey on Uniformly Convex and Uniformly Starlike Functions
14. M.Szapieland W.Szapiel Typically Real Functions in Subordination and Majorization
15. D. Szynal On Complete Convergence for some Classes of Dependent Random Variables
16. J. Zają The Universal Teichmüller Space of an Oriented Jordan Curve
17. A. Zapala Strong Limit Theorems for the Growth of Increments of Additive Processes in Groups. Part II. Additive Processes in Torus
18. W. Zygmunt Note on the Blasis's Method of an Approximation to an Upper Semicontinuous Multifunction

Adresse:

UNIWERSYTET MARII CURIE-SKLODOWSKIEJ		
WYDAWNICTWO		
PI. M. Curie-Sklodowskiej 5	$20-031$ LUBLIN	POLOGNE

