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A New Approach to the Krzyż Conjecture

Abstract. It has been conjectured by Krzyż [15] that if 0<|ao+ai* 
+a2z2+...|^l for |z|<l, then |a„|^2/e for all n^l. The aim of this paper is to 
present some new related problems. In particular, solving a moment problem, we 
find a simple proof of the Krzyż conjecture for n^4.

1. Introduction

Let ?f(A) denote the set of complex functions f analytic on 
the unit disc A = {z € C : |.z| < 1} and let a„(/) = /(")(0)/n!,
n = 0,1,.... For W C 7f(A) we define

A„(W) = sup{|a„(/)| : f 6 W}, n = 0,1,2,....

We will consider the following classes of bounded functions:

(1) B = {/ e H(A) : /(A) C Â} and Bo = {/ e B : 0 £ /(A)}.

The Krzyż conjecture [15], still remaining open, asserts that 

A„(Z?o) = 2/e for all n 1

with equality only for the functions

(«p [-(1 + ,2") /(I - ,z")], |(| = |>)l = I-
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This coefficient problem has attracted the attention of many math­
ematicians, see e.g. [3, 4, 6, 8, 10, 11, 13, 15-18], and it is known 
that

(I) Ai(B0) = A2(Bo) = 2/e ( easy to prove ) ,
(II) |a3(/)| $(a0(/)) < 2/e for all f € Bo,

where the expressions for $, depending on several cases, can be found 
in [8, 11, 18],

Furthermore, D. Bshouty, J. E. Brown, Delin Tan, R. Ermers 
and others claim they have proved 

(HI) A4(B0) = 2/e,

but not all of them give full details. Also, the use of computers in 
their calculations is too extensive.

A uniform bound

(IV) An(50) 1 - - sin-^- = 0.9998..., n > 1,
O7T 7T 1

is due to Horowitz [1] and

(V) A„(B0) < I + - sin = 0.9991..., n > 1,
O 7T

was obtained by Ermers [8]. Both bounds Eire far away from 2/e.
The standard calculus seems to be useless in the Krzyż conjec­

ture. By a simple variational technique we get that

n
A„(B0) = sup{Rea„(exp|-\jp(e'9], • )])} 

j=l
n

= max{exp[-J^AjjRe [iZ (..., Ay,..., ei6t,... )] 
j=i

where p(£, z) = (1 + £z)/(l — £z) and the maximum is taken over all 
A> > 0 and 0^ < < ■ • • < 6n < + 2ir ( here U is a polynomial
of several variables ). Hence the equations for critical points and the 
shape of boundary surfaces of various dimensions are very involved.
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This way, subordination techniques [7, 19, 20] seem to be the 
main tool in solving the coefficient problem. Neglecting rotations it 
is sufficient to consider the Krzyż conjecture within the class

Bo = |J{/€H(A): /xfc«inA},

where

1 - z
î+7

oo

= e~‘ + 2
7=1

(2)
= + e-* ¿(-1X11,(24) - I,-,(24)]»>'

>=1
oo > x • -J \

and Lj is the j-th Laguerre polynomial. Observe that ht is a non­
vanishing inner function so that

4£6?(i) = l-e-«.
7=1

The relation f -< ht in A means that for some 6 B with <x>(0) = 0 
we have

/(z) = ht(w(z)) = e ‘ + 2 J &,•(*) '¿T c(A" 

j=l n=j

= e"+2E E^h(0
n=l Lj=l

where the coefficients , s j, are generated by

(3)
^(^¿c</V, > = 1,2,....

J=7
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Thus
n

(4) a„(/) = 2 £ for f € Bo and n H
>=i

By the subordination principle,

1 | 1 fOT

so the Schwarz lemma gives

(5)
Ê <£><’-

J=1
1 for all |(| 1, and n 1.

sLet us mention that the famous de Branges theorem [1] implie

(6) for all F 6 S and n 1,
1=1

n

where 5 C 7i(A) is the well-known class of univalent functions F on 
A, normalized by F(0) = F'(0) — 1=0. In the past the inequality 
(6) was considered as the Rogosinski conjecture, see [7].

Where is the difficulty in estimating the coefficients (4) situated? 
Well, this problem is related to a hard non-linear problem concerning 
one of the two homeomorphic classes:

ÎÎ = {u> 6 B : u?(0) = 0} or 
U P = {/€ 7ï(A) : /(0) = 1, Re/> 0 on A}.

Even the (2/e)-bound for coefficients of the superordinate functions 
(2) needs some hard numerical calculations. The authors of [13] have 
just calculated that

2|6„(t)| = |an(ht)| 2/e for all t > 0 and n 21139,

so it remains to check a finite ( but not small ) number of initial 
functions {£>>}. Thus the Krzyż problem is one of great difficulty.
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Ten and more years ago the Krzyz conjecture looked consider­
ably easier than that of Bieberbach. During a meeting of the Krzyz 
seminar at the Maria Curie-Sklodowska University, I proposed to es­
timate (4) just by means of the relation (5). In other words, our 
problem lies in calculating

(9) Dn = supd„((0,oo)), n > 1.

Clearly, An(Bo) Dn and the sequence (Dn) is non-decreasing. Un­
fortunately, an information on extreme points of the closed unit ball 
in the space of polynomials of degree at most n — 1 is not sufficient 
to estimate (8)-(9), see [2], Moreover, we have

Theorem 1.
lim Dn = 1. 

n—*oo

Hence we cannot get more than A„(Ho) Dn <1. By the

Horowitz uniform bound (IV), the set of polynomials ( t—> civ*1
>=i

created by means of relations (3) and its convex hull differ essentially 
from the set of polynomials of degree at most n — 1, bounded by 1 
on A, provided n is large. Fortunately, like for the Krzyż conjecture, 
we have

Theorem 2.

Di = = D3 = D4 = 2/e.

What could be obtained by studying (8)-(9)? By definition, we
have

(10) {Dn c} => {Dm c for all 1 m n}
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and

(11) {Dn = 2/e} => {Dm = 2/e for all 1 m n} .

For the Krzyz conjecture we know only that

(10') (An(So) c} =► {Am(#o) c for all m | n}

and

(11') {An(S0) = 2/e} => {Am(B0) = 2/e for all m | n} .

Also the least upper bound in (8) may be taken over polynomials 
with real coefficients, since we have

0)
Theorem 3. For n 1 and t 0,

n—1

d„(t) = 2 sup
<>=i

G R,
1=0

1 for ICI 1 }

and
(ü)
d„(t) =

2sup^

2sup<

Jv i>e_t

vj=i j 
i f>e-‘1 ^Cj-1_7T
1 7=1 J

SU for |2C-l|iU: c, 6 R,
n —1

j=0

: Cj G C,

n—1
IL

7=0

1 for |2C- 1| < 1

}-

}'

2. Open questions

Problem 1. Up to what number n does Dn = 2/e?

Problem 2. Does the estimate

(12) n for all F G S
>1
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hold whenever

(13)
j=i

for all ICI 1?

Observe that by Bernstein’s inequality [7] we have an equivalent 
form of (13):

¿cj(j-l + t)C 1 

i=i
n 1 + k

for all |C| 1 and k = 0,1,2,... .
Thus (13) => (12), if we replace S by its subset 5* consisting of

functions starlike with respect to the origin, or by the closed convex 
hull of S*, for the form of the closed convex hull of S* see [9, 20].

Problem 3. If the answer for the Problem 2 is ’No’, determine 
pr estimate

dn(f) = 2 sup
{¿‘A

'•>=1
(t) : Cj € R and (12)-(13) hold k f > 0,)■

and Dn = sup d„((0, oo)), n = 1,2,...,

where {5y} are given by (2). Obviously , An(B0) Dn Dn for 
n > 1, see the proof of Theorem 3.

3. Related problems and the proof of Theorems 1 and 3

In this section we shall discuss more general extremal problems 
than those considered in Theorems 1 and 3. We begin with some 
notation.

For any u : G *-> C we define ||u||g = sup{|it(o)| : a € G}.
The class Co consists of all complex functions h continuous on 

[0, oo) with h(+oo) = 0 so that

||h||[o,oo) = max{|h(t)| : 0 t < oo}.
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For r > 0 we write Ar = {z : |z| < r} so that Aj = A, and let 
K = {2 : |2z - 1| < 1}.

We will work within the classes

H2 = {/ 6 W(A) : ll/H < oo}, 

1/2

(14)

where ||/|| = , and

(15)
Pn = {/ € ?f(A) : = 0 for all j > n j , n — 0,1,2,....

Consider now the following two linear operators:

H : H2 -> Co and V : H2 Co

defined by

(#/)(()=/. h, and (V/)(<) = /.«,, 

where the operation * is given by

OO
/*5 = 5Za>-i(/>j(s),

>=i

the functions ht are specified in (2) and

v«(z) = 2ei(z"1).

Both operators H and V are well-defined. Indeed, for every 
f € fit2 we have

IWII[o,~> « ll/ll and II< 2||/||,

so the series Hf and Vf converge absolutely and uniformly on [0, oo). 
Moreover,

M

limsup|/ * fit | 21imsup 
t—»oo 1—»oo

+ 2^ — ‘ly/s.
j=l
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whenever £2 laj(/)|2 < which means that H/(+oo) = 0. Simi- 
j=M

larly, Vf(+oo) = 0.
Let A be one of the classes (14)-(15) and let ,4R = {/ € A : 

/((—î,l)) C R}. We are interested in the following bounds

d(i,X) = sup{|ft/(i)| : f G A and ||/||A 1},
¿(*,-4M) = sup{ft/(<) : f E XR and ||/||A 1},

D(W) = sup{d(f, W) : 0 t oo}, W = A or >1R, 

and, analogously,

q(t,A) = sup{|V/(f)| : f e A and ||/||K 1},
itM") =sup{V/(f) : i g >tB and ||/||K « 1},

Q(W) =sup{g(f, W) : 0 C i < oo}, W = A or XR.

Observe that d(i,Pn_i) = dn(t), D(P„_i) = Dn, see (8)—(9), and 
Theorem 3 can be turned into
(i) d((,p„-1) = «i(i,7’î_1),

(ii) <(((,?„-,) = ? (t.-PLl) = «(<,*>»-,), n = 1,2,....

Lemma 1. For all n 1 and t 0 we have d(t,Pn-\') = 
q(t,Pn-i) q{t-,Fn) q (t,ft2) d(t,H2} \/l - e-2t. In partic­
ular, 2/e sC D{Pn-,) = Q(Pn_x) Q(P„) Q (ft2) D (ft2) 1.

Proof. We first prove the relations 

(16) d(t,P„_i) = 9(t,Pn_i), n = l,2,... and t 0.

Let f,g 6 Pn-i be interrelated by the identity g(z) = /(2z — 1). 
Then ||/||a 1 iff ||<7||fr 1- Moreover, for any t > 0,

HfW =2£„>-1(/)6j(<) =è„>.l(/)(-iye-£ (> 2 ’)
>=1 j=l fc=l ' '
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e *tk
= = Vg(^'

k=l

Hence (16) holds. Since Pn-i C Pn C W2, we get d(f,Pn_i) = 
tfO'Pn-i) d(t,pn) = q(t,?n) min{d(i,7Y2) ,q (f,7Y2)}. More­
over,

/ 00 \ 1/2 z 00 \ 1/2 __________
d(f,w2)« (£ ojtw)

S=i ' S=i
and

P(Po) = 2/e,
so it suffices to show that

q (i, 7f2) d (i, H2) for all t 0.
The proof requires the following elementary formulas

(17)

(18)

(19)

3 = 0
-Jt —1

(i-0fc

.......

for «I < 1, ¿ = 1,2,...,

«*•")= D-^(j7V?jfn\ J

j=k

J=fc
c

z20x f 0 if k = 0,1,...,n - 1,
1 (—1)" if k = n,

(2D ¿0(0 = 02-10^ = 0,!....... n.
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Let g E H2, ||<7||a 1 and 0 < r < 1. The functions /(z) =
</((l + z)/2) and /r(z) = Xr(l + z)/2) are in B C 'H2 and

(22) lim (ff/r)(t) = for all t > 0.
r—»l-

Indeed, fix i 0 and observe that fT —> f as r —► 1 uniformly on 
compact subsets of A, and

M
TO) - (K/)(i)| < 2 £ |«,.,(/r - /)||6,(i)| + 8^

J=1

oo
whenever £3 |6j(/)|2 < e. Moreover,

j=M+i

OO
52 = /r(2) = g(r(l + z)/2)
*=i

= £o>-.(s)(r/2r1^0211)z*-1 

°° r °° /• i\= E Q _ Joi-lM’-’“ /2>"‘ ]**-•

Hence for arbitrary t > 0,

(/r/rxo=£[£ (L1i)ai‘,w’J",/2i"1 

xZ£-'<-l)‘(*;i)(-2i)7a’ •

But
J-l (2()‘

fc=lj—ks=l V '
2>
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so the triple series is commutative and

(g)rJ-i e~<(-2t)‘ 
2J“1 2s!S=1 J = S

(=} _> (Vg)(t) as r —> 1.
»=i s-

By (22) we obtain

H/(i) = Vg{f) for all / 0.

Thus

9 O,^2) = sup{|77/(Z)| : /(z) = g for some 0 € ft2

with ||<7||k 1} < d (/,7Y2) ,

which completes the proof.

Lemma 2. For all t 0,

1 — e-i lim dnft) \/l — e-2t.
n—*oo
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In particular,

lim Q(P,lim PCPn-J = i) = Q(ft2) =£>(tt2) = 1 .

Proof. Because of Lemma 1, it is sufficient to prove that for 
any t > 0 we have

1 —e lim d(f,'Pn_1) = lim dn(t). 
n—*oo n—*oo

For f € 7Y(A) denote

7=1

the n-th partial section of f. Fix t 0 and put ft(z) =
[/it(z) — e-t]/[(l + e~‘) z]. Since ||/t||A 1 and since —♦ ht
and (/t)n —* ft as n —* oo uniformly on compact subsets of A, for 
every positive integer k there exists a positive integer njt k such 
that

||(/t)n||A1_l/Jk ll(/t)n 

Consider the functions

11/tllAi-t/k < 1 + 1/A: for n nk.

9k,t(z) ~ F+Ï^n‘^1 ~ = 1’2’

Obviously, all the gk,t are in B and

n*
lim d„(f) > (Jfÿfcit)(t) = 2VoJ_i(jM)àj(f) 

n—►oo
7=1

- l/t)*-1 
^(l + e-')(1 + l/t)

>(1+e-)4(1 + 1/t)pw-w-.
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whenever rik s. Hence

4lim d„(f) -------- - 7 fcy(i) because of k —> oo
n—>oo 1 + e 1 J

j=l

and

4 'lim dn(t) ------ —- > b2At} = 1 — e-t because of s —> oo.
n—oo ' l 4- e-t z—' J 7

i=i *
Thus we have actually proved Theorem 1.

Lemma 3. For all n 1 and t^O we have

d (t, P"-l) = ¿(i.-Pn-l) = 9(i,Pn-.) = Î

9 (t, (W2)“) = ç(î,M2) i ¿(f,«2) = d (i, (ff2)“) .

Thus all the classes occurring in Lemmas 1-2 can be replaced by their 
subclasses consisting of functions with real coefficients.

Proof. Let A be one of the classes (14)—(15), and let de­
note ||/||, either ||/||A, or \\f\\K for f € 7f(A). If we put /(z) = 
[/(z) + f(Â)] f 2, then

= {/: ft*} CA = {eiaf : ûéR, / <= A},

11/11. ^|)/||. for all/GX

and

r def= sup

sup

f e Ax, U/H. s 1}

: / € A ll/ll. SlJ'U'R.
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Observe now that

(23) Re^2aj_i(/)i»j(<) £ for any f € A.

Indeed, if f E A with ||/|[, 1, then f 6 AR, ||/|| < 1 and

Re aj-i (/)&>(*) =

Therefore, for any f € A with ||/||* 1 there is a suitable real d such
that

152 «>-1 (/)&>(<)| = Re52ai-i (e'9f) bjW> 

e’9/6Xand ||e’7lk < 1-

By (23) we obtain that

152£ f°r all f € A with ||/||, 1.

Hence 'R. £, and the proof is complete.
Thereby we have proved Theorem 3.

4. A finite moment problem

Lemma 4. Let t 0 and let b\,... ,b„ be given as in (2). If for 
a Borel measure fit on & ( nonnegative, signed or complex ) we have

(24) . = bj(t)/bi(t) for j = l,...,n,

then

(25) d„(<) <2ie"‘|^|(A),

where |/x*| is the total variation of fit-
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Proof. From (24) it follows that

2
n

>=i

whenever | 52 c>C',-1| 1 for |C| 1- By the definition of d„(t), see
>=i

(8), the conclusion (25) follows.
According to Theorem 3, we have also an equivalent form of 

Lemma 4.

Lemma 4'. Jft^O and if for a Borel measure fit onK ( non­
negative, signed or complex ) we have

(24') = fJ-1/>! for j =
Jk

then

(25') d„(i)^2<e-t|Mt|(^).

Remark. For any subset T C A ( resp. T C K ) with card(T) 
n there is a collection {fit : / 0} of complex measures supported
on T and satisfying (24) ( resp. (24') ) for all t 0. To construct 
it, consider purely atomic measures with atoms in T. If we associate 
some elements of T with the parameter t, the cardinality of T can be 
less than n. By Lemma 4 ( resp. Lemma 4' ) we have

(26) An(B0) Dn sup [2te-‘|M<|(T)l .
<>o ,

Hence the optimal choices of measures fit are desired, especially those 
for which the right-hand side of (26) is less or equal to 2/e.

Application 1. According to Lemma 4, the choice of probability 
measures gives:

(i) d2(<) ^2fei(i) for 0^t^t2= 2,
(h) d3(f) <2&!(i) for 0^t^t3= 3/2,
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(iii) d4(f) ^2&i (f) for 0^f^f4=3 — y/3,
(iv) ds(t) /or 0 f f5 = 1.12,
(v) d6(f) ^26i(f) for 0 f f6 = 1.03.

In particular,

(vii) dj(f) ^2/e for 0 f 3/2 and j = 1,2,3,

(viii) dj(f) ^2/e for 0 f 3 — >/3 and j — 1,2

and

(ix) dj(f) ^2/e for 0 f 1.03 and / = 1,2,..

Proof. The trigonometric moment problem or, equivalently, the 
coefficient sequences for analytic functions having positive real parts 
on A were characterized by Caratheodory, see [5,9,12,14,19,21]. If

6m(f)d= det[&|j-fc|+1(f)/&i(f)]jifc=1....m ^0 for m = 2,... ,n,

then there exists an analytic function of the form

n oo

/„(2) = l + 2£(4i(i)/41(i)]?-1+ £
>=2 >=n+l

with positive real part on A. By the Riesz-Herglotz representation 
formula we have then connections:

^G)/feiW= i C’-'dnit), j = l,...,n,
JaA

for a probability measure n, so the conclusion of Lemma 4 holds. 
Elementary calculations show that

62 = (2 - f)f, 963(f) = 4(—3 + f)f2(—3 + 2f),
81<54(*) = (-6 + f)f3(6 - 6f + t2)(-18 + 6f +f2),

607565(i) = f4u5(f)u5(f) and 41006256e(f) = t5u6(t)v6(f),
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where

u5(t) = -540 + 720/ - 240? + 24? - ?,
u5(i) = -180 + 120/ - 8? + ?,
u6(Z) = -8100 + 5400/ + 900? - 780/3 + 75f4 +16

and

v6(Z) = -16200 + 29700/ - 18000/2 + 4860/3 
- 570? - 15? + 12? - ?.

The standard calculus, or the rule of sign of Fourier, shows that 
the polynomials u5, v5, u6, u6 have exactly one zero in the interval 
[0,2]. Therefore, ¿m(Z) 0 for 0 t tm and m — 2,3,4,5,6. Since
¿2 > ¿3 > ¿4 > ¿5 > ¿6, the desired conclusions follow.

Application 2. D\ = P2 = D3 = D4 — 2/e.

Proof. It suffices to show that D4 = 2/e. By Application 1 (iii) 
we may assume t 3 — \/3, and according to Lemma 4 consider two 
Borel measures on <9A :

Mt — Xtfi-i + Ut&i + Zt6-i + Ut^i

and

Vt —OifS-i + 0t^ri +

where

it = -(< - 3 + \fy(t - 2)(/ - 3 - >/3)/12,
ut = <[(# — 2)2 + 2] /12,
yt = t [6 - 2t + i (6 - Gt + ?)] /12 = 7«,

and

at

Pt
? + 6/ - 18 

6x/(/-2)(6-Z)

? - 4/ + 6 + z/v/(/-2)(6-Z)
4/-6

= l-t/6-i
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Obviously,

f (1, (, <2, <3) <W0 = (1, fc W/‘i (<), MO/». (0. »<«/».(0)

for all O 0, and

f (1,<, <2, <3) &,(() = (1, MO/». (i), M0/M0. M0/M0)

for 2 < t < 6. Moreover,

|e_t[*3 - 6*2 + 12* - 6 + *</(2 - *)2(4 - *)2 + 8] 

if 3 - >/3 < t 2 or t > 3 + 73,
|e-‘ Î2*2 - 6* + 6 + *7(2-<)2(4-*)2 +8 

if 2 t 3 + 73,

26i(*)|^t|(5À) = <

and

261(i)W(dA)
2(2* - 3)72^3 

~ W - *)
if 2 < * < 6.

We are looking for all * with 2&i(*)|/tt|(dA) 2/e or 2i>i(*)|i/<|(dA)
2/e. Both inequalities are equivalent to

6e1-1 - *4 + 6*3 - 12*2 + 6*
'2,3 4- \/3)(27) > *2 7(2 - *)2(4 - t)2 + 8 and *

6et_1 - 2*3 + 6*2 - 6*

(28) > *2 7(2 - *)2(4 - *)2 + 8 and * € 2,3 + 75],

[3e,_1 — *|* — 3|]x/(* — 2)(6 — *)

(29) 2*(2* - 3)72* - 3 and 2 < * < 6.

If we prove that the solutions of (27)-(29) cover the whole inter­
val [3 — 73, oo), the assertion follows. To deduce it, consider some
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stronger inequalities

/(<) d=

(30)

6 V £——-t4 + 6? - 12? + 6t

j=0 J
t4 [(2 - <)2(4 - i)2 + 8] 0
for t € 3 - \/3,2 U 3 + \/3, oo) ,

2

m(i) =def „ V' (t ~ 1)J

(31)

—f 6 ~ 
j=0 3

- 2e + 6? - 6i

-t4 [(2 — f)2(4 — f)2 + 8] > 0

for t G !,3 +VS] ,

(32)
Wderf 

=
j=0

^-<11-31 
*1 '

. x(< - 2)(6 - i) - 4?(2f - 3)3 0 for 2 < t < 6.

Indeed, we have

6 52 ~ <4 + 6<3 “ 12/2 + 6t 5 for i > 1
i=o 3'

( (l.h.s.)"' > 0 => (l.h.s.)" 1 for t 1
=> (l.h.s.)' 2 for t 1 ),

(‘ -1? - 2? + 6? - 6t 4 for / > 1
j=o

( (l.h.s.)" > 6
2 - 12f + 12 = 3 (? - 4< + 5) > 0

=> (l.h.s.)' ^6 for t 1 ),



A New Approach to the Krzyż Conjecture 189

and
2 .z'

3 É ~T^~ “ *l3 - *1 = <2 for 2 < < < 3,
n '

3 Ż P’' - *l3 - *1 > 15 for 3 < < < 6.

i—n '

Using any version of Mathematical we get easily solutions of (30)- 
(32), that is

1) the polynomial I has exactly two real zeros, both negative; 
thus /(/) > 0 for all t > 0 and, in particular, /(i) > Q for t € 
[3 — 73,2] U [3 + 73,oo),

2) the polynomial m has exactly four reed zeros at the points: 
0.68..., 1.12..., 2.44... and 3.17...; hence m(<) > 0 for t € 
[2,2.4] U [3.2,oo),

3) the extension of n | (2,3] has exactly six real zeros, from 
which four are positive: 0.28 ..., 0.96 ..., 2.21... and 5.80...; thus 
n(<) > 0 for t 6 [2.3,3],

4) the extension of n | [3,6) has exactly four real zeros and its 
positive ones are 2.05... and 5.74...; hence n(<) > 0 for t E [3,5.7].

Thus we have proved Theorem 2.
Is it possible to avoid a computer calculation? Since Mathemat- 

ica does exact computations on integers and rational numbers, we 
may mainly reduce its use only to the rules of sign. Regarding the 
exact computations, even the classical method of Sturm sequences is 
applicable. Observe first that for 1 0 we have

(33) 7x + 8 72(i + 16)/8 < 71(x + 16)/400.

Applying the method of Sturm to the polynomial

S+ [(2 - ()2(4 - i)2 + 16] ,
400

we obtain that k has no zeros in the interval [0,5]. The rule of sign 
of Fourier shows that I has no zeros in [5,00) so that /(/) > 0 for all 
t > 1.
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The same rule shows that m has no zeros in the intervals [2,12/5] 
and [16/5, oo). Also n | [2,3] has no zeros in [23/10,3] and n | [3,6] 
has no zeros in [3,57/10].

Remark. Distributions of measures on A giving the proof of 
the Krzyz conjecture for n 3 can be a little simpler. This means 
that the optimal choices of measures in Lemma 4 are not uniquely 
determined, see the list below.

(i) For n — 2 we need only one measure // = (1—t/2)Æ_i+(t/2)Æi.
(ii) For n 3 it suffices to consider

rj = exp[i arccos(t/3)], if 0 < t 1.7 or 2.4 t 3;

(b)

¿i, if t > 3;'

whenever 1.7 C t 3.
Indeed, let w(t) = bi(t)|/zt|(5A). In the case (a), we have w(t) = 

te"‘ SC 1/e for 0 C t 3/2 and w(t) = te~\5t - 3)/(3 + t) for 
3/2 t 3, so the function w strictly increases on [3/2, to] and 
strictly decreases on [to,3], where to = 2.02... is the zero of the 
polynomial p(t) = -9 + 39t - 7t2 - 5t3 ( p has zeros in (-4, -3), 
(0,1) and (2,3) ). Since

3 -)-1
t(5t - 3)

and

t=2.4
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we get w(ź) 1/e for t E [0,1.7] U [2.4,3]. 
In the case (b), we observe that

( apply the method of Sturm ). Hence w(f) 1/e for 3 t 3 + \/3. 
If t 3 + \/3, then w(f) = 63(i) 1/e.

In the last case, w(t) = — l)c-t / \/6f 6 — t2 and

- *1 )(* -12)(* - 2)(t - *3) 

(6t — 6 — f2)3/2

where ti = 0.4..., ¿2 = 1-6..., is = 3.8... are all the zeros of the 
polynomial t >—> t3 — 6f2 + 9t — 3. Thus w strictly increases on [1.7,2] 
and strictly decreases on [2,3] so that w(t) w(2) = \/6/e2 < 1/e 
for 1.7 t 3.
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