ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLVIII, 9
SECTIO A 1994

> PeterPFLUG (Vechta) Gerald SCHMIEDER (Oldenburg)

Remarks on the Ilieff-Sendov Problem

Abstract. Let p be a polynomial whose zeros are contained in the closed unit disk \bar{E}. According to the Ilieff-Sendov conjecture there exist $a, z^{\bullet} \in \bar{E}$ such that
(*)

$$
p(a)=0, p^{\prime}\left(z^{*}\right)=0,\left|a-z^{*}\right| \leq 1 .
$$

The authors define certain polynomials $\beta_{k}=\beta_{k}\left(a, z_{2}, \ldots, z_{n}\right), k=0, \ldots, n-1$, and establish inequalities involving the values of β_{k} at $a \in[0,1]$ and $z_{2}, \ldots, z_{n} \in \bar{E}$ which imply the existence of z^{*} such that (*) holds.

The problem known for more than thirty years as the IlieffSendov conjecture is as follows:

Let $p \in \mathbb{C}[z]$ be a polynomial whose zeros belong to the closed unit disc \bar{E} with $E:=\{\lambda \in \mathbb{C}:|\lambda|<1\}$. Let $p(a)=0$. Then it is asked whether there exists $z^{*} \in a+\bar{E}$ with $p^{\prime}\left(z^{*}\right)=0$.

There is already a long list of papers attacking this question (cf. [1]-[27]). But so far it is only known that the conjecture is true if the degree of p is less or equal than 6 (cf. [11]). Proofs use very ad hoc methods. So the aim of our short note is to reduce the above problem to a more geometric question.

Fix $a \in[0,1]$ and let $z_{2}, \ldots, z_{n} \in \bar{E}(n \geq 3)$. We define

$$
\begin{aligned}
\sigma_{k} & :=\sigma_{k}\left(a, z_{2}, \ldots, z_{n}\right) \\
& :=\sum_{2 \leq j_{1}<\cdots<j_{k} \leq n}\left(a-z_{j_{1}}\right) \ldots\left(a-z_{j_{k}}\right), \quad k=1, \ldots, n-1,
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{k} & :=\beta_{k}\left(a, z_{2}, \ldots, z_{n}\right) \\
& :=\frac{k+1}{\binom{n-1}{k}} \sigma_{n-1-k}\left(a, z_{2}, \ldots, z_{n}\right), \quad k=0, \ldots, n-1,
\end{aligned}
$$

with

$$
\sigma_{0}:=1
$$

We will prove the following:
Theorem . Let $p(z)=(z-a) \prod_{j=2}^{n}\left(z-z_{j}\right)$ with a, z_{2}, \ldots, z_{n} as above, $n \geq 3$. Assume that at least one of the following conditions is fulfilled:

1) there exists some $\zeta \in \bar{E}$ such that for some $\nu \in\{3, \ldots, n\}$ the inequality $\left|\zeta \beta_{1}+\beta_{0}\right| \leq\left|\zeta \beta_{\nu-1}+\beta_{\nu-2}\right|$ holds
or
2) $\left|\beta_{0}\right| \leq\left|\beta_{n-1}\right|(=n)$.

Then there exists $z^{*} \in a+\bar{E}$ with $p^{\prime}\left(z^{*}\right)=0$.
Proof. Put $q(z):=p(z+a)$ and

$$
q^{\prime}(z)=\sum_{\nu=0}^{n-1} b_{\nu} z^{\nu}=\sum_{\nu=0}^{n-1}\binom{n-1}{\nu} \beta_{\nu} z^{\nu}
$$

For $1 \leq n-\nu \leq n-3$ we consider the polynomial

$$
\begin{aligned}
L(z)=1 & +(-1)^{n-\nu}\binom{n-1}{\nu} \ell_{n-\nu} z^{n-\nu} \\
& +(-1)^{n-2}\binom{n-1}{2} \ell_{n-2} z^{n-2}
\end{aligned}
$$

Note that $L(z)$ has all its zeros in \bar{E} if and only if $Q(z)=z^{n-2} L(1 / z)$ does not vanish in E. And this is obviously true in the case that

$$
\begin{equation*}
1+\binom{n-1}{\nu}\left|\ell_{n-\nu}\right| \leq\binom{ n-1}{2}\left|\ell_{n-2}\right| \tag{*}
\end{equation*}
$$

Assume that (*) holds and take some $\zeta \in \bar{E}$.
Then all the zeros of the test-polynomial

$$
\begin{aligned}
L_{\zeta}(z) & =-L(z)(z-\zeta)= \\
\zeta & +(-1)^{1}\binom{n-1}{1} \frac{1}{n-1} z+(-1)^{n-\nu}\binom{n-1}{n-\nu} \frac{n-\nu}{\nu} \zeta \ell_{n-\nu} z^{n-\nu} \\
& +(-1)^{n-\nu+1}\binom{n-1}{n-\nu+1} \frac{(n-\nu+1)(n-\nu)}{\nu(\nu-1)} \ell_{n-\nu} z^{n-\nu+1} \\
& +(-1)^{n-2}\binom{n-1}{n-2} \frac{n-2}{2} \zeta \ell_{n-2} z^{n-2} \\
& +(-1)^{n-1}\binom{n-1}{n-1}\binom{n-1}{2} \ell_{n-2} z^{n-1}
\end{aligned}
$$

are as well contained in \bar{E}.
The (somewhat mysterious) theorem of Grace (cf. [26] Satz 1') can be stated as follows:

Let $\lambda_{0}, \ldots, \dot{\lambda}_{N}, a_{0}, \ldots, a_{N}$ be complex numbers with $\lambda_{N} \neq 0$ which fulfill the following "apolarity condition"

$$
\lambda_{0} a_{N}+\lambda_{1} a_{N-1}+\cdots+\lambda_{N} a_{0}=0 .
$$

Then every closed disk D in \mathbb{C} containing all the roots of the polynomial

$$
\Lambda(z)=\lambda_{0}-\binom{N}{1} \lambda_{1} z^{1}+\binom{N}{2} \lambda_{2} z^{2}-+\cdots+(-1)^{N} \lambda_{N} z^{N}
$$

contains at least one zero of the polynomial

$$
A(z)=a_{0}+a_{1} z+\cdots+a_{N} z^{N}
$$

Hence in order to apply the theorem of Grace we have to make sure that there are $\ell_{n-\nu}$ and ℓ_{n-2} with (*) and $\ell_{n-2} \neq 0$ such that the
apolarity condition holds (a separate discussion of the cases $\nu=n-1$ and $\nu=3$ (two exponents in L_{ζ} coincide) is not necessary):

$$
\begin{aligned}
& \zeta \beta_{n-1}+\binom{n-1}{n-2} \frac{1}{n-1} \beta_{n-2}+\binom{n-1}{\nu-1} \frac{n-\nu}{\nu} \zeta \ell_{n-\nu} \beta_{\nu-1} \\
& \quad+\binom{n-1}{\nu-2} \frac{(n-\nu+1)(n-\nu)}{\nu(\nu-1)} \ell_{n-\nu} \beta_{\nu-2}+\binom{n-1}{1} \frac{n-2}{2} \zeta \ell_{n-2} \beta_{1} \\
& \quad+\binom{n-1}{2} \ell_{n-2} \beta_{0}=0 .
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& \ell_{n-2}\binom{n-1}{2}\left(\zeta \beta_{1}+\beta_{0}\right) \\
& \quad=-\left(\zeta \beta_{n-1}+\beta_{n-2}+\binom{n-1}{\nu} \ell_{n-\nu}\left[\zeta \beta_{\nu-1}+\beta_{\nu-2}\right]\right)
\end{aligned}
$$

From (*) we obtain

$$
\begin{gathered}
\left(1+\binom{n-1}{\nu}\left|\ell_{n-\nu}\right|\right)\left|\zeta \beta_{1}+\beta_{0}\right| \\
\leq\left|\zeta \beta_{n-1}+\beta_{n-2}+\binom{n-1}{\nu} \ell_{n-\nu}\left[\zeta \beta_{\nu-1}+\beta_{\nu-2}\right]\right| .
\end{gathered}
$$

Division by $\left|\ell_{n-\nu}\right|$ and considering the limit $\ell_{n-\nu} \rightarrow \infty$ gives the assumption 1) in the theorem. Therefore, whenever 1) is fulfilled then the above apolarity condition for $L_{\zeta}(z)$ and $q^{\prime}(z)$ is fulfilled for a suitable choice of $\ell_{n-\nu}, \ell_{n-2}$. From (*) we obtain the desired zero z^{*} by the theorem of Grace.

The polynomial $\ell(z)=-\beta_{0} / \beta_{n-1}+(-1)^{n-1} z^{n-1}$ is always apolar to $q^{\prime}(z)$ and therefore the assumption 2) in the theorem comes out to be sufficient for the claimed zero z^{*}.

Remarks.

1. Note that the condition 1) is equivalent to the following statement which is free of the parameter ζ :

$$
\begin{equation*}
\left|\beta_{0}\right| \leq\left|\beta_{1}\right| \tag{la}
\end{equation*}
$$

or, for some $\nu \in\{3, \ldots, n\}$,

$$
\begin{equation*}
\left|\beta_{0}\right|^{2}+\left|\beta_{1}\right|^{2}-\left|\beta_{\nu-1}\right|^{2}-\left|\beta_{\nu-2}\right|^{2} \leq 2\left|\beta_{\nu-1} \overline{\beta_{\nu-2}}-\beta_{1} \overline{\beta_{0}}\right| \tag{lb}
\end{equation*}
$$

This follows from the fact that a Moebius transformation is an inner function of the unit disk iff the image of ∂E is part of \bar{E} and there is no pole inside E.

Hence, in order to solve the Ilieff-Sendov conjecture it suffices to show that there are no points $a, z_{2}, \ldots, z_{n} \in \bar{E}$ (as above) satisfying the following inequalities:

$$
\begin{aligned}
& \left|\sigma_{n-1}\left(a, z_{2}, \ldots, z_{n}\right)\right|>n \\
& \left|\sigma_{n-1}\left(a, z_{2}, \ldots, z_{n}\right)\right|>\frac{2}{n-1}\left|\sigma_{n-2}\left(a, z_{2}, \ldots, z_{n}\right)\right|
\end{aligned}
$$

and

$$
\begin{gathered}
\left|\sigma_{n-1}\left(a, z_{2}, \ldots, z_{n}\right)\right|^{2}+\frac{4}{(n-1)^{2}}\left|\sigma_{n-2}\left(a, z_{2}, \ldots, z_{n}\right)\right|^{2} \\
-\left[\frac{\nu!(n-\nu)!}{(n-1)!}\left|\sigma_{n-\nu}\left(a, z_{2}, \ldots, z_{n}\right)\right|\right]^{2} \\
\left.\left.>2\left|\frac{\nu!(\nu-1)!(n-\nu)!(n-\nu+1)!}{[(n-1)!]^{2}} \sigma_{n-\nu} \cdot \bar{\sigma}_{n-\nu+1}-\frac{(\nu-1)!(n-\nu+1)!}{(n-1)!}\right| \sigma_{n-\nu+1}\left(a, z_{2}, \ldots, \dot{z}_{n}\right) \right\rvert\,\right]^{2} \\
\left.-\frac{2}{n-2} \sigma_{n-2} \bar{\sigma}_{n-1} \right\rvert\,
\end{gathered}
$$

if $\nu=3,4, \ldots, n$.
2. Setting $\alpha=0$ our Theorem shows that the Ilieff-Sendov conjecture is true for every polynomial $p(z)=(z-a) \prod_{\nu=2}^{n}\left(z-z_{\nu}\right)$ with $q(z)=$ $p(z+a)$ and $q^{\prime}(z)=\sum_{\nu=0}^{n-1}\binom{n-1}{\nu} \beta_{\nu} z^{\nu}$ for which the coefficients fulfill

$$
\left|\beta_{0}\right| \leq\left|\beta_{k}\right| \quad \text { for some } k \in\{1, \ldots n-1\}
$$

i.e. $\quad\binom{n-1}{k} \leq(k+1)\left|\sum_{2 \leq j_{1}<\cdots<j_{k} \leq n}\left(a-z_{j_{1}}\right)^{-1} \ldots\left(a-z_{j_{k}}\right)^{-1}\right|$ for some k.
3. From the above inequality for $k=n-1$ we see that it suffices to have

$$
\left|\prod_{j=2}^{n}\left(a-z_{j}\right)\right| \leq n
$$

Therefore the desired zero z^{*} of q^{\prime} can be found if

$$
\left|a-z_{j}\right| \leq \sqrt[n-1]{n}
$$

for all $j=2, \ldots, n$. Roughly speaking: the conjecture is true for a if the other zeros are pretty close to a. In particular, if $a<-1+\sqrt[n-1]{n}$, then the conjecture is always true for a.
4. Observe that the inequality $\left|\beta_{0}\right|>\left|\beta_{1}\right|$ covers the often discussed case that $\sum_{j=2}^{n} 1 / r_{j}^{2} \leq(n-1) /(1+a)$, where $r_{j}:=\left|z_{j}-a\right|$.

Moreover, $\left|\beta_{0}\right|>\left|\beta_{1}\right|$ implies that

$$
\frac{n-1}{2}>\left|\sum_{j=2}^{n} \frac{1}{z_{j}-a}\right| \geq \sum_{j=2}^{n} \operatorname{Re} \frac{-1}{z_{j}-a} \geq \frac{n-1}{2 a}-\frac{1-a}{2 a} \sum_{j=2}^{n} \frac{\left|z_{j}\right|+a}{r_{j}^{2}}
$$

which gives $r_{j}<\sqrt{\left|z_{j}\right|+a}$ for at least one j.
Hence we have the following Corollary:
Corollary . If $p(z)=(z-a) \prod_{j=2}^{n}\left(z-z_{j}\right)$ is as above and if $\left|z_{j}-a\right| \geq \sqrt{\left|z_{j}\right|+a}$ for all j, then the Mieff-Sendov conjecture is true for a, i. e. there exists $z^{*} \in a+\bar{E}$ with $p^{\prime}\left(z^{*}\right)=0$.

We emphasize that this remark solves the Ilieff-Sendov conjecture for all n if $\left|z_{j}-a\right| \geq \sqrt{1+a}$ for $j=2, \ldots, n$, i. e. if one zero of p (here a) is strongly separated from the remaining $n-1$ zeros. Roughly speaking this means: the conjecture is true for a if the other zeros are pretty far away from a.

Using the Corollary it is easy to see that already the assumption $r_{2} \leq(n / \sqrt{1+a})^{1 /(n-2)}$ (cf. Remark 3) implies that the Ilieff-Sendov conjecture is true for a.

REFERENCES

[1] Bojanov, B.D., Q.I. Rahman and J.Szynal, On a conjecture about the critical points of a polynomial, International Series of Num. Math. 74 (1985), 83-93.
[2] Bojanov, B.D., Q.I. Rahman and J. Szynal, On a conjecture of Sendov about the critical points of a polynomial, Math. Z. 190 (1985), 281-285.
[3] Brannan, D.A., On a conjecture of lieff, Proc. Cambridge Philos. Soc. 64 (1968), 83-85.
[4] Brown, J.E., On the Mieff conjecture, Pacific J. Math. 135 (1988), 223232.
[5] Brown, J.E., On the Sendov conjecture for sixth degree polynomials, Proc. Am. Math. Soc. 113 (1991), 939-946.
[6] Cohen, G.L. and G.H. Smith, A proof of Ilieff's conjecture for polynomials with four zeros, Elemente d. Math. 43 (1988), 43 18-21.
[7] Cohen, G.L. and G.H.Smith, A simple verification of Ilieff's conjecture for polynomials with three zeros, Amer. Math. Monthly 95 (1988), 734-737.
[8] Gacs, F., On polynomials whose zeros are in the unit disc, J. Math. Anal. Appl. 36 (1971), 627-637.
[9] Goodman, A.W., Q.I. Rahman and J.S. Ratti, On the zeros of a polynomial and its derivative, Proc. Amer. Math. Soc. 21 (1969), 273274.
[10] Joyal, A., On the zeros of a polynomial and its derivative, J. Math. Anal. Appl. 26 (1969), 315-317.
[11] Katsoprinakis, E.S., On the Sendov-Ilieff conjecture, Bull. London Math. Soc. 24 (1992), 449-455.
[12] Kumar, S. and B.G. Shenoy, On the Ilieff-Sendov conjecture for polynomials with at most five zeros, J. Math. Anal. Appl. 171 (1992), 595-600.
[13] Marden, M., On the critical points of a polynomial, Tensor (N. S.) 39 (1982), 124-126.
[14] Marden, M., Conjectures on the critical points of a polynomial, Am. Math. Monthly 90 (1983), 267-276.
[15] Marden, M., The search for a Rolle's theorem in the complex domain, Amer. Math. Monthly 92 (198), 643-650.
[16] Meir, A. and A. Sharma, A. On Ilieff's conjecture, Pacific J. Math. 31 (1969), 459-467.
[17] Miller, M., Maximal polynomials and the Mieff-Sendov conjecture, Trans. Amer. Math. Soc. 321 (1990), 285-303.
[18] Miller, M. On Sendov's conjecture for the roots near the unit circle, J. Math. Anal. Appl. 175 (1993), 632-639.
[19] Phelps, D. and R.S. Rodriguez, Some properties of extremal polynomials for the Ilieff conjecture, Kodai Math. Sem. Rep. 24 (1972), 172-175.
[20] Rahman, Q.I., On the zeros of a polynomial and its derivative, Pacific J. Math. 41 (1972), 525-528.
[21] Rubinstein, Z., On a problem of Mieff, Pacific J. Math. 26 (1968), 159-161.
[22] Saff, E.B. and J.B. Twomey, A note on the location of critical points of polynomials, Proc. Amer. Math. Soc. 27 (1971), 303-308.
[23] SchmeiBer, G., Bemerkungen zu einer Vermutung von Ilieff, Math. Z. 11 (1969), 121-125.
[24] Schmeißer, G., Zur Lage der kritischen Punkte eines Polynoms, Rend. Sem. Math. Univ. Padova 46 (1971), 405-415.
[25] Schmeißer, G., On Ilieff's conjecture, Math. Z. 156 (1977), 165-173
[26] Szegö, G., Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), 28-55.
[27] Vernon, S., On the critical points of polynomials, Proc. Roy. Irish Acad. Sect. A 78 (1978), 195-198.

Universitāt Osnabrūck	Universität Oldenburg
Standort Vechta	Fachbereich 6 Mathematik
Fachbereich Mathematik	Postfach 2503
Postfach 1553	26111 Oldenburg
49364 Vechta	Germany

Germany

