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Abstract. This paper provides a new bound of the functional |v>(0)| in the 
class Q°(ff;A) of all A'-quasiconformal self-mappings ip of the unit disc A nor­
malized by a vanishing integral of their boundary values. Let ♦k, denote
the Hersch-Pfluger distortion function. Using some properties of the function 
[0,l]9r>->$^(v/r)-r a bound of |v?(0)|, as well as an improved estimate of the 
maximal dilatation of the Douady-Earle extension of a quasisymmetric automor­
phism of the unit circle are derived.

0. Introduction. Notations. Statement of results

Let C = C U {oo} denote the extended complex plane. A sense­
preserving homeomorphism ip of a domain Q C C onto a domain 
ft' C <C is said to be if-quasiconformal (abbreviated: 7f-qc.), 1 < 
K < oo, if for every quadrilateral Q = Q(zi, Z2,23, z4) whose clo­
sure is contained in ft, Mod(</?(Q)) < ifMod(Q) (the geometric 
definition). Here Mod(Q) stands for the module of Q, cf. [LV]. 
We will write Q(7f;ft,ft') for the class of all such mappings and 
Q(ft,ft') := Ui<k<ooQ(^;Q5Q')- The ^e if [9?] = inf{if > 1 :

1 The work was supported by the Japanese Government Scholarschip.
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ip G Q(A";ft,ft')} i® called the maximal dilatation of 9? G Q(ft,ft'). 
In order to shorten the notation we write Q(A;ft) and Q(ft) for 
ft = ft'. If ( G ft is arbitrarily fixed then the notation G Q((A; ft) 
(Q^(ft)) means that <p G Q(A;ft) (Q(ft)) and ę>(£) = (. Assume 
ft C C is a simply connected domain bounded by a Jordan curve 
T = dQ, C C. If F is a complex-valued function on ft then we put 
3F(z) = limu_z F(u) if the limit exists as u approaches z in ft and 
<9F(z) = 0 otherwise. It is well known that every 9? G Q(ft) has a 
continuous extension to T being a sense-preserving homeomorphic 
self-mapping of T , cf. [LV]. Set dQ(A;ft) = {dip : ę> G Q(A;ft)} 
and <9Q(ft) = {dip : 9? G Q(ft)}. Let us denote by A, T and C+ the 
unit disk {z : jz| < 1}, the unit circle {z : |.z| = 1} and the upper half 
plane {z : Imz > 0}, respectively.

In the famous paper [BA] Beurling and Ahlfors characterized the 
class 5Q(C+) by means of so-called quasisymmetric (abbreviated: 
qs.) homeomorphisms of the real axis R, cf. also [LV]. Moreover, 
if 93 G Q(A';C+) then d<p is A(A)-qs., cf. [LV] for the proof and 
the definition of the A-distortion function. Conversely, if f is an 
Af-qs. homeomorphism of R, k > 1, then the extension formula of 
the Beurling-Ahlfors type generates F G Q(C+) and the best bound 
known so far

(0.1) A[F]<max{2Af-l, Af3/2)

was found by Lehtinen in [Le].
Let Hom(T), (Hom+(T)) stand for the class of all (sense-preser­

ving) homeomorphic self-mappings of T. A counterpart of an M- 
qs. homeomorphism of R is an Af-qs. automorphism 7 of T, i.e. 
7 G Hom+(T) satisfies the inequality M"1 < |7(ii)|i/|7(I2)| 1 < Af 
for each pair of adjacent closed arcs Ii,/2 C T of equal arc-length 
measure 0 < |Ji|i = IF2I1 < 7r. Krzyż introduced this notion in [Kl] 
and proved that 7 G Hom+(T) is Af-qs. iff there exists 9? G Qo(A'; A) 
such that dip = 7 and the correspondence between M and K is the 
same as in the case of ft = C+, after a small modification of his 
proof. A more sophisticated but conformally invariant characteriza­
tion of 9Q(ft) for arbitrary ft by means of quasihomographies, or 
1-dimensional qc. mappings of T due to many formal similarities to 
the class of plane qc. mappings, was studied by Zając in [Z]. Also cf. 
[K3].
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We use the symbol P[/] to denote the Poisson integral of a 
complex-valued | • |i~integrable function f on T, i.e.

(0.2) TV1M = i i f(u)Re, Z e A .
Z7T J-j- U — Z

It follows from the noteworthy Kneser-Choquet theorem for convex 
domains, cf. [Kn], [C]; that £*[7] is a sense-preserving diffeomorphic 
self-mapping of A and obviously dPfr] — 7 for each 7 € Hom+(T). 
Consequently, for every z G A there exists the unique w = Fy(z') 6 A 
satisfying the equality

(0.3) P[hz o 7](w) = 0

where

(0.4) ha(u) = U , a G A, z G <C .
1 — au

This shows that F7 is a sense-preserving real-analytic diffeomorphic
self-mapping of A, dFy — 7 and

(°-5) Fd^odv = * 0 Fi 0 A » M,^€Q(1;A),

provided 7 € Hom+(T), cf. [LP, Theorem 1.1]. Following [BS] we 
use the symbol / to denote the inverse mapping of f if it exists, while 
/-1 =1//. The inverse mapping F7 := F7 is a continuous extension 
of 7 E Hom+(T) to A conformally invariant, i.e.

(06) Ea^Odu= floEy°u m,^€Q(1;A),

by (0.5). As a matter of fact F7 := F7 coincides with the mapping 
F(7) found by Douady and Earle in [DE, Theorem 1], and so we call 
E~f the Douady-Earle extension of 7. It was the first conformally 
invariant analytic extension of 7 € Hom+(T) to A. In the already 
mentioned eminent paper [DE] Douady and Earle showed that F7 6 
Q(A) iff 7 € 5Q(A). In fact, they proved that K* := sup{A”[F7] : 
7 € <9Q(A”; A)} < 4 • 108e35K\ cf. [DE, Proposition 7], and given 
£ > 0 there exists 6 > 0 such that K* < K3+c if K < 1 + 6, cf.
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[DE; Corollary 2]. This means that K* —♦ 1 as K —> 1+ and so 
their explicit estimate, starting from 4 • 108e35 for K — 1, is very 
inaccurate in the range of small K close to 1. Thus, analogously to 
(0.1), a natural problem appeared, to find an explicit estimate L(K') 
of K* for all K > 1 which is asymptotically sharp, i.e. L(K) —* 1 
as K —+ 1+. The first bound L of this kind was found for small A, 
1 < K < 1.01, in [Pl, Theorem] and then it was improved for all 
A > 1 in [P2, Theorem 3.1]. In this paper we proceed with the study 
of this topic. We extensively borrow from the techniques developed in 
[Pl] and [P2]. However, an essential progress in this direction could 
be achieved due to two circumstances. The first one is the following 
equality, cf. [P5, Theorem 1.1, Corollary 1.2],

(0.7) max |$^(>/r) - r| = Af(A) , A>0,

where is the Hersch-Pfluger distortion function, cf. [HP], [LV], 
and

(0.8)
M(Æ) = 2$2^(l/72) - 1 =

A(y/Â) - 1 
A(v<Ä) +1 ?

M(1/A) = M(A), A>1.

The second one is the inequality (1.8). Combining these ideas we 
derive in Section 1 Theorem 1.4 which is the main proving tool of 
Lemmas 2.1 and 2.2 for K close to 1 in Section 2. The proof of
(2.3) in Lemma 2.1 is an adaptation of the first part of the proof of 
Theorem 3.1 and the proof of Theorem 1.2 in [P2]. Roughly speaking, 
We modify those proofs by using the quasiconformal invariance of the 
harmonic measure instead of the quasisymmetric characterization of 
the class <9Q0(A; A). Lemma 2.2 is an improvement of [Pl, Lemma] 
f°r small K > 1. Lemmas 2.1 and 2.2 imply Theorem 2.3 which 
is our main result. It provides a new explicit and asymptotically 
sharp estimate L(A) of K* for all K > 1 which essentially improves 
those in [Pl, Theorem] and [P2, Theorem 3.1*)]. Combining this

There is a minor error in the proof of this theorem. The theorem remains 
tfue after replacing the coefficient l/(27T\/6) by 9\/3/(327r) in the formula 
defining F(A).
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result with (0.1) yields a new bound of K* which depends on the 
quasisymmetry constant M only. The problem of estimating K* for 
quasihomographies was studied by Sakan and Zając in [SZ]. They also 
applied (0.7) to get asymptotically sharp estimate of K*. Section 3 
provides comments dealing with two previous sections.

The author would like to express his sincere thanks to Professors 
Ken-ichi Sakan and Józef Zając for their very helpful comments.

1. Some estimates involving the function Af’(A')

It was shown in [P5, Theorem 3.1] that

(1.1) max |3F(r) — r| < M(K)

for every F G Q(A”; C+) satisfying dF(z') = z, z = 0,1, oo, and 
the equality is attained for some extremal mapping Fk such that 
9Fk{tk} = 1 — rx where 1 — 2fk = M(A). Let /(f) = 9F(f) 
for 0 < t < 1. If /(f) > t then we put g(t) = /(f). Otherwise, 
we put g(f) = at + bt — /(at + bt — f) where (at, bt) C [0,1] is the 
bigest open interval such that /(r) < r for every at < r < bt. g 
is an increasing function on [0,1] because / does so. Furthermore, 
0 < g(f) — t = at+bt—t — f(at + — f) < — f < 1 — f if /(f) < f.
Therefore 0 < g(f)—f < min{l—f, A/(A)} for every 0 < f < 1 by (1.1) 
and the inequality /(f) < 1. Since f*‘ |/(r) — r\dr = J^'(g(r) — r)dr 
if /(t) < t, we obtain

i |dF(r) - r\dr = i (g(r) - r)dr
(1.2) Jo j Jo

< [ min{l-r,M(A')}dr = M(A')-|A/2(K)
Jo

provided F G <Q>(A;C+). In what follows we derive counterparts 
of the estimates (1.1) and (1.2) for the unit disk. We will use the 
symbol -Argz to denote the argument of z G C \ {0}, i.e. the unique 
f, —n < t < 7r, satisfying z = l-zle**.

Theorem 1.1. If K > 1, ( G T and y> G Qo(A;A) satisfies
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MO = C = -C then

(1.3) max | Arg(dy>(z)/z)| ,

as well as

(1.4) max |<9</j(z) — z\ < 2sin(7rAf(A)/2) .

Proof. Let K > 1 and ę> 6 Qo(A;A) satisfies 5ę?(C) = (, 
3<p(—0 = — C for some ( € T. Without loss of generality we can 
assume that £ = 1. It can be always achieved after a suitable’rotation. 
Following Krzyż, cf. [Kl], we assign to a A'-qc. self-mapping F of 
C+ such that

(1.5) ^(e™) = e*iF^ , z G C+ , ‘

and dF keeps the points 0, 1, 2 fixed. It follows from (1.1) that 
|3F(<) — f| < Ai(A) for every i G R. By this and (1.5) we have 
| Arg(3ę>(ełt)e-,i)| = |7rdF(f/7r) — <| < 7rM(A) for all t € R, which 
proves (1.3); (1-4) is an obvious consequence of (1.3). □

Remark. Unfortunately, the estimates (1.3) and (1.4) are not 
sharp for A > 1. It is caused by the fact that the extremal function 
Fk is not periodic with the period 2. Therefore the strict inequality 
holds in (1.3) and (1.4) for A > 1. However, the obtained results 
seem to be fairly accurate at least for A close to 1.

Theorem 1.2. If K > 1, £ € T and. p 6 Qo(A;A) satisfies 
<M<) = C = -C then

(1-6) j(. I Arg(^(z)/z)||<fe|. < k(M(K) - |M2(K)) .

Moreover,

(1-7) A I lM*) - *11*1 < 2sin(f(2M(X) - W))) • 
7t
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Proof. Let </? and F be as in the proof of the previous theorem. 
Applying (1.2) and (1.5) we get

|Arg(^(z)/z)||dz| < £ i \ndF(t/ir)-t\dt 
Jt Jo

< k(M(K) - |M2(K)) ,

which proves (1.6). Similarly, by using Jensen’s inequality for concave 
functions, we have

H ~ ZIM2I = A 2sin -

2*in(£ r il^F(|) - t\dt) < 2sin(f(2M(K) - M2(K))) 
Jo

>

which proves (1.7). □

We proceed with extending the above theorem to any <p E Q(/C; A). 
We first prove the basic statement in this paper.

Lemma 1.3. For every a E A and y E Hom+(T)

(1-8) h J I Arg((/ia 0 'r)(z)/ha(z)')\\dz\ < max | Arg(7(z)/z)| .

Proof. Fix a E A and 7 E Hom+(T). Let

(1.9) m = max | Arg(7(z)/z)| .

Clearly, if m = tt then (1.8) holds. Assume m < it. For any 
z,w E T we denote by I(z, w) the closed arc directed counterclock­
wise from z to w. Consider the function f : T —> R defined by 
/(*) = 0 7(z))|i as Arg(7(z)/z) > 0 and f(z) = \I(ha o
7(2), ha(z))|i otherwise. We assign to f two functions /+ and /_ 
defined on T as follows: f+(z) = /(z) for Arg(7(z)/z) > 0 and 
/+(z) = 0 otherwise, /-(z) = /(ze’m) for Arg(7(ze‘m)/ze,m) < 0



On the Maximal Dilatation of the Douady-Earle Extension 87

and f-(z) = 0 otherwise. Evidently, /(z) = f+(z) + f-(ze ,m) and 
consequently

f f(z)\dz\ = f f+(z)\dz\ + i /_'(ze-’m)|dz|
(no) 7t Jt Jt

= J^f+(z) + f.(z))\dz\ .

Since 7 and ha are sense-preserving, we conclude from (1.9) that 
/+(z) + f-(z) < \I(ha(z), h0(ze,,n))|i. Hence by (1-10) and Fubini’s 
and Cauchy’s integral theorems

= ¿/T = ¿/J”

>r/
2* Jo JT |1 —aze’*!2 1 2tt Jo

This and the obvious inequality | Arg((/ia o 7)(z)//i„(z))| < f(z), 
z € T, imply (1.8). □

Theorem 1.4. If K > 1, € Q(K; A) and a = <¿>(0) then
1 := dip satisfies

(L11) X ' ’

as well as

(1.12)' mini f |*_.(ei^)-7(z)||<fe|<2.w(JM(K)).
J'Y

Proof. Fix K > 1 and € Q(/f; A). By the Darboux property 
there exist two points (1,^2 € T such that d(ha o 9?)((j) = (2 and 
9(/i„ o <p)(—Ci) = —(2- Then, setting e'6 = (2/(1 and t/>(z) := ha o
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9j(e t6z), z E A, we see that t/> 6 Qo(-K; A) and ¿h/> keeps the points 
(2, —(2 fixed. Applying Lemma 1.3 and Theorem 1.1 we have

-2ii\ ^(h-a(z)/h-o ohao 7(e“’^))|\dz\

= I Arg(/i-fl(z)//i_o o ¿ty(z))||dz|

< max | Arg(9V’(^)/2r)| < irM(K)

which proves (1.11). Hence by Jensen’s inequality for concave func­
tions

A f? - 7(2)||<fe|

= & t 2sin2lArs(h-»(e,**)/'r(2:))llck|
Jt

< 2sin(A Y I Arg(/i_a(e,*z)/7(z))||<fc|) < 2sin(fM(iC)) ,
JT

and this yields (1.12). □

2. An estimate of -K^-Ey] for 7 € 0Q(/f; A)

Suppose Q C C is a domain and 9 is a sense-preserving dif- 
feomorphism of Q onto 0,' = 93(D). Then the Jacobian |<?9?(£)|2 — 
|cfy’(0|2 is positive at every ( E D. Define &[</>](() = |^7?(C)/^Sc>(OI 
for £ E Q and &[</>] = sup^en fc[y>](£). It is well known that 93 E 
Q(Q,fi') if ¿[9?] < 1, and

(2.1) K[v] = (1 + t(v)Xl - Mv])-1,

cf. [LV]-. We denote by Q°(A’; A) the class of all 9? E Q(Jf; A) nor­
malized by

(2.2) P[^](0) = 0 .
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It follows from (0.3) that ip E Q0(A"; A) iff 7? E Q(A"; A) and
*v°) = °-

Lemma 2.1. If K > 1, </> E Q°(A’; A), 7 := dip and rt = 
cos(7r/2i+1), r{ = sin(7r/2,+1), I = 1,2,3, then 
(2-3)

P[r7)(0) < 1 - 2S5 x

and

fc2[F7](0) < sin2P(F, |^(0)|)
(2.4) + (1 - sin 2P(K, |y>(0)|))(2 sin(7rM(F)/2)

+ l<P(0)|2 + sin P(F, |^(0)D)

where

(2.5) P(K,r) = j — 2(1 — r)(l + r)“1 arccos $k(cos y) . 

Moreover,

fc[P7](0)< sin2P(K, Iv’(O)l)
(2.6) + sin P(K, |y>(0)|) cos2 2P(K, |<¿>(0)|)( 1 - 2 sin(7rM(F)/2)

- |<p(0)|2 - sinP(K, |v»(0)|)sin2P(K, l^(O)l))-1

as the denominator is positive and P(K, |v?(0)|) < 7r/8.

Proof. Fix K >1 and <p E Q°(A’; A). Let a = <^(0) E A. Then 
V> := ha o ip E Qo(A”; A). Assume I is an arbitrary subarc of T. It 
follows from the quasi-invariance of the harmonic measure u> that

(2 7) lMcos( 2W(°’ AM) < M(cos(fw(V>(0), A)[5^(J)]))
< K/i(cos(fw(0, A)[/])) ,

cf. [H]. Here p. stands for the module of the Grotzsch extremal domain 
A \ [0,r], cf. [LV]. Since ^(0) = 0 and 27rcu(0, A)[I] = |/|i for any 
arc I C T, we get by (2.7) and the definition of

(2.8) $i/k (cos — cos (cos .
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Set ok,i = 4 arccos $#(»-/), I = 1,2,3. An easy computation applying 
the identity

(2.9) $3r(r) + $’/K(Vl-r’) = l, 0<r<l,

cf. [AVV, Theorem 3.3], shows that

(2.10) sin(QK,i/2) = , I = 1,2 ,

and

(2.11) sin(aK,3) = 4$K(r3)$1/K(r3)(2$l(r3) - 1) .

It follows from (2.8) and the inequality |/i_„(/)|i = fj |/i'_a(z)||<fe| > 
(1 - |a|)(l + |a|)-1|/|x that
(2.12)

|7(Z)|i = |h-a o ha o 7(J)|i > (1 - |a|)(l + |a|) 1 |/ia o 7(Z)|i •
^(l-lalXl + W)-1«*,,

for |Z|i = 7r/2<_1, I — 1,2,3. The inequalities (2.12), I = 1,2, cor­
respond to (1.2)-and (1.3) in [P2] after replacing 27r/(l + k) and 
27r/(l + A:)2 by a^,i and o/<,2, respectively. Define for every rj E 
Hom(T) and any integers n,m E Z

(2.13) 2”(,(2))"|ds|.

A calculation similar to that in the proof of Theorem 1.2 in [P2] shows 
that

h's1 < cos («„= sin2P(K, |a|) ;

(2.14) |7;| < cos (f + 2fil^) = sinP(K,|o|) ;

1 > bi,I* - HI2 > (spjjfl) sin (a^) .

Since <p -E Q°(/C; A), F7(0) = 0. Differentiating at the point z = 0 
both sides of the equality P[hz o 7](F7(z)) = 0, z E A, we see that

7I,aF,(0) + 7,I5F-,(0) = 1 , lL,dFyW + 7j3F7(0) = -7o2 ,
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hence

7li7o - 7Î
(2-15) ’ ^(0)=é™
and finally

(2.16) 1 -
ar7(o)
3F7(0)

(i-^TXfcl’-hT)
l7li + 7o7Î I2

Prom this, (2.16) and (2.14)
(2-17)

; (l-|7gfXI<P-|7il2) 1 -|7o’

|7Î.i+7o7jI3
1- 9^(0)

9^(0)

> 2*2 tan2 (^£|i|)sm2 (^£$) sin (oK.sf^)

• 2 ok 1 • 2 QfK 2 •sin sin sm

Hence by (2.10) and (2.11) the bound (2.3) follows. We derive now
(2.4). By (2.13) we get for every 6 € R

Ihill -1| < hii - «‘‘I = ¿Ijf (7M*-»',)l<k|l

< A I + I (Z.-.(ei’z)z-e‘')|<fc||
Jt Jt

= & M*) - h-a(e,ez)||dz| + |a|2 .

Furthermore, by Theorem 1.4

(2.18)
1 - |7-i I < min £ / M*) - A-„(e'"z)|kiz| + |a|’

atK «/T
< 2sin(|M(Æ)) + |a|2 .

It follows from (2.16) that

3^(0)
9F7(0)1 - > 0-|7o2|a)(|7l1P-[7Î|2) _ z, - 2|V, 1 ! _ kl |\ - “ t1 '7o 1X17-11 l7i I)
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Combining this, (2.14) and (2.18) gives (2.4). The last bound (2.6) 
is a direct conclusion from (2.14), (2.15), (2.18) and the following 
estimate

M^](o) = bi.l+7o7il
< l7o2|.+ l7ÎI(l - l7o2|2)(l7-iI - ^Ihil)"1 . □

The estimate of fc[F7](0) in the above lemma depends on K and 
|o|. The next lemma provides a bound of |ctj which depends on K 
only. Consider in the class Q°(/C; A) the basic distortion functional

(2.19) p(F) = sup{[y>(0)| : e Q°(K; A)} .

Lemma 2.2. For every K >1

p(/C) < p(K) :=min{2sin(yM(Æ)),

(2.20) 1 - 2(73$k(vz3/2)$-1î<(1/2) + l)-1} .

Proof. Fix K > 1, 7? 6 Q°(A’; A) and set 7 = dip, a = v?(0). 
It follows from P[7](0) = 0 that for every arc I C T of length |/|i = 
2vr/3, |'y(-F)|i < 47r/3, cf. [LP] for details. Applying now (2.8) gives 
Iv’(O)! < l/2+v/3/2cot(7r/3+arccos$K(\/Z3/2)), cf. [Pl, (4)]. Hence 
by (2.9) we derive

(2.21) p(F) < 1 - 2(x/3$k(v/3/2)$1-/1k(1/2) + l)”1 .

This estimate is not sharp because the right hand side tends to 1/2 
as K —> 1+. To improve it for small K close to 1 we will use Theorem 
1.4. Since P[7](0) = 0, we have for every 6 E R

' k(»)l = l“l = ¿1 " f 7WI<fe||
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Now, applying Theorem 1.4 gives |</?(0)J < 2sin(7rA/(/i)/2) and so 
p(K} < 2sin(7rM(K)/2) for K > 1. Combining this and (2.21) leads 
to (2.20). □

Consider the second distortion functional p»(/0 in the class 
Q°(A’; A) given by

(2.22) ,>.(*) = Sup{i±ggj :?€ .

In view of the above lemma p(K) < 1 and so

(2.23) p.(K) = i±gg < p.(K) := < oo . K > 1 .

Now we are ready to prove the main result in this section which 
improves Theorem in [Pl] and Theorem 3.1 in [P2] in the whole 
range of K > 1.

Theorem 2.3. If K > 1 and y € 3Qt(-^) P-? and E~t are
(1 + fc)(l — k)~1-qc. mappings and k = A:[P7] = i[P7] satisfies

(2.24)
p < 1 _ 2j5p;’(K)x

*K(n)*l/K(r;)*2K(rs)*;/K(ri)*K(rJ)$1/R-(r;)(2^(rJ) -1) <

*5f(n)i;/K(ri)H(’-2)*?/K(’-i)*^('-3)*./K(--i)(2*2f(r.) - 1) 

and

k2 < sin2P(K) + (1 - sin2P(K))(2sin(f Af(K))
(2'25) + 4sin2(fM(K))+sinP(K))

where

(2.26) P(K) = P(K,p(K)) = f - 2p;1(tf)arccos<Mcos f) ,

and ri, r{, I — 1,2,3, were defined in Lemma 2.1. Moreover,

k <sin2P(K) + sinP(Jf)cos2 2P(K)(1 - 2sin(f M(K)) 
-4sin2(fM(A'))-sinP(A')sin2P(P))_1
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whenever F(A') < 7r/8.

Proof. Fix K >1 and 7 G 5<Q(A; A). If z G A then ~/z := hz 0 
7o/i_^(z) € 3Q(A; A) and by (0.5) /i_fiWoF7i(0) = F7(/i_z(0)) = 
F7(z). Hence F7j(0) = /ip7(z)(F7(z)) = 0 and applying (0.5) once 
again we have fc[F7](z) = fc[/ipi(z)oF7o/i_2](0) = fc[F7l](0) for every 
z G A. Consequently,
(2.28)

k := MF7] = sup Mf,.](0) < sup{i|Fj ](0): f € Q“(K; A)} . 
z€A

It follows from (2.5), (2.23) and (2.26) that for-each G Q°(A; A), 
P(K, |<¿>(0)|) < F(A'). From this, (2.28) and the formulas (2.3),
(2.4) and (2.6) we easily derive corresponding bounds (2.24), (2.25) 
and (2.27)*) in our theorem. Moreover, by (2.20) we get p,(A) < 
\/3$A'(v/3/2)$“y1K(l/2), which completes the proof of (2.24). By
definition, F7 = F7. Therefore k = fc[F7] = fc[F7] and F7 G 
Q((l + fc)(l — fc)_1; A). □

Corollary 2.4. If 7 is an M-qs. automorphism of T, 1 < 
M < 00, then Fy and Ey are (1 + fc)(l — fc)-1 -qc. mappings and 
k = fc[F7] = fc[F7] satisfies the inequalities (2.24), (2.25) and (2.27) 
after K has been replaced by min{M3/2,2M — 1}.

Proof. Modifying the proof of Krzyz’s Theorem from [Kl] by 
applying Lehtinen’s result (0.1) we deduce that M-qs. automorphism 
of T has a A-qc. extension to A with K < min{M3/2,2M — 1}. In 
this way the corollary follows immediately from Theorem 2.3. □

3. Complementary remarks

Remark 1. Let <£a-(x) = min{41-1/Kx1/K, 1} and h(x) = (1 — 
x)(H-x)_1 for ail 0 < x < 1, K > 0. Consider the following functions

$o[A,f](x) = o (f>K o $i/t(x) ,
$i[A,i](x) = h o 4>0[l/A,t] o h(x) , A > 0 ,
^fA tlfx) = i min^o[A,i](x) , $1[A,t](x)} , A > 1

1 ’ R ' 1 max{$0[A,t](x) , $![A,t](x)} , 0 < A < 1

see Remark 1 in Section 3 for the completion of the proof of (2.27).
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for 0 < x < 1, t > 0. Since, as shown in [LV], $2(r) = 2>v/r(l + r)-1, 
0 < r < 1, and $2n+1 = $2n ° $2, $2-" = $2", n G N, all functions

2n], K > 0, n G Z, are elementary. Moreover, it follows from 
[P3, Theorem 1.3, Corollary 1.4] that 2n] approaches monoton- 
ically as n —* oo. Moreover, it follows from [P3, Theorem 1.5, 
Corollary 1.6] that

0 < <f>0[A, 2n](x) - $K(x) < x2n+l/K<i>o[A,2"](*) 

for K > 1, n = 2,3,4,...,

0 < $i[K,2n](x) - $K(x) < 2((1 - h(x)2n+l)“K2’n - l)hK(i) 

for K > 1, n = 1,2,3,...,

0 < $*(*) - $o[K,2"](x) < ((1 - _ i)$0[x,2”](x)

for 0 < K < 1, n = 1,2,3,..., and

0<$K(x)-^[K,2n](i)
< 2((l — h(x)K2 ) 1 — l) min{41_K/iK(i), 1}

for 0 < K < 1, n = 2,3,4,....
All bounds in Lemma 2.2 and Theorem 2.3 depend on Ap­

plying the approximating sequence 2n], n = 0,1,..., of we
can estimate the right-hand side of (2.24), (2.25) and (2.27) by ele­
mentary functions with arbitrarily preassigned accuracy due to the 
above inequalities, cf. [P4, Theorem 3.1]. For example, we can deter­
mine the constants Ki and K2 such that the bound (2.27) is better 
than that given in (2.25) for 1 < K < K\ and the bound (2.25) is 
better than that in (2.24) for 1 < K < A'2. Relevant computer calcu­
lations give 0 < Ki —1.053180 < 10-6 and 0 < K2 —1.113057 < 10-6. 
Moreover, P(l.l) > 7r/8 and 2sin(^M(l.l)) + 4sin2(yM(l.l)) + 
sinP(l.l) sin 2P(1.1) < 1, which completes the proof of (2.27).

Remark 2. Theorems 1.1 and 1.2 are counterparts of Corol­
laries 2.4 and 2.7 in [K2], respectively, for M-qs. functions h on 
R such that <7, er(<) = h(f) — t, is 27r-periodic on R normalized by
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a(t)dt = 0. They enable us to adopt some Krzyz’s result from
[K2] for functions of the form R 9 < m h(i) — t € R where h : R —> R 
is a continuous function satisfying 7(ełi) = — tr < h(0) < ft and
7 € <9Qo(K; A), but we will not develop this point here.
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