ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLVIII, 8
SECTIO A
1994

Dariusz PARTYKA (Lublin)

On the Maximal Dilatation of the Douady-Earle Extension ${ }^{\dagger}$

Abstract

This paper provides a new bound of the functional $|\varphi(0)|$ in the class $Q^{0}(K ; \Delta)$ of all K-quasiconformal self-mappings φ of the unit disc Δ normalized by a vanishing integral of their boundary values. Let $\boldsymbol{\Phi}_{K}, K \geq 1$, denote the Hersch-Pfluger distortion function. Using some properties of the function $[0,1] \ni r \mapsto \Phi_{K}^{2}(\sqrt{r})-r$ a bound of $|\varphi(0)|$, as well as an improved estimate of the maximal dilatation of the Douady-Earle extension of a quasisymmetric automorphism of the unit circle are derived.

0. Introduction. Notations. Statement of results

Let $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ denote the extended complex plane. A sensepreserving homeomorphism φ of a domain $\Omega \subset \hat{\mathbb{C}}$ onto a domain $\Omega^{\prime} \subset \hat{\mathbb{C}}$ is said to be K-quasiconformal (abbreviated: $K-\mathrm{qc}$.), $1 \leq$ $K<\infty$, if for every quadrilateral $Q=Q\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ whose closure is contained in $\Omega, \operatorname{Mod}(\varphi(Q)) \leq K \operatorname{Mod}(Q)$ (the geometric definition). Here $\operatorname{Mod}(Q)$ stands for the module of Q, cf, [LV]. We will write $\mathbb{Q}\left(K ; \Omega, \Omega^{\prime}\right)$ for the class of all such mappings and $\mathbb{Q}\left(\Omega, \Omega^{\prime}\right):=\bigcup_{1 \leq K<\infty} \mathbb{Q}\left(K ; \Omega, \Omega^{\prime}\right)$. The value $K[\varphi]=\inf \{K \geq 1:$

[^0]$\left.\varphi \in \mathbb{Q}\left(K ; \Omega, \Omega^{\prime}\right)\right\}$ is called the maximal dilatation of $\varphi \in \mathbb{Q}\left(\Omega, \Omega^{\prime}\right)$. In order to shorten the notation we write $\mathbb{Q}(K ; \Omega)$ and $\mathbb{Q}(\Omega)$ for $\Omega=\Omega^{\prime}$. If $\zeta \in \Omega$ is arbitrarily fixed then the notation $\varphi \in \mathbb{Q}_{\zeta}(K ; \Omega)$ $\left(\mathbb{Q}_{\zeta}(\Omega)\right)$ means that $\varphi \in \mathbb{Q}(K ; \Omega)(\mathbb{Q}(\Omega))$ and $\varphi(\zeta)=\zeta$. Assume $\Omega \subset \hat{\mathbb{C}}$ is a simply connected domain bounded by a Jordan curve $\Gamma=\partial \Omega \subset \hat{\mathbb{C}}$. If F is a complex-valued function on Ω then we put $\partial F(z)=\lim _{u \rightarrow z} F(u)$ if the limit exists as u approaches z in Ω and $\partial \hat{\partial}(z)=0$ otherwise. It is well known that every $\varphi \in \mathbb{Q}(\Omega)$ has a continuous extension to Γ being a sense-preserving homeomorphic self-mapping of Γ, cf. [LV]. Set $\hat{\partial} \mathbb{Q}(K ; \Omega)=\{\hat{\partial} \varphi: \varphi \in \mathbb{Q}(K ; \Omega)\}$ and $\hat{\partial Q}(\Omega)=\{\partial \varphi: \varphi \in \mathbb{Q}(\Omega)\}$. Let us denote by Δ, T and \mathbb{C}_{+}the unit disk $\{z:|z|<1\}$, the unit circle $\{z:|z|=1\}$ and the upper half plane $\{z: \operatorname{Im} z>0\}$, respectively.

In the famous paper [BA] Beurling and Ahlfors characterized the class $\hat{\partial} \mathbb{Q}\left(\mathbb{C}_{+}\right)$by means of so-called quasisymmetric (abbreviated: qs.) homeomorphisms of the real axis \mathbb{R}, cf. also [LV]. Moreover, if $\varphi \in \mathbb{Q}\left(K ; \mathbb{C}_{+}\right)$then $\partial \varphi$ is $\lambda(K)-$ qs., cf. [LV] for the proof and the definition of the λ-distortion function. Conversely, if f is an M-qs. homeomorphism of $\mathbb{R}, k \geq 1$, then the extension formula of the Beurling-Ahlfors type generates $F \in \mathbb{Q}\left(\mathbb{C}_{+}\right)$and the best bound known so far

$$
\begin{equation*}
K[F] \leq \max \left\{2 M-1, M^{3 / 2}\right\} \tag{0.1}
\end{equation*}
$$

was found by Lehtinen in [Le].
Let $\operatorname{Hom}(\mathbf{T}),\left(\operatorname{Hom}^{+}(\mathbf{T})\right)$ stand for the class of all (sense-preserving) homeomorphic self-mappings of \mathbf{T}. A counterpart of an M qs. homeomorphism of \mathbb{R} is an M-qs. automorphism γ of \mathbf{T}, i.e. $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$ satisfies the inequality $M^{-1} \leq\left|\gamma\left(I_{1}\right)\right|_{1} /\left|\gamma\left(I_{2}\right)\right|_{1} \leq M$ for each pair of adjacent closed arcs $I_{1}, I_{2} \subset \mathbf{T}$ of equal arc-length measure $0<\left|I_{1}\right|_{1}=\left|I_{2}\right|_{1} \leq \pi$. Krzyż introduced this notion in [K1] and proved that $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$ is M-qs. iff there exists $\varphi \in \mathbb{Q}_{0}(K ; \Delta)$ such that $\hat{\partial} \varphi=\gamma$ and the correspondence between M and K is the same as in the case of $\Omega=\mathbb{C}_{+}$, after a small modification of his proof. A more sophisticated but conformally invariant characterization of $\hat{\partial} \mathbb{Q}(\Omega)$ for arbitrary Ω by means of quasihomographies, or 1-dimensional qc. mappings of Γ due to many formal similarities to the class of plane qc. mappings, was studied by Zając in [Z]. Also cf. [K3].

We use the symbol $\mathcal{P}[f]$ to denote the Poisson integral of a complex-valued | $\left.\right|_{1}$-integrable function f on \mathbf{T}, i.e.

$$
\begin{equation*}
\mathcal{P}[f](z)=\frac{1}{2 \pi} \int_{J_{\mathbf{T}}} f(u) \operatorname{Re} \frac{u+z}{u-z}|d u|, \quad z \in \Delta . \tag{0.2}
\end{equation*}
$$

It follows from the noteworthy Kneser-Choquet theorem for convex domains, cf. $[\mathrm{Kn}],[\mathrm{C}]$; that $\mathcal{P}[\gamma]$ is a sense-preserving diffeomorphic self-mapping of Δ and obviously $\partial \mathrm{P}[\gamma]=\gamma$ for each $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$. Consequently, for every $z \in \Delta$ there exists the unique $w=F_{\gamma}(z) \in \Delta$ satisfying the equality

$$
\begin{equation*}
\mathcal{P}\left[h_{z} \circ \gamma\right](w)=0 \tag{0.3}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{a}(u)=\frac{u-a}{1-\bar{a} u}, \quad a \in \Delta, z \in \hat{\mathbb{C}} . \tag{0.4}
\end{equation*}
$$

This shows that F_{γ} is a sense-preserving real-analytic diffeomorphic self-mapping of $\Delta, \hat{\partial} F_{\gamma}=\dot{\gamma}$ and

$$
\begin{equation*}
F_{\tilde{\partial} \mu \circ \gamma \circ \partial \dot{\nu}}=\check{\nu} \circ F_{\gamma} \circ \check{\mu}, \quad \mu, \nu \in \mathbb{Q}(1 ; \Delta) \tag{0.5}
\end{equation*}
$$

provided $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$, cf. [LP, Theorem 1.1]. Following [BS] we use the symbol \check{f} to denote the inverse mapping of f if it exists, while $f^{-1}=1 / f$. The inverse mapping $E_{\gamma}:=\dot{F}_{\gamma}$ is a continuous extension of $\gamma \in \mathrm{Hom}^{+}(\mathbf{T})$ to Δ conformally invariant, i.e.

$$
\begin{equation*}
E_{\hat{\partial}_{\mu \circ \gamma \circ \partial \partial \nu}}=\mu \circ E_{\gamma} \circ \nu, \quad \mu, \nu \in \mathbb{Q}(1 ; \Delta) \tag{0.6}
\end{equation*}
$$

by (0.5). As a matter of fact $E_{\gamma}:=\check{F}_{\gamma}$ coincides with the mapping $E(\gamma)$ found by Douady and Earle in [DE, Theorem 1], and so we call E_{γ} the Douady-Earle extension of γ. It was the first conformally invariant analytic extension of $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$ to Δ. In the already mentioned eminent paper [DE] Douady and Earle showed that $E_{\gamma} \in$ $\mathbb{Q}(\boldsymbol{\Delta})$ iff $\gamma \in \hat{\partial} \mathbb{Q}(\boldsymbol{\Delta})$. In fact, they proved that $K^{*}:=\sup \left\{K^{\prime}\left[E_{\gamma}\right]:\right.$ $\gamma \in \hat{\partial} \mathbb{Q}(K ; \Delta)\}<4 \cdot 10^{8} e^{35 K}$, cf. [DE, Proposition 7], and given $\varepsilon>0$ there exists $\delta>0$ such that $K^{*} \leq K^{3+\varepsilon}$ if $K \leq 1+\delta$, cf.
[DE; Corollary 2]. This means that $K^{*} \rightarrow 1$ as $K \rightarrow 1^{+}$and so their explicit estimate, starting from $4 \cdot 10^{8} e^{35}$ for $K=1$, is very inaccurate in the range of small K close to 1 . Thus, analogously to (0.1), a natural problem appeared, to find an explicit estimate $L(K)$ of K^{*} for all $K \geq 1$ which is asymptotically sharp, i.e. $L(K) \rightarrow 1$ as $K \rightarrow 1^{+}$. The first bound L of this kind was found for small K, $1 \leq K \leq 1.01$, in [P1, Theorem] and then it was improved for all $K \geq 1$ in [P2, Theorem 3.1]. In this paper we proceed with the study of this topic. We extensively borrow from the techniques developed in [P1] and [P2]. However, an essential progress in this direction could be achieved due to two circumstances. The first one is the following equality, cf. [P5, Theorem 1.1, Corollary 1.2],

$$
\begin{equation*}
\max _{0 \leq r \leq 1}\left|\Phi_{K}^{2}(\sqrt{r})-r\right|=M(K), \quad K>0, \tag{0.7}
\end{equation*}
$$

where Φ_{K} is the Hersch-Pfluger distortion function, cf. [HP], [LV], and

$$
\begin{align*}
M(K) & =2 \Phi_{\sqrt{K}}^{2}(1 / \sqrt{2})-1=\frac{\lambda(\sqrt{K})-1}{\lambda(\sqrt{K})+1} \tag{0.8}\\
M(1 / K) & =M(K), \quad K \geq 1
\end{align*}
$$

The second one is the inequality (1.8). Combining these ideas we derive in Section 1 Theorem 1.4 which is the main proving tool of Lemmas 2.1 and 2.2 for K close to 1 in Section 2. The proof of (2.3) in Lemma 2.1 is an adaptation of the first part of the proof of Theorem 3.1 and the proof of Theorem 1.2 in [P2]. Roughly speaking, we modify those proofs by using the quasiconformal invariance of the harmonic measure instead of the quasisymmetric characterization of the class $\hat{\partial} \mathbb{Q}_{0}(K ; \boldsymbol{\Delta})$. Lemma 2.2 is an improvement of [P 1 , Lemma] for small $K \geq 1$. Lemmas 2.1 and 2.2 imply Theorem 2.3 which is our main result. It provides a new explicit and asymptotically sharp estimate $L(K)$ of K^{*} for all $K \geq 1$ which essentially improves those in [P1, Theorem] and [P2, Theorem 3.1*)]. Combining this

[^1]result with (0.1) yields a new bound of K^{*} which depends on the quasisymmetry constant M only. The problem of estimating K^{*} for quasihomographies was studied by Sakan and Zajac in [SZ]. They also applied (0.7) to get asymptotically sharp estimate of K^{*}. Section 3 provides comments dealing with two previous sections.

The author would like to express his sincere thanks to Professors Ken-ichi Sakan and Józef Zajac for their very helpful comments.

1. Some estimates involving the function $M(K)$

It was shown in [P5, Theorem 3.1] that

$$
\begin{equation*}
\max _{0 \leq r \leq 1}|\hat{\partial} F(r)-r| \leq M(K) \tag{1.1}
\end{equation*}
$$

for every $F \in \mathbb{Q}\left(K ; \mathbb{C}_{+}\right)$satisfying $\partial \hat{F}(z)=z, z=0,1, \infty$, and the equality is attained for some extremal mapping F_{K} such that $\hat{\partial} F_{K}\left(r_{K}\right)=1-r_{K}$ where $1-2 r_{K}=M(K)$. Let $f(t)=\hat{\partial} F(t)$ for $0 \leq t \leq 1$. If $f(t) \geq t$ then we put $g(t)=f(t)$. Otherwise, we put $g(t)=a_{t}+b_{t}-f\left(a_{t}+b_{t}-t\right)$ where $\left(a_{t}, b_{t}\right) \subset[0,1]$ is the bigest open interval such that $f(r)<r$ for every $a_{t}<r<b_{t}$. g is an increasing function on $[0,1]$ because f does so. Furthermore, $0<g(t)-t=a_{t}+b_{t}-t-f\left(a_{t}+b_{t}-t\right)<b_{t}-t \leq 1-t$ if $f(t)<t$. Therefore $0<g(t)-t \leq \min \{1-t, M(K)\}$ for every $0 \leq t \leq 1$ by (1.1) and the inequality $f(t) \leq 1$. Since $\int_{a_{t}}^{b_{t}}|f(r)-r| d r=\int_{a_{t}}^{b_{t}}(g(r)-r) d r$ if $f(t)<t$, we obtain

$$
\begin{align*}
& \int_{J_{0}}^{1}|\hat{\partial} F(r)-r| d r=\int_{0}^{1}(g(r)-r) d r \tag{1.2}\\
& \quad \leq \int_{0}^{1} \min \{1-r, M(K)\} d r=M(K)-\frac{1}{2} M^{2}(K)
\end{align*}
$$

provided $F \in \mathbb{Q}\left(K ; \mathbb{C}_{+}\right)$. In what follows we derive counterparts of the estimates (1.1) and (1.2) for the unit disk. We will use the symbol $\operatorname{Arg} z$ to denote the argument of $z \in \mathbb{C} \backslash\{0\}$, i.e. the unique $t,-\pi<t \leq \pi$, satisfying $z=|z| e^{i t}$.

Theorem 1.1. If $K \geq 1, \zeta \in \mathbf{T}$ and $\varphi \in \mathbb{Q}_{0}(K ; \Delta)$ satisfies
$\hat{\partial} \varphi(\zeta)=\zeta, \hat{\partial} \varphi(-\zeta)=-\zeta$ then

$$
\begin{equation*}
\max _{z \in \mathrm{~T}}|\operatorname{Arg}(\partial \varphi(z) / z)| \leq \pi M(K) \tag{1.3}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\max _{z \in \mathrm{~T}}|\hat{\partial} \varphi(z)-z| \leq 2 \sin (\pi M(K) / 2) \tag{1.4}
\end{equation*}
$$

Proof. Let $K \geq 1$ and $\varphi \in \mathbb{Q}_{0}(K ; \Delta)$ satisfies $\hat{\partial} \varphi(\zeta)=\zeta$, $\partial \varphi(-\zeta)=-\zeta$ for some $\zeta \in \mathbf{T}$. Without loss of generality we can assume that $\zeta=1$. It can be always achieved after a suitable rotation. Following Krzyż, cf. [K1], we assign to φ a K-qc. self-mapping F of \mathbb{C}_{+}such that

$$
\begin{equation*}
\varphi\left(e^{\pi i z}\right)=e^{\pi i F(z)}, \quad z \in \mathbb{C}_{+} \tag{1.5}
\end{equation*}
$$

and $\partial \hat{F}$ keeps the points $0,1,2$ fixed. It follows from (1.1) that $|\partial \hat{\partial}(t)-t| \leq M(K)$ for every $t \in \mathbb{R}$. By this and (1.5) we have $\left|\operatorname{Arg}\left(\partial \varphi\left(e^{i t}\right) e^{-i t}\right)\right|=|\pi \partial \hat{\partial}(t / \pi)-t| \leq \pi M(K)$ for all $t \in \mathbb{R}$, which proves (1.3); (1.4) is an obvious consequence of (1.3).

Remark. Unfortunately, the estimates (1.3) and (1.4) are not sharp for $K>1$. It is caused by the fact that the extremal function F_{K} is not periodic with the period 2 . Therefore the strict inequality holds in (1.3) and (1.4) for $K>1$. However, the obtained results seem to be fairly accurate at least for K close to 1 .

Theorem 1.2. If $K \geq 1, \zeta \in \mathbf{T}$ and $\varphi \in \mathbb{Q}_{0}(K ; \Delta)$ satisfies $\partial \varphi(\zeta)=\zeta, \hat{\partial} \varphi(-\zeta)=-\zeta$ then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathbf{T}}|\operatorname{Arg}(\partial \varphi(z) / z)||d z| \leq \pi\left(M(K)-\frac{1}{2} M^{2}(K)\right) \tag{1.6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{T}|\hat{\partial} \varphi(z)-z||d z| \leq 2 \sin \left(\frac{\pi}{4}\left(2 M(K)-M^{2}(K)\right)\right) \tag{1.7}
\end{equation*}
$$

Proof. Let φ and F be as in the proof of the previous theorem. Applying (1.2) and (1.5) we get

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{\mathbf{T}}|\operatorname{Arg}(\hat{\partial} \varphi(z) / z)||d z| & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|\pi \hat{\partial} F(t / \pi)-t| d t \\
& \leq \pi\left(M(K)-\frac{1}{2} M^{2}(K)\right)
\end{aligned}
$$

which proves (1.6). Similarly, by using Jensen's inequality for concave functions, we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{\mathbf{T}}|\hat{\partial} \varphi(z)-z||d z|=\frac{1}{2 \pi} \int_{0}^{2 \pi} 2 \sin \frac{1}{2}\left|\pi \hat{\partial} F\left(\frac{t}{\pi}\right)-t\right| d t \leq \\
& 2 \sin \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2}\left|\pi \hat{\partial} F\left(\frac{t}{\pi}\right)-t\right| d t\right) \leq 2 \sin \left(\frac{\pi}{4}\left(2 M(K)-M^{2}(K)\right)\right),
\end{aligned}
$$

which proves (1.7).
We proceed with extending the above theorem to any $\varphi \in \mathbb{Q}(K ; \Delta)$. We first prove the basic statement in this paper.

Lemma 1.3. For every $a \in \Delta$ and $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\mathrm{T}}\left|\operatorname{Arg}\left(\left(h_{a} \circ \gamma\right)(z) / h_{a}(z)\right)\right||d z| \leq \max _{z \in \mathrm{~T}}|\operatorname{Arg}(\gamma(z) / z)| \tag{1.8}
\end{equation*}
$$

Proof. Fix $a \in \Delta$ and $\gamma \in \operatorname{Hom}^{+}(\mathbf{T})$. Let

$$
\begin{equation*}
m=\max _{z \in T}|\operatorname{Arg}(\gamma(z) / z)| \tag{1.9}
\end{equation*}
$$

Clearly, if $m=\pi$ then (1.8) holds. Assume $m<\pi$. For any $z, w \in \mathbf{T}$ we denote by $I(z, w)$ the closed arc directed counterclockwise from z to w. Consider the function $f: \mathbf{T} \rightarrow \mathbb{R}$ defined by $f(z)=\left|I\left(h_{a}(z), h_{a} \circ \gamma(z)\right)\right|_{1}$ as $\operatorname{Arg}(\gamma(z) \mid z) \geq 0$ and $f(z)=\mid I\left(h_{a} \circ\right.$ $\left.\hat{\gamma}(z), h_{a}(z)\right) h_{1}$ otherwise. We assign to f two functions f_{+}and f_{-} defined on \mathbf{T} as follows: $f_{+}(z)=f(z)$ for $\operatorname{Arg}(\gamma(z) / z)>0$ and $f_{-}(z)=0$ otherwise, $f_{-}(z)=f\left(z e^{i m}\right)$ for $\operatorname{Arg}\left(\gamma\left(z e^{i m}\right) / z e^{i m}\right)<0$
and $f_{-}(z)=0$ otherwise. Evidently, $f(z)=f_{+}(z)+f_{-}\left(z e^{-i m}\right)$ and consequently

$$
\begin{align*}
\int_{\mathbf{T}} f(z)|d z| & =\int_{\mathbf{T}} f_{+}(z)|d z|+\int_{\mathbf{T}} f_{-}^{\prime}\left(z e^{-i m}\right)|d z| \tag{1.10}\\
& =\int_{\mathbf{T}}\left(f_{+}(z)+f_{-}(z)\right)|d z|
\end{align*}
$$

Since γ and h_{a} are sense-preserving, we conclude from (1.9) that $f_{+}(z)+f_{-}(z) \leq\left|I\left(h_{a}(z), h_{a}\left(z e^{i m}\right)\right)\right|_{1}$. Hence by (1.10) and Fubini's and Cauchy's integral theorems

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{\mathbf{T}} f(z)|d z| \leq \frac{1}{2 \pi} \int_{\mathbf{T}}\left|I\left(h_{a}(z), h_{a}\left(z e^{i m}\right)\right)\right|_{1}|d z| \\
& =\frac{1}{2 \pi} \int_{\mathbf{T}}\left|h_{a}\left(I\left(z, z e^{i m}\right)\right)\right|_{1}|d z|=\frac{1}{2 \pi} \int_{\mathbf{T}} \int_{0}^{m} \frac{1-|a|^{2}}{\left|1-\bar{a} z e^{i t}\right|^{2}} d t|d z| \\
& =\frac{1}{2 \pi} \int_{0}^{m} \int_{\mathbf{T}} \frac{1-|a|^{2}}{\left|1-\bar{a} z e^{i t}\right|^{2}}|d z| d t=\frac{1}{2 \pi} \int_{0}^{m} 2 \pi d t=m .
\end{aligned}
$$

This and the obvious inequality $\left|\operatorname{Arg}\left(\left(h_{a} \circ \gamma\right)(z) / h_{a}(z)\right)\right| \leq f(z)$, $z \in \mathbf{T}$, imply (1.8).

Theorem 1.4. If $K \geq 1, \varphi \in \mathbb{Q}(K ; \Delta)$ and $a=\varphi(0)$ then $\gamma:=\hat{\partial} \varphi$ satisfies

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}} \frac{1}{2 \pi} \int_{\mathbf{T}}\left|\operatorname{Arg}\left(h_{-a}\left(e^{i \theta} z\right) / \gamma(z)\right)\right||d z| \leq \pi M(K), \tag{1.11}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\min _{\theta \in \mathbb{R}} \frac{1}{2 \pi} \int_{\mathbf{T}}\left|h_{-a}\left(e^{i \theta} z\right)-\gamma(z)\right||d z| \leq 2 \sin \left(\frac{\pi}{2} M(K)\right) \tag{1.12}
\end{equation*}
$$

Proof. Fix $K \geq 1$ and $\varphi \in \mathbb{Q}(K ; \Delta)$. By the Darboux property there exist two points $\zeta_{1}, \zeta_{2} \in \mathbf{T}$ such that $\hat{\partial}\left(h_{a} \circ \varphi\right)\left(\zeta_{1}\right)=\zeta_{2}$ and $\hat{\partial}\left(h_{a} \circ \varphi\right)\left(-\zeta_{1}\right)=-\zeta_{2}$. Then, setting $e^{i \theta}=\zeta_{2} / \zeta_{1}$ and $\psi(z):=h_{a} \circ$
$\varphi\left(e^{-i \theta} z\right), z \in \boldsymbol{\Delta}$, we see that $\psi \in \mathbb{Q}_{0}(K ; \boldsymbol{\Delta})$ and $\hat{\partial} \psi$ keeps the points $\zeta_{2},-\zeta_{2}$ fixed. Applying Lemma 1.3 and Theorem 1.1 we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{\mathrm{T}}\left|\operatorname{Arg}\left(h_{-a}\left(e^{i \theta} z\right) / \gamma(z)\right)\right||d z| \\
& \quad=\frac{1}{2 \pi} \int_{\mathrm{T}}\left|\operatorname{Arg}\left(h_{-a}(z) / h_{-a} \circ h_{a} \circ \gamma\left(e^{-i \theta} z\right)\right)\right||d z| \\
& \quad=\frac{1}{2 \pi} \int_{\mathrm{T}}\left|\operatorname{Arg}\left(h_{-a}(z) / h_{-a} \circ \partial \hat{\psi}(z)\right)\right||d z| \\
& \quad \leq \max _{z \in \mathrm{~T}}|\operatorname{Arg}(\partial \hat{\partial} \psi(z) / z)| \leq \pi M(K),
\end{aligned}
$$

which proves (1.11). Hence by Jensen's inequality for concave functions

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{\mathbf{T}}\left|h_{-a}\left(e^{i \theta} z\right)-\gamma(z)\right||d z| \\
& \quad=\frac{1}{2 \pi} \int_{\mathbf{T}} 2 \sin \frac{1}{2}\left|\operatorname{Arg}\left(h_{-a}\left(e^{i \theta} z\right) / \gamma(z)\right)\right||d z| \\
& \quad \leq 2 \sin \left(\frac{1}{4 \pi} \cdot \int_{\mathbf{T}}\left|\operatorname{Arg}\left(h_{-a}\left(e^{i \theta} z\right) / \gamma(z)\right)\right||d z|\right) \leq 2 \sin \left(\frac{\pi}{2} M(K)\right),
\end{aligned}
$$

and this yields (1.12).

2. An estimate of $K\left[E_{\gamma}\right]$ for $\gamma \in \hat{O} \mathbb{Q}(K ; \Delta)$

Suppose $\Omega \subset \mathbb{C}$ is a domain and φ is a sense-preserving diffeomorphism of Ω onto $\Omega^{\prime}=\varphi(\Omega)$. Then the Jacobian $|\partial \varphi(\zeta)|^{2}-$ $|\bar{\partial} \varphi(\zeta)|^{2}$ is positive at every $\zeta \in \Omega$. Define $k[\varphi](\zeta)=|\bar{\partial} \varphi(\zeta) / \partial \varphi(\zeta)|$ for $\zeta \in \Omega$ and $k[\varphi]=\sup _{\zeta \in \Omega} k[\varphi](\zeta)$. It is well known that $\varphi \in$ $\mathbf{Q}\left(\Omega, \Omega^{\prime}\right)$ if $k[\varphi]<1$, and

$$
\begin{equation*}
K[\varphi]=(1+k[\varphi])(1-k[\varphi])^{-1} \tag{2.1}
\end{equation*}
$$

cf. [LV]: We denote by $\mathbb{Q}^{0}(K ; \Delta)$ the class of all $\varphi \in \mathbb{Q}(K ; \Delta)$ normalized by

$$
\begin{equation*}
\mathcal{P}[\hat{\partial} \varphi](0)=0 \tag{2.2}
\end{equation*}
$$

It follows from (0.3) that $\varphi \in \mathbb{Q}^{0}(K ; \boldsymbol{\Delta})$ iff $\varphi \in \mathbb{Q}(K ; \boldsymbol{\Delta})$ and $F_{\dot{\partial}_{\varphi}}(0)=0$.

Lemma 2.1. If $K \geq 1, \varphi \in \mathbb{Q}^{0}(K ; \Delta), \gamma:=\hat{\partial} \varphi$ and $r_{l}=$ $\cos \left(\pi / 2^{l+1}\right), r_{l}^{\prime}=\sin \left(\pi / 2^{l+1}\right), l=1,2,3$, then

$$
\begin{align*}
& k^{2}\left[F_{\gamma}\right](0) \leq 1-\frac{2^{7} \sqrt{2}}{\pi}\left(\frac{1-|\varphi(0)|}{1+|\varphi(0)|}\right)^{5} \times \tag{2.3}\\
& \Phi_{K}^{2}\left(r_{1}\right) \Phi_{1 / K}^{2}\left(r_{1}^{\prime}\right) \Phi_{K}^{2}\left(r_{2}\right) \Phi_{1 / K}^{2}\left(r_{2}^{\prime}\right) \Phi_{K}\left(r_{3}\right) \Phi_{1 / K}\left(r_{3}^{\prime}\right)\left(2 \Phi_{K}^{2}\left(r_{3}\right)-1\right)
\end{align*}
$$

and

$$
\begin{align*}
k^{2}\left[F_{\gamma}\right](0) & \leq \sin 2 P(K,|\varphi(0)|) \\
& +(1-\sin 2 P(K,|\varphi(0)|))(2 \sin (\pi M(K) / 2) \tag{2.4}\\
& \left.+|\varphi(0)|^{2}+\sin P(K,|\varphi(0)|)\right)
\end{align*}
$$

where

$$
\begin{equation*}
P(K, r)=\frac{\pi}{4}-2(1-r)(1+r)^{-1} \arccos \Phi_{K}\left(\cos \frac{\pi}{8}\right) . \tag{2.5}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& k\left[F_{\gamma}\right](0) \leq \sin 2 P(K,|\varphi(0)|) \\
& \quad+\sin P(K,|\varphi(0)|) \cos ^{2} 2 P(K,|\varphi(0)|)(1-2 \sin (\pi M(K) / 2) \tag{2.6}\\
& \left.\quad-|\varphi(0)|^{2}-\sin P(K,|\varphi(0)|) \sin 2 P(K,|\varphi(0)|)\right)^{-1}
\end{align*}
$$

as the denominator is positive and $P(K,|\varphi(0)|) \leq \pi / 8$.
Proof. Fix $K \geq 1$ and $\varphi \in \mathbb{Q}^{0}(K ; \Delta)$. Let $a=\varphi(0) \in \Delta$. Then $\psi:=h_{a} \circ \varphi \in \mathbb{Q}_{0}(K ; \boldsymbol{\Delta})$. Assume I is an arbitrary subarc of \mathbf{T}. It follows from the quasi-invariance of the harmonic measure ω that

$$
\begin{align*}
\frac{1}{K} \mu\left(\cos \left(\frac{\pi}{2} \omega(0, \Delta)[I]\right)\right) & \leq \mu\left(\cos \left(\frac{\pi}{2} \omega(\psi(0), \Delta)[\partial \hat{\psi}(I)]\right)\right) \tag{2.7}\\
& \leq K \mu\left(\cos \left(\frac{\pi}{2} \omega(0, \Delta)[I]\right)\right)
\end{align*}
$$

cf. $[\mathrm{H}]$. Here μ stands for the module of the Grötzsch extremal domain $\Delta \backslash[0, r]$, cf. [LV]. Since $\psi(0)=0$ and $2 \pi \omega(0, \Delta)[I]=|I|_{1}$ for any $\operatorname{arc} I \subset \mathrm{~T}$, we get by (2.7) and the definition of Φ_{K}
(2.8) $\quad \Phi_{1 / K}\left(\cos \frac{|I|_{2}}{4}\right) \leq \cos \frac{\left|h_{\mathrm{a}} \circ \gamma(I)\right|_{1}}{4} \leq \Phi_{K}\left(\cos \frac{\mid I_{1}}{4}\right)$.

Set $\alpha_{K, l}=4 \arccos \Phi_{K}\left(r_{l}\right), l=1,2,3$. An easy computation applying the identity

$$
\begin{equation*}
\Phi_{K}^{2}(r)+\Phi_{1 / K}^{2}\left(\sqrt{1-r^{2}}\right)=1, \quad 0 \leq r \leq 1 \tag{2.9}
\end{equation*}
$$

cf. [AVV, Theorem 3.3], shows that
(2.10) $\quad \sin \left(\alpha_{K, l} / 2\right)=2 \Phi_{K}\left(r_{l}\right) \Phi_{1 / K}\left(r_{l}^{\prime}\right), \quad l=1,2$,
and

$$
\begin{equation*}
\sin \left(\alpha_{K, 3}\right)=4 \Phi_{K}\left(r_{3}\right) \Phi_{1 / K}\left(r_{3}^{\prime}\right)\left(2 \Phi_{K}^{2}\left(r_{3}\right)-1\right) . \tag{2.11}
\end{equation*}
$$

It follows from (2.8) and the inequality $\left|h_{-a}(I)\right|_{1}=\int_{I}\left|h_{-a}^{\prime}(z)\right||d z| \geq$ $(1-|a|)(1+|a|)^{-1}|I|_{1}$ that

$$
\begin{align*}
|\gamma(I)|_{1}=\left|h_{-a} \circ h_{a} \circ \gamma(I)\right|_{1} & \geq(1-|a|)(1+|a|)^{-1}\left|h_{a} \circ \gamma(I)\right|_{1} \tag{2.12}\\
& \geq(1-|a|)(1+|a|)^{-1} \alpha_{K, l}
\end{align*}
$$

for $|I|_{1}=\pi / 2^{l-1}, l=1,2,3$. The inequalities (2.12), $l=1,2$, correspond to (1.2)-and (1.3) in [P2] after replacing $2 \pi /(1+k)$ and $2 \pi /(1+k)^{2}$ by $\alpha_{K, 1}$ and $\alpha_{K, 2}$, respectively. Define for every $\eta \in$ $\operatorname{Hom}(\mathbf{T})$ and any integers $n, m \in \mathbb{Z}$

$$
\begin{equation*}
\eta_{m}^{n}:=\frac{1}{2 \pi} \int_{\mathbf{T}} z^{m}(\eta(z))^{n}|d z| \tag{2.13}
\end{equation*}
$$

A calculation similar to that in the proof of Theorem 1.2 in [P2] shows that

$$
\begin{align*}
& \left|\gamma_{0}^{2}\right| \leq \cos \left(\alpha_{K, 2} \frac{1-|a|}{1+|a|}\right)=\sin 2 P(K,|a|) \\
& \left|\gamma_{1}^{1}\right| \leq \cos \left(\frac{\pi}{4}+\frac{\alpha_{K, 2}}{2} \frac{1-|a|}{1+|a|}\right)=\sin P(K,|a|) \tag{2.14}\\
& 1 \geq\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2} \geq \frac{2 \sqrt{2}}{\pi} \sin ^{2}\left(\frac{\alpha_{K, 1}}{2} \frac{1-|a|}{1+|a|}\right) \sin \left(\alpha_{K, 3} \frac{1-|a|}{1+|a|}\right) .
\end{align*}
$$

Since $\varphi \cdot \in \mathbb{Q}^{0}(K ; \Delta), F_{\gamma}(0)=0$. Differentiating at the point $z=0$ both sides of the equality $\mathcal{P}\left[h_{z} \circ \gamma\right]\left(F_{\gamma}(z)\right)=0, z \in \Delta$, we see that

$$
\gamma_{-1}^{1} \partial F_{\gamma}(0)+\gamma_{1}^{1} \bar{\partial} F_{\gamma}(0)=1 \quad, \quad \gamma_{-1}^{1} \bar{\partial} F_{\gamma}(0)+\gamma_{1}^{1} \overline{\partial F_{\gamma}(0)}=-\gamma_{0}^{2},
$$

hence

$$
\begin{equation*}
\partial F_{\gamma}(0)=\frac{\overline{\gamma_{-1}^{1}}+\overline{\gamma_{0}^{2}} \gamma_{1}^{1}}{\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}} \quad, \quad \bar{\partial} F_{\gamma}(0)=\frac{-\overline{\gamma_{-1}^{1}} \gamma_{0}^{2}-\gamma_{1}^{1}}{\mid{\left.\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}}^{2}}, \tag{2.15}
\end{equation*}
$$

and finally

$$
\begin{equation*}
1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2}=\frac{\left(1-\left|\gamma_{0}^{2}\right|^{2}\right)\left(\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}\right)}{\overline{\gamma_{-1}^{1}}+\left.\overline{\gamma_{0}^{2}} \gamma_{1}^{1}\right|^{2}} \tag{2.16}
\end{equation*}
$$

From this, (2.16) and (2.14)
(2.17)

$$
\begin{aligned}
1 & -\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2}=\frac{\left(1-\left|\gamma_{0}^{2}\right|^{2}\right)\left(\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}\right)}{\left|\gamma_{-1}^{1}+\gamma_{0}^{2} \gamma_{1}^{1}\right|^{2}} \geq \frac{1-\left|\gamma_{0}^{2}\right|}{1+\left|\gamma_{0}^{2}\right|}\left(\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}\right) \\
& \geq \frac{2 \sqrt{2}}{\pi} \tan ^{2}\left(\frac{\alpha_{K, 2}}{2} \frac{1-|a|}{1+|a|}\right) \sin ^{2}\left(\frac{\alpha_{K, 1}}{2} \frac{1-|a|}{1+|a|}\right) \sin \left(\alpha_{K, 3} \frac{1-|a|}{1+|a|}\right) \\
& \geq \frac{2 \sqrt{2}}{\pi}\left(\frac{1-|a|}{1+|a|}\right)^{5} \sin ^{2} \frac{\alpha_{K, 1}}{2} \sin ^{2} \frac{\alpha_{K, 2}}{2} \sin \alpha_{K, 3} .
\end{aligned}
$$

Hence by (2.10) and (2.11) the bound (2.3) follows. We derive now (2.4). By (2.13) we get for every $\theta \in \mathbb{R}$

$$
\begin{aligned}
\left|\left|\gamma_{-1}^{1}\right|\right. & \left.-1\left|\leq\left|\gamma_{-1}^{1}-e^{i \theta}\right|=\frac{1}{2 \pi}\right| \int_{\mathbf{T}}\left(\gamma(z) \bar{z}-e^{i \theta}\right) \right\rvert\, d z \| \\
& \leq \frac{1}{2 \pi} \int_{\mathbf{T}}\left|\gamma(z)-h_{-a}\left(e^{i \theta} z\right)\left\|\left.d z\left|+\frac{1}{2 \pi}\right| \int_{\mathbf{T}}\left(h_{-a}\left(e^{i \theta} z\right) \bar{z}-e^{i \theta}\right) \right\rvert\, d z\right\|\right. \\
& =\frac{1}{2 \pi} \int_{\mathbf{T}}\left|\gamma(z)-h_{-a}\left(e^{i \theta} z\right) \| d z\right|+|a|^{2} .
\end{aligned}
$$

Furthermore, by Theorem 1.4

$$
\begin{align*}
1-\left|\gamma_{-1}^{1}\right| & \leq \min _{\hat{\partial} \in \mathbb{R}} \frac{1}{2 \pi} \int_{\mathbf{T}}\left|\gamma(z)-h_{-a}\left(e^{i \theta} z\right)\right||d z|+|a|^{2} \tag{2.18}\\
& \leq 2 \sin \left(\frac{\pi}{2} M(K)\right)+|a|^{2}
\end{align*}
$$

It follows from (2.16) that

$$
1-\left|\frac{\bar{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2} \geq \frac{\left(1-\left|\gamma_{0}^{2}\right|^{2}\right)\left(\left|\gamma_{-1}^{1}\right|^{2}-\left|\gamma_{1}^{1}\right|^{2}\right)}{\left(1+\left|\gamma_{0}^{2}\right|\right)\left(\left|\gamma_{-1}^{1}\right|+\left|\gamma_{1}^{\mid}\right|\right)}=\left(1-\left|\gamma_{0}^{2}\right|\right)\left(\left|\gamma_{-1}^{1}\right|-\left|\gamma_{1}^{1}\right|\right) .
$$

Combining this, (2.14) and (2.18) gives (2.4). The last bound (2.6) is a direct conclusion from (2.14), (2.15), (2.18) and the following estimate

$$
\begin{aligned}
k\left[F_{\gamma}\right](0) & =\frac{\left|\overline{\gamma_{-1}^{1}} \gamma_{0}^{2}-\gamma_{1}^{1}\right|}{\left|\overline{\gamma_{-1}^{1}}+\overline{\gamma_{0}^{2}} \gamma_{1}^{1}\right|} \\
& \leq\left|\gamma_{0}^{2}\right|+\left|\gamma_{1}^{1}\right|\left(1-\left|\gamma_{0}^{2}\right|^{2}\right)\left(\left|\gamma_{-1}^{1}\right|-\left|\gamma_{0}^{2}\right|\left|\gamma_{1}^{1}\right|\right)^{-1} .
\end{aligned}
$$

The estimate of $k\left[F_{\gamma}\right](0)$ in the above lemma depends on K and $|a|$. The next lemma provides a bound of $|a|$ which depends on K only. Consider in the class $\mathbb{Q}^{0}(K ; \boldsymbol{\Delta})$ the basic distortion functional

$$
\begin{equation*}
\rho(K)=\sup \left\{|\varphi(0)|: \varphi \in \mathbb{Q}^{0}(K ; \Delta)\right\} \tag{2.19}
\end{equation*}
$$

Lemma 2.2. For every $K \geq 1$

$$
\begin{align*}
\rho(K) \leq p(K):= & \min \left\{2 \sin \left(\frac{\pi}{2} M(K)\right)\right. \\
& \left.1-2\left(\sqrt{3} \Phi_{K}(\sqrt{3} / 2) \Phi_{1 / K}^{-1}(1 / 2)+1\right)^{-1}\right\} \tag{2.20}
\end{align*}
$$

Proof. Fix $K \geq 1, \varphi \in \mathbb{Q}^{0}(K ; \Delta)$ and set $\gamma=\hat{\partial} \varphi, a=\varphi(0)$. It follows from $\mathcal{P}[\gamma](0)=0$ that for every arc $I \subset \mathbf{T}$ of length $|I|_{1}=$ $2 \pi / 3,|\gamma(I)|_{1} \leq 4 \pi / 3$, cf. [LP] for details. Applying now (2.8) gives $|\varphi(0)| \leq 1 / 2+\sqrt{3} / 2 \cot \left(\pi / 3+\arccos \Phi_{K}(\sqrt{3} / 2)\right)$, cf. $[P 1,(4)]$. Hence by (2.9) we derive

$$
\begin{equation*}
\rho(K) \leq 1-2\left(\sqrt{3} \Phi_{K}(\sqrt{3} / 2) \Phi_{1 / K}^{-1}(1 / 2)+1\right)^{-1} \tag{2.21}
\end{equation*}
$$

This estimate is not sharp because the right hand side tends to $1 / 2$ as $K \rightarrow 1^{+}$. To improve it for small K close to 1 we will use Theorem 1.4. Since $\mathcal{P}[\gamma](0)=0$, we have for every $\theta \in \mathbb{R}$

$$
\begin{aligned}
|\varphi(0)|=|a| & =\frac{1}{2 \pi}\left|\int_{\mathbf{T}} h_{-a}\left(e^{i \theta} z\right)\right| d z\left|-\int_{\mathbf{T}} \gamma(z)\right| d z| | \\
& \left.\left.\leq \frac{1}{2 \pi} \int_{\mathbf{T}} \right\rvert\, h_{-a}\left(e^{i \theta} z\right)-\gamma(z)\right)||d z|
\end{aligned}
$$

Now, applying Theorem 1.4 gives $|\varphi(0)| \leq 2 \sin (\pi M(K) / 2)$ and so $\rho(K) \leq 2 \sin (\pi M(K) / 2)$ for $K \geq 1$. Combining this and (2.21) leads to (2.20).

Consider the second distortion functional $\rho_{*}(K)$ in the class $\mathbb{Q}^{0}(K ; \Delta)$ given by

$$
\begin{equation*}
\rho_{*}(K)=\sup \left\{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}: \varphi \in \mathbb{Q}^{0}(K ; \Delta)\right\} . \tag{2.22}
\end{equation*}
$$

In view of the above lemma $\rho(K)<1$ and so

$$
\begin{equation*}
\rho_{*}(K)=\frac{1+\rho(K)}{1-\rho(K)} \leq p_{*}(K):=\frac{1+p(K)}{1-p(K)}<\infty, \quad K \geq 1 \tag{2.23}
\end{equation*}
$$

Now we are ready to prove the main result in this section which improves Theorem in [P1] and Theorem 3.1 in [P2] in the whole range of $K \geq 1$.

Theorem 2.3. If $K \geq 1$ and $\gamma \in \hat{\partial} \mathbb{Q}_{\mathrm{T}}(K)$ then F_{γ} and E_{γ} are $(1+k)(1-k)^{-1}-q c$. mappings and $k=k\left[E_{\gamma}\right]=k\left[F_{\gamma}\right]$ satisfies

$$
\begin{align*}
& k^{2} \leq 1-\frac{2^{7} \sqrt{2}}{\pi} p_{*}^{-5}(K) \times \tag{2.24}\\
& \Phi_{K}^{2}\left(r_{1}\right) \Phi_{1 / K}^{2}\left(r_{1}^{\prime}\right) \Phi_{K}^{2}\left(r_{2}\right) \Phi_{1 / K}^{2}\left(r_{2}^{\prime}\right) \Phi_{K}\left(r_{3}\right) \Phi_{1 / K}\left(r_{3}^{\prime}\right)\left(2 \Phi_{K}^{2}\left(r_{3}\right)-1\right) \leq \\
& 1-\frac{2^{7} \sqrt{6}}{3^{3} \pi} \Phi_{K}^{-5}\left(\frac{\sqrt{3}}{2}\right) \Phi_{1 / K}^{5}\left(\frac{1}{2}\right) \times \\
& \Phi_{K}^{2}\left(r_{1}\right) \Phi_{1 / K}^{2}\left(r_{1}^{\prime}\right) \Phi_{K}^{2}\left(r_{2}\right) \Phi_{1 / K}^{2}\left(r_{2}^{\prime}\right) \Phi_{K}\left(r_{3}\right) \Phi_{1 / K}\left(r_{3}^{\prime}\right)\left(2 \Phi_{K}^{2}\left(r_{3}\right)-1\right)
\end{align*}
$$

and

$$
\begin{align*}
k^{2} & \leq \sin 2 P(K)+(1-\sin 2 P(K))\left(2 \sin \left(\frac{\pi}{2} M(K)\right)\right. \tag{2.25}\\
& \left.+4 \sin ^{2}\left(\frac{\pi}{2} M(K)\right)+\sin P(K)\right)
\end{align*}
$$

where

$$
\begin{equation*}
P(K)=P(K, p(K))=\frac{\pi}{4}-2 p_{*}^{-1}(K) \arccos \Phi_{K}\left(\cos \frac{\pi}{8}\right), \tag{2.26}
\end{equation*}
$$

and $r_{l}, r_{l}^{\prime}, l=1,2,3$, were defined in Lemma 2.1. Moreover,

$$
\begin{align*}
k & \leq \sin 2 P(K)+\sin P(K) \cos ^{2} 2 P(K)\left(1-2 \sin \left(\frac{\pi}{2} M(K)\right)\right. \tag{2.27}\\
& \left.-4 \sin ^{2}\left(\frac{\pi}{2} M(K)\right)-\sin P(K) \sin 2 P(K)\right)^{-1}
\end{align*}
$$

whenever $P(K) \leq \pi / 8$.
Proof. Fix $K \geq 1$ and $\gamma \in \hat{\partial} \mathbb{Q}(K ; \Delta)$. If $z \in \Delta$ then $\gamma_{z}:=h_{z} \circ$ $\gamma \circ h_{-F_{\gamma}(z)} \in \hat{O} \mathbb{Q}(K ; \Delta)$ and by $(0.5) h_{-F_{\gamma}(z)} \circ F_{\gamma_{z}}(0)=F_{\gamma}\left(h_{-z}(0)\right)=$ $F_{\gamma}(z)$. Hence $F_{\gamma_{s}}(0)=h_{F_{\gamma}(z)}\left(F_{\gamma}(z)\right)=0$ and applying (0.5) once again we have $k\left[F_{\gamma}\right](z)=k\left[h_{F_{\gamma}(z)} \circ F_{\gamma} \circ h_{-z}\right](0)=k\left[F_{\gamma_{z}}\right](0)$ for every $z \in \Delta$. Consequently,

$$
\begin{equation*}
k:=k\left[F_{\gamma}\right]=\sup _{z \in \Delta} k\left[F_{\gamma_{s}}\right](0) \leq \sup \left\{k\left[F_{\partial \varphi}\right](0): \varphi \in \mathbb{Q}^{0}(K ; \Delta)\right\} \tag{2.28}
\end{equation*}
$$

It follows from (2.5), (2.23) and (2.26) that for each $\varphi \in \mathbb{Q}^{0}(K ; \Delta)$, $P(K,|\varphi(0)|) \leq P(K)$. From this, (2.28) and the formulas (2.3), (2.4) and (2.6) we easily derive corresponding bounds (2.24), (2.25) and $(2.27)^{*)}$ in our theorem. Moreover, by (2.20) we get $p_{*}(K) \leq$ $\sqrt{3} \Phi_{K}(\sqrt{3} / 2) \Phi_{1 / K}^{-1}(1 / 2)$, which completes the proof of (2.24). By definition, $E_{\gamma}=\check{F}_{\gamma}$. Therefore $k=k\left[E_{\gamma}\right]=k\left[F_{\gamma}\right]$ and $E_{\gamma} \in$ $\mathbb{Q}\left((1+k)(1-k)^{-1} ; \Delta\right)$.

Corollary 2.4. If γ is an M-qs. automorphism of $\mathbf{T}, 1 \leq$ $M<\infty$, then F_{γ} and E_{γ} are $(1+k)(1-k)^{-1}-q c$. mappings and $k=k\left[E_{\gamma}\right]=k\left[F_{\gamma}\right]$ satisfies the inequalities (2.24), (2.25) and (2.27) after K has been replaced by $\min \left\{M^{3 / 2}, 2 M-1\right\}$.

Proof. Modifying the proof of Krzyż's Theorem from [K1] by applying Lehtinen's result (0.1) we deduce that M-qs. automorphism of \mathbf{T} has a K-qc. extension to Δ with $K \leq \min \left\{M^{3 / 2}, 2 M-1\right\}$. In this way the corollary follows immediately from Theorem 2.3.

3. Complementary remarks

Remark 1. Let $\phi_{K}(x)=\min \left\{4^{1-1 / K} x^{1 / K}, 1\right\}$ and $h(x)=(1-$ $x)(1+x)^{-1}$ for all $0 \leq x \leq 1, K>0$. Consider the following functions

$$
\begin{aligned}
& \Phi_{0}[K, t](x)=\Phi_{t} \circ \phi_{K} \circ \Phi_{1 / t}(x), \\
& \Phi_{1}[K, t](x)=h \circ \Phi_{0}[1 / K, t] \circ h(x), \quad K>0, \\
& \Phi[K, t](x)= \begin{cases}\min \left\{\Phi_{0}[K, t](x), \Phi_{1}[K, t](x)\right\} & , K \geq 1 \\
\max \left\{\Phi_{0}[K, t](x), \Phi_{1}[K, t](x)\right\} & , 0<K \leq 1\end{cases}
\end{aligned}
$$

[^2]for $0 \leq x \leq 1, t>0$. Since, as shown in [LV], $\Phi_{2}(r)=2 \sqrt{r}(1+r)^{-1}$, $0 \leq r \leq 1$, and $\Phi_{2^{n+1}}=\Phi_{2^{n}} \circ \Phi_{2}, \Phi_{2^{-n}}=\Phi_{2^{n}}, n \in \mathbb{N}$, all functions $\Phi\left[K, 2^{n}\right], K>0, n \in \mathbb{Z}$, are elementary. Moreover, it follows from [P3, Theorem 1.3, Corollary 1.4] that $\Phi\left[K, 2^{n}\right]$ approaches monotonically Φ_{K} as $n \rightarrow \infty$. Moreover, it follows from [P3, Theorem 1.5, Corollary 1.6] that
$$
0 \leq \Phi_{0}\left[K, 2^{n}\right](x)-\Phi_{K}(x) \leq x^{2^{n+1} / K} \Phi_{0}\left[K, 2^{n}\right](x)
$$
for $K \geq 1, n=2,3,4, \ldots$,
$$
0 \leq \Phi_{1}\left[K, 2^{n}\right](x)-\Phi_{K}(x) \leq 2\left(\left(1-h(x)^{2^{n+1}}\right)^{-K 2^{-n}}-1\right) h^{K}(x)
$$
for $K \geq 1, n=1,2,3, \ldots$,
$$
0 \leq \Phi_{K}(x)-\Phi_{0}\left[K, 2^{n}\right](x) \leq\left(\left(1-x^{2^{n+1}}\right)^{-1 / K 2^{n}}-1\right) \Phi_{0}\left[K, 2^{n}\right](x)
$$
for $0<K \leq 1, n=1,2,3, \ldots$, and
\[

$$
\begin{aligned}
0 & \leq \Phi_{K}(x)-\Phi_{1}\left[K, 2^{n}\right](x) \\
& \leq 2\left(\left(1-h(x)^{K 2^{n+1}}\right)^{-1}-1\right) \min \left\{4^{1-K} h^{K}(x), 1\right\}
\end{aligned}
$$
\]

for $0<K \leq 1, n=2,3,4, \ldots$.
All bounds in Lemma 2.2 and Theorem 2.3 depend on Φ_{K}. Applying the approximating sequence $\Phi\left[K, 2^{n}\right], n=0,1, \ldots$, of Φ_{K}, we can estimate the right-hand side of (2.24), (2.25) and (2.27) by elementary functions with arbitrarily preassigned accuracy due to the above inequalities, cf. [P4, Theorem 3.1]. For example, we can determine the constants K_{1} and K_{2} such that the bound (2.27) is better than that given in (2.25) for $1 \leq K<K_{1}$ and the bound (2.25) is better than that in (2.24) for $1 \leq K<K_{2}$. Relevant computer calculations give $0<K_{1}-1.053180<10^{-6}$ and $0<K_{2}-1.113057<10^{-6}$. Moreover, $P(1.1)>\pi / 8$ and $2 \sin \left(\frac{\pi}{2} M(1.1)\right)+4 \sin ^{2}\left(\frac{\pi}{2} M(1.1)\right)+$ $\sin P(1.1) \sin 2 P(1.1)<1$, which completes the proof of (2.27).

Remark 2. Theorems 1.1 and 1.2 are counterparts of Corollaries 2.4 and 2.7 in [K2], respectively, for M-qs. functions h on \mathbb{R} such that $\sigma, \sigma(t)=h(t)-t$, is 2π-periodic on \mathbb{R} normalized by
$\int_{0}^{2 \pi} \sigma(t) d t=0$. They enable us to adopt some Krzyz's result from $[\mathrm{K} 2]$ for functions of the form $\mathbb{R} \ni t \mapsto h(t)-t \in \mathbb{R}$ where $h: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying $\gamma\left(e^{i t}\right)=e^{i h(t)},-\pi<h(0) \leq \pi$ and $\gamma \in \partial \mathbb{Q}_{0}(K ; \Delta)$, but we will not develop this point here.

REFERENCES

[AVV] Anderson, G.D., M.K. Vamanamurthy, and M. Vuorinen, Distortion function for plane quasiconformal mappings, Israel J. Math. 62 (1988), 1-16.
[BA] Beurling, A., and L.V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
[BS] Behnke, H., and F. Sommer, Theorie der analytischen Funktionen, Springer-Verlag, Berlin Heidelberg New York, 1976.
[C] Choquet, G., Sur un type de transformation analytique généralisant la réprésentation conforme et définie au moyen de functions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156-165.
[DE] Douady, A., and C.J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. no. 1-2, 157 (1986), 23-48.
[HP] Hersch, J., and A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudoanalytiques, C. R. Acad. Sci. Paris. 234 (1952), 43-45.
[H] Hersch, J., Longueurs extremales, mesure harmonique et distance hyperbolique, C. R. Acad. Sci. Paris 235 (1952), 569-571.
[Kn] Kneser, H., Lösung der Aufgabe 41, Jahresber. Deutsch. Math. Verein. 35 (1926), 123-124.
[K1] Krzyí, J.G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12 (1987), 19-24.
[K2] Krzyí, J.G., Harmonic analysis and boundary correspondence under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 14 (1989), 225-242.
[K3] Krzyí, J.G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Sklodowska, Sect. A 47 (1993), 90-95.
[LP] Leeko, A., and D. Partyka, An alternative proof of a result due to Douady and Earle, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 42 (1988), 59-68.
[Le] Lehtinen, M., Remarks on the maximal dilatation of the Beurling-

Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 133-139.
[LV] Lehto, O., and K.I. Virtanen, Quasiconformal mappings in the plane, Grundlehren der Math. Wissenschaften 126, 2-nd., Springer-Verlag, New York, Heidelberg and Berlin 1973.
[P1] Partyka, D., A distortion theorem for quasiconformal automorphisms of the unit disk, Ann. Polon. Math. 55 (1991), 277-281.
[P2] Partyka, D., The maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Maria Curie-Skłodowska, Sect. A 44 (1990), 45-57.
[P3] Partyka, D., Approximation of the Hersch-Pfiuger distortion function, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 18 (1993), 343-354.
[P4] Partyka, D., Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 45 (1992), 99-111.
[P5] Partyka, D., The maximal value of the function $[0,1] \ni r m \Phi_{K}^{2}(\sqrt{r})-r$, (1994), (to appear).
[SZ] Sakan, K., and J. Zajac, The Douady-Earle extension of quasihomographies, (1994), (to appear)
[Z] Zajac, J., The distortion function Φ_{K} and quasihomographies, edited by H. M. Srivastava and S. Owa, World Scientific, New Jersey, 1992, Current Topics of Analytic Function Theory, 403-428.

Instytut Matematyki UMCS

Plac M. Curie Skłodowskiej 1
20-031 Lublin, Poland
e-mail: partyka@golem.umcs.lublin.pl

[^0]: \dagger The work was supported by the Japanese Government Scholarschip. 1991 Mathematics Subject Classification. 30C62.
 Key words and phrases; Quasiconformal mappings in the plane, Special functions, Quasisymmetric functions, Douady-Earle extension.

[^1]: *) There is a minor error in the proof of this theorem. The theorem remains true after replacing the coefficient $1 /(2 \pi \sqrt{6})$ by $9 \sqrt{3} /(32 \pi)$ in the formula defining $F(K)$

[^2]: *) see Remark 1 in Section 3 for the completion of the proof of (2.27).

