ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLVIII, 8	SECTIO A	1994
· · · · · · · · · · · · · · · · · · ·	SECTION.	

Dariusz PARTYKA (Lublin)

On the Maximal Dilatation of the Douady–Earle Extension[†]

Abstract. This paper provides a new bound of the functional $|\varphi(0)|$ in the class $Q^0(K;\Delta)$ of all K-quasiconformal self-mappings φ of the unit disc Δ normalized by a vanishing integral of their boundary values. Let Φ_K , $K \ge 1$, denote the Hersch-Pfluger distortion function. Using some properties of the function $[0,1]\ni r\mapsto \Phi_K^2(\sqrt{r})-r$ a bound of $|\varphi(0)|$, as well as an improved estimate of the maximal dilatation of the Douady-Earle extension of a quasisymmetric automorphism of the unit circle are derived.

0. Introduction. Notations. Statement of results

Let $\mathbb{C} = \mathbb{C} \cup \{\infty\}$ denote the extended complex plane. A sensepreserving homeomorphism φ of a domain $\Omega \subset \mathbb{C}$ onto a domain $\Omega' \subset \mathbb{C}$ is said to be K-quasiconformal (abbreviated: K-qc.), $1 \leq K < \infty$, if for every quadrilateral $Q = Q(z_1, z_2, z_3, z_4)$ whose closure is contained in Ω , $Mod(\varphi(Q)) \leq K Mod(Q)$ (the geometric definition). Here Mod(Q) stands for the module of Q, cf. [LV]. We will write $\mathbb{Q}(K;\Omega,\Omega')$ for the class of all such mappings and $\mathbb{Q}(\Omega,\Omega') := \bigcup_{1 \leq K < \infty} \mathbb{Q}(K;\Omega,\Omega')$. The value $K[\varphi] = \inf\{K \geq 1:$

[†] The work was supported by the Japanese Government Scholarschip.

¹⁹⁹¹ Mathematics Subject Classification. 30C62.

Key words and phrases; Quasiconformal mappings in the plane, Special functions, Quasisymmetric functions, Douady-Earle extension.

 $\varphi \in \mathbb{Q}(K;\Omega,\Omega')$ is called the maximal dilatation of $\varphi \in \mathbb{Q}(\Omega,\Omega')$. In order to shorten the notation we write $\mathbb{Q}(K;\Omega)$ and $\mathbb{Q}(\Omega)$ for $\Omega = \Omega'$. If $\zeta \in \Omega$ is arbitrarily fixed then the notation $\varphi \in \mathbb{Q}_{\zeta}(K;\Omega)$ $(\mathbb{Q}_{\zeta}(\Omega))$ means that $\varphi \in \mathbb{Q}(K;\Omega)$ $(\mathbb{Q}(\Omega))$ and $\varphi(\zeta) = \zeta$. Assume $\Omega \subset \mathbb{C}$ is a simply connected domain bounded by a Jordan curve $\Gamma = \partial \Omega \subset \mathbb{C}$. If F is a complex-valued function on Ω then we put $\partial F(z) = \lim_{u \to z} F(u)$ if the limit exists as u approaches z in Ω and $\partial F(z) = 0$ otherwise. It is well known that every $\varphi \in \mathbb{Q}(\Omega)$ has a continuous extension to Γ being a sense-preserving homeomorphic self-mapping of Γ , cf. [LV]. Set $\partial \mathbb{Q}(K;\Omega) = \{\partial \varphi : \varphi \in \mathbb{Q}(K;\Omega)\}$ and $\partial \mathbb{Q}(\Omega) = \{\partial \varphi : \varphi \in \mathbb{Q}(\Omega)\}$. Let us denote by Δ , \mathbf{T} and \mathbb{C}_+ the unit disk $\{z : |z| < 1\}$, the unit circle $\{z : |z| = 1\}$ and the upper half plane $\{z : \operatorname{Im} z > 0\}$, respectively.

In the famous paper [BA] Beurling and Ahlfors characterized the class $\partial \mathbb{Q}(\mathbb{C}_+)$ by means of so-called quasisymmetric (abbreviated: qs.) homeomorphisms of the real axis \mathbb{R} , cf. also [LV]. Moreover, if $\varphi \in \mathbb{Q}(K;\mathbb{C}_+)$ then $\partial \varphi$ is $\lambda(K)$ -qs., cf. [LV] for the proof and the definition of the λ -distortion function. Conversely, if f is an M-qs. homeomorphism of \mathbb{R} , $k \geq 1$, then the extension formula of the Beurling-Ahlfors type generates $F \in \mathbb{Q}(\mathbb{C}_+)$ and the best bound known so far

(0.1)
$$K[F] \le \max\{2M - 1, M^{3/2}\}$$

was found by Lehtinen in [Le].

Let $\operatorname{Hom}(\mathbf{T})$, $(\operatorname{Hom}^+(\mathbf{T}))$ stand for the class of all (sense-preserving) homeomorphic self-mappings of \mathbf{T} . A counterpart of an M-qs. homeomorphism of \mathbb{R} is an M-qs. automorphism γ of \mathbf{T} , i.e. $\gamma \in \operatorname{Hom}^+(\mathbf{T})$ satisfies the inequality $M^{-1} \leq |\gamma(I_1)|_1/|\gamma(I_2)|_1 \leq M$ for each pair of adjacent closed arcs $I_1, I_2 \subset \mathbf{T}$ of equal arc-length measure $0 < |I_1|_1 = |I_2|_1 \leq \pi$. Krzyż introduced this notion in [K1] and proved that $\gamma \in \operatorname{Hom}^+(\mathbf{T})$ is M-qs. iff there exists $\varphi \in \mathbb{Q}_0(K; \Delta)$ such that $\partial \varphi = \gamma$ and the correspondence between M and K is the same as in the case of $\Omega = \mathbb{C}_+$, after a small modification of his proof. A more sophisticated but conformally invariant characterization of $\partial \mathbb{Q}(\Omega)$ for arbitrary Ω by means of quasihomographies, or 1-dimensional qc. mappings of Γ due to many formal similarities to the class of plane qc. mappings, was studied by Zając in [Z]. Also cf. [K3].

We use the symbol $\mathcal{P}[f]$ to denote the Poisson integral of a complex-valued $|\cdot|_1$ -integrable function f on \mathbf{T} , i.e.

(0.2)
$$\mathcal{P}[f](z) = \frac{1}{2\pi} \int_{\mathbf{T}} f(u) \operatorname{Re} \frac{u+z}{u-z} |du| , \quad z \in \Delta$$

It follows from the noteworthy Kneser-Choquet theorem for convex domains, cf. [Kn], [C]; that $\mathcal{P}[\gamma]$ is a sense-preserving diffeomorphic self-mapping of Δ and obviously $\partial \mathcal{P}[\gamma] = \gamma$ for each $\gamma \in \text{Hom}^+(\mathbf{T})$. Consequently, for every $z \in \Delta$ there exists the unique $w = F_{\gamma}(z) \in \Delta$ satisfying the equality

$$\mathcal{P}[h_z \circ \gamma](w) = 0$$

where

(0.4)
$$h_a(u) = \frac{u-a}{1-\overline{a}u}, \quad a \in \Delta, \, z \in \hat{\mathbb{C}}$$

This shows that F_{γ} is a sense-preserving real-analytic diffeomorphic self-mapping of Δ , $\hat{\partial}F_{\gamma} = \check{\gamma}$ and

$$(0.5) F_{\partial \mu \circ \gamma \circ \partial \nu} = \check{\nu} \circ F_{\gamma} \circ \check{\mu} , \quad \mu, \nu \in \mathbb{Q}(1; \Delta) ,$$

provided $\gamma \in \text{Hom}^+(\mathbf{T})$, cf. [LP, Theorem 1.1]. Following [BS] we use the symbol \check{f} to denote the inverse mapping of f if it exists, while $f^{-1} = 1/f$. The inverse mapping $E_{\gamma} := \check{F}_{\gamma}$ is a continuous extension of $\gamma \in \text{Hom}^+(\mathbf{T})$ to Δ conformally invariant, i.e.

$$(0.6) E_{\partial \mu \circ \gamma \circ \partial \nu} = \mu \circ E_{\gamma} \circ \nu , \quad \mu, \nu \in \mathbb{Q}(1; \Delta) ,$$

by (0.5). As a matter of fact $E_{\gamma} := \bar{F}_{\gamma}$ coincides with the mapping $E(\gamma)$ found by Douady and Earle in [DE, Theorem 1], and so we call E_{γ} the Douady-Earle extension of γ . It was the first conformally invariant analytic extension of $\gamma \in \text{Hom}^+(\mathbf{T})$ to Δ . In the already mentioned eminent paper [DE] Douady and Earle showed that $E_{\gamma} \in \mathbb{Q}(\Delta)$ iff $\gamma \in \partial \mathbb{Q}(\Delta)$. In fact, they proved that $K^* := \sup\{K[E_{\gamma}] : \gamma \in \partial \mathbb{Q}(K; \Delta)\} < 4 \cdot 10^8 e^{35K}$, cf. [DE, Proposition 7], and given $\varepsilon > 0$ there exists $\delta > 0$ such that $K^* \leq K^{3+\epsilon}$ if $K \leq 1 + \delta$, cf.

[DE; Corollary 2]. This means that $K^* \to 1$ as $K \to 1^+$ and so their explicit estimate, starting from $4 \cdot 10^8 e^{35}$ for K = 1, is very inaccurate in the range of small K close to 1. Thus, analogously to (0.1), a natural problem appeared, to find an explicit estimate L(K)of K^* for all $K \ge 1$ which is asymptotically sharp, i.e. $L(K) \to 1$ as $K \to 1^+$. The first bound L of this kind was found for small K, $1 \le K \le 1.01$, in [P1, Theorem] and then it was improved for all $K \ge 1$ in [P2, Theorem 3.1]. In this paper we proceed with the study of this topic. We extensively borrow from the techniques developed in [P1] and [P2]. However, an essential progress in this direction could be achieved due to two circumstances. The first one is the following equality, cf. [P5, Theorem 1.1, Corollary 1.2],

(0.7)
$$\max_{0 \le r \le 1} |\Phi_K^2(\sqrt{r}) - r| = M(K) , \quad K > 0 ,$$

where Φ_K is the Hersch-Pfluger distortion function, cf. [HP], [LV], and

(0.8)
$$M(K) = 2\Phi_{\sqrt{K}}^2(1/\sqrt{2}) - 1 = \frac{\lambda(\sqrt{K}) - 1}{\lambda(\sqrt{K}) + 1}$$
$$M(1/K) = M(K) , \quad K \ge 1 .$$

The second one is the inequality (1.8). Combining these ideas we derive in Section 1 Theorem 1.4 which is the main proving tool of Lemmas 2.1 and 2.2 for K close to 1 in Section 2. The proof of (2.3) in Lemma 2.1 is an adaptation of the first part of the proof of Theorem 3.1 and the proof of Theorem 1.2 in [P2]. Roughly speaking, we modify those proofs by using the quasiconformal invariance of the harmonic measure instead of the quasisymmetric characterization of the class $\partial Q_0(K; \Delta)$. Lemma 2.2 is an improvement of [P1, Lemma] for small $K \geq 1$. Lemmas 2.1 and 2.2 imply Theorem 2.3 which is our main result. It provides a new explicit and asymptotically sharp estimate L(K) of K^* for all $K \geq 1$ which essentially improves those in [P1, Theorem] and [P2, Theorem 3.1^{*}]. Combining this

^{*)} There is a minor error in the proof of this theorem. The theorem remains true after replacing the coefficient $1/(2\pi\sqrt{6})$ by $9\sqrt{3}/(32\pi)$ in the formula defining F(K).

result with (0.1) yields a new bound of K^* which depends on the quasisymmetry constant M only. The problem of estimating K^* for quasihomographies was studied by Sakan and Zając in [SZ]. They also applied (0.7) to get asymptotically sharp estimate of K^* . Section 3 provides comments dealing with two previous sections.

The author would like to express his sincere thanks to Professors Ken-ichi Sakan and Józef Zając for their very helpful comments.

1. Some estimates involving the function M(K)

It was shown in [P5, Theorem 3.1] that

(1.1)
$$\max_{0 \le r \le 1} |\hat{\partial}F(r) - r| \le M(K)$$

for every $F \in \mathbb{Q}(K; \mathbb{C}_+)$ satisfying $\partial F(z) = z$, $z = 0, 1, \infty$, and the equality is attained for some extremal mapping F_K such that $\partial F_K(r_K) = 1 - r_K$ where $1 - 2r_K = M(K)$. Let $f(t) = \partial F(t)$ for $0 \le t \le 1$. If $f(t) \ge t$ then we put g(t) = f(t). Otherwise, we put $g(t) = a_t + b_t - f(a_t + b_t - t)$ where $(a_t, b_t) \subset [0, 1]$ is the bigest open interval such that f(r) < r for every $a_t < r < b_t$. gis an increasing function on [0, 1] because f does so. Furthermore, $0 < g(t) - t = a_t + b_t - t - f(a_t + b_t - t) < b_t - t \le 1 - t$ if f(t) < t. Therefore $0 < g(t) - t \le \min\{1 - t, M(K)\}$ for every $0 \le t \le 1$ by (1.1)and the inequality $f(t) \le 1$. Since $\int_{a_t}^{b_t} |f(r) - r| dr = \int_{a_t}^{b_t} (g(r) - r) dr$ if f(t) < t, we obtain

(1.2)
$$\int_{0}^{1} |\hat{\partial}F(r) - r| dr = \int_{0}^{1} (g(r) - r) dr$$
$$\leq \int_{0}^{1} \min\{1 - r, M(K)\} dr = M(K) - \frac{1}{2}M^{2}(K)$$

provided $F \in \mathbb{Q}(K; \mathbb{C}_+)$. In what follows we derive counterparts of the estimates (1.1) and (1.2) for the unit disk. We will use the symbol Arg z to denote the argument of $z \in \mathbb{C} \setminus \{0\}$, i.e. the unique $t, -\pi < t \leq \pi$, satisfying $z = |z|e^{it}$.

Theorem 1.1. If $K \ge 1$, $\zeta \in \mathbf{T}$ and $\varphi \in \mathbb{Q}_0(K; \Delta)$ satisfies

$$\partial \varphi(\zeta) = \zeta, \ \partial \varphi(-\zeta) = -\zeta \ then$$

(1.3)
$$\max_{z \in T} |\operatorname{Arg}(\widehat{\partial}\varphi(z)/z)| \le \pi M(K)$$

as well as

(1.4)
$$\max_{z \in \mathbf{T}} |\hat{\partial}\varphi(z) - z| \le 2\sin(\pi M(K)/2) .$$

Proof. Let $K \geq 1$ and $\varphi \in \mathbb{Q}_0(K; \Delta)$ satisfies $\partial \varphi(\zeta) = \zeta$, $\partial \varphi(-\zeta) = -\zeta$ for some $\zeta \in \mathbf{T}$. Without loss of generality we can assume that $\zeta = 1$. It can be always achieved after a suitable rotation. Following Krzyż, cf. [K1], we assign to φ a K-qc. self-mapping F of \mathbb{C}_+ such that

(1.5)
$$\varphi(e^{\pi i z}) = e^{\pi i F(z)}, \quad z \in \mathbb{C}_+,$$

and $\hat{\partial}F$ keeps the points 0, 1, 2 fixed. It follows from (1.1) that $|\hat{\partial}F(t) - t| \leq M(K)$ for every $t \in \mathbb{R}$. By this and (1.5) we have $|\operatorname{Arg}(\hat{\partial}\varphi(e^{it})e^{-it})| = |\pi\hat{\partial}F(t/\pi) - t| \leq \pi M(K)$ for all $t \in \mathbb{R}$, which proves (1.3); (1.4) is an obvious consequence of (1.3). \Box

Remark. Unfortunately, the estimates (1.3) and (1.4) are not sharp for K > 1. It is caused by the fact that the extremal function F_K is not periodic with the period 2. Therefore the strict inequality holds in (1.3) and (1.4) for K > 1. However, the obtained results seem to be fairly accurate at least for K close to 1.

Theorem 1.2. If $K \ge 1$, $\zeta \in \mathbf{T}$ and $\varphi \in \mathbb{Q}_0(K; \Delta)$ satisfies $\hat{\partial}\varphi(\zeta) = \zeta$, $\hat{\partial}\varphi(-\zeta) = -\zeta$ then

(1.6)
$$\frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}(\hat{\partial}\varphi(z)/z)| |dz| \leq \pi (M(K) - \frac{1}{2}M^2(K)) .$$

Moreover,

(1.7)
$$\frac{1}{2\pi} \int_{\mathbf{T}} |\hat{\partial}\varphi(z) - z| |dz| \le 2\sin(\frac{\pi}{4}(2M(K) - M^2(K)))$$
.

Proof. Let φ and F be as in the proof of the previous theorem. Applying (1.2) and (1.5) we get

$$\begin{split} \frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}(\hat{\partial}\varphi(z)/z)| |dz| &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |\pi \hat{\partial}F(t/\pi) - t| dt \\ &\leq \pi (M(K) - \frac{1}{2}M^{2}(K)) \;, \end{split}$$

which proves (1.6). Similarly, by using Jensen's inequality for concave functions, we have

$$\frac{1}{2\pi} \int_{\mathbf{T}} |\hat{\partial}\varphi(z) - z| |dz| = \frac{1}{2\pi} \int_{0}^{2\pi} 2\sin\frac{1}{2} |\pi\hat{\partial}F(\frac{t}{\pi}) - t| dt \le 2\sin(\frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{2} |\pi\hat{\partial}F(\frac{t}{\pi}) - t| dt) \le 2\sin(\frac{\pi}{4}(2M(K) - M^{2}(K))) ,$$

which proves (1.7).

We proceed with extending the above theorem to any $\varphi \in \mathbb{Q}(K; \Delta)$. We first prove the basic statement in this paper.

Lemma 1.3. For every $a \in \Delta$ and $\gamma \in \text{Hom}^+(\mathbf{T})$

(1.8)
$$\frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}((h_a \circ \gamma)(z)/h_a(z))| |dz| \le \max_{z \in \mathbf{T}} |\operatorname{Arg}(\gamma(z)/z)| .$$

Proof. Fix $a \in \Delta$ and $\gamma \in \text{Hom}^+(\mathbf{T})$. Let

(1.9)
$$m = \max_{z \in T} |\operatorname{Arg}(\gamma(z)/z)|$$

Clearly, if $m = \pi$ then (1.8) holds. Assume $m < \pi$. For any $z, w \in \mathbf{T}$ we denote by I(z, w) the closed arc directed counterclockwise from z to w. Consider the function $f : \mathbf{T} \to \mathbb{R}$ defined by $f(z) = |I(h_a(z), h_a \circ \gamma(z))|_1$ as $\operatorname{Arg}(\gamma(z)/z) \ge 0$ and $f(z) = |I(h_a \circ \gamma(z), h_a(z))|_1$ otherwise. We assign to f two functions f_+ and f_- defined on \mathbf{T} as follows: $f_+(z) = f(z)$ for $\operatorname{Arg}(\gamma(z)/z) > 0$ and $f_+(z) = 0$ otherwise, $f_-(z) = f(ze^{im})$ for $\operatorname{Arg}(\gamma(ze^{im})/ze^{im}) < 0$

and $f_{-}(z) = 0$ otherwise. Evidently, $f(z) = f_{+}(z) + f_{-}(ze^{-im})$ and consequently

(1.10)
$$\int_{\mathbf{T}} f(z)|dz| = \int_{\mathbf{T}} f_{+}(z)|dz| + \int_{\mathbf{T}} f_{-}'(ze^{-im})|dz|$$
$$= \int_{\mathbf{T}} (f_{+}(z) + f_{-}(z))|dz| .$$

Since γ and h_a are sense-preserving, we conclude from (1.9) that $f_+(z) + f_-(z) \leq |I(h_a(z), h_a(ze^{im}))|_1$. Hence by (1.10) and Fubini's and Cauchy's integral theorems

$$\begin{split} &\frac{1}{2\pi} \int_{\mathbf{T}} f(z) |dz| \leq \frac{1}{2\pi} \int_{\mathbf{T}} |I(h_a(z), h_a(ze^{im}))|_1 |dz| \\ &= \frac{1}{2\pi} \int_{\mathbf{T}} |h_a(I(z, ze^{im}))|_1 |dz| = \frac{1}{2\pi} \int_{\mathbf{T}} \int_0^m \frac{1 - |a|^2}{|1 - \overline{a}ze^{it}|^2} dt |dz| \\ &= \frac{1}{2\pi} \int_0^m \int_{\mathbf{T}} \frac{1 - |a|^2}{|1 - \overline{a}ze^{it}|^2} |dz| dt = \frac{1}{2\pi} \int_0^m 2\pi dt = m \;. \end{split}$$

This and the obvious inequality $|\operatorname{Arg}((h_a \circ \gamma)(z)/h_a(z))| \leq f(z)$, $z \in \mathbf{T}$, imply (1.8). \Box

Theorem 1.4. If $K \ge 1$, $\varphi \in \mathbb{Q}(K; \Delta)$ and $a = \varphi(0)$ then $\gamma := \partial \varphi$ satisfies

(1.11)
$$\min_{\theta \in \mathbb{R}} \frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}(h_{-a}(e^{i\theta}z)/\gamma(z))| |dz| \le \pi M(K) ,$$

as well as

(1.12)
$$\min_{\theta \in \mathbb{R}} \frac{1}{2\pi} \int_{\mathbf{T}} |h_{-a}(e^{i\theta}z) - \gamma(z)| |dz| \le 2\sin(\frac{\pi}{2}M(K))$$

Proof. Fix $K \ge 1$ and $\varphi \in \mathbb{Q}(K; \Delta)$. By the Darboux property there exist two points $\zeta_1, \zeta_2 \in \mathbf{T}$ such that $\hat{\partial}(h_a \circ \varphi)(\zeta_1) = \zeta_2$ and $\hat{\partial}(h_a \circ \varphi)(-\zeta_1) = -\zeta_2$. Then, setting $e^{i\theta} = \zeta_2/\zeta_1$ and $\psi(z) := h_a \circ \varphi$

 $\varphi(e^{-i\theta}z), z \in \Delta$, we see that $\psi \in \mathbb{Q}_0(K; \Delta)$ and $\bar{\partial}\psi$ keeps the points $\zeta_2, -\zeta_2$ fixed. Applying Lemma 1.3 and Theorem 1.1 we have

$$\begin{split} &\frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}(h_{-a}(e^{i\theta}z)/\gamma(z))| |dz| \\ &= \frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}(h_{-a}(z)/h_{-a} \circ h_{a} \circ \gamma(e^{-i\theta}z))| |dz| \\ &= \frac{1}{2\pi} \int_{\mathbf{T}} |\operatorname{Arg}(h_{-a}(z)/h_{-a} \circ \hat{\partial}\psi(z))| |dz| \\ &\leq \max_{z \in \mathbf{T}} |\operatorname{Arg}(\hat{\partial}\psi(z)/z)| \leq \pi M(K) ,. \end{split}$$

which proves (1.11). Hence by Jensen's inequality for concave functions

$$\begin{split} &\frac{1}{2\pi} \int_{\mathbf{T}} |h_{-a}(e^{i\theta}z) - \gamma(z)| |dz| \\ &= \frac{1}{2\pi} \int_{\mathbf{T}} 2\sin\frac{1}{2} |\operatorname{Arg}(h_{-a}(e^{i\theta}z)/\gamma(z))| |dz| \\ &\leq 2\sin(\frac{1}{4\pi} \int_{\mathbf{T}} |\operatorname{Arg}(h_{-a}(e^{i\theta}z)/\gamma(z))| |dz|) \leq 2\sin(\frac{\pi}{2}M(K)) , \end{split}$$

and this yields (1.12).

2. An estimate of $K[E_{\gamma}]$ for $\gamma \in \partial \mathbb{Q}(K; \Delta)$

Suppose $\Omega \subset \mathbb{C}$ is a domain and φ is a sense-preserving diffeomorphism of Ω onto $\Omega' = \varphi(\Omega)$. Then the Jacobian $|\partial \varphi(\zeta)|^2 - |\bar{\partial}\varphi(\zeta)|^2$ is positive at every $\zeta \in \Omega$. Define $k[\varphi](\zeta) = |\bar{\partial}\varphi(\zeta)/\partial\varphi(\zeta)|$ for $\zeta \in \Omega$ and $k[\varphi] = \sup_{\zeta \in \Omega} k[\varphi](\zeta)$. It is well known that $\varphi \in \mathbb{Q}(\Omega, \Omega')$ if $k[\varphi] < 1$, and

(2.1)
$$K[\varphi] = (1 + k[\varphi])(1 - k[\varphi])^{-1}$$

cf. [LV]: We denote by $\mathbb{Q}^0(K; \Delta)$ the class of all $\varphi \in \mathbb{Q}(K; \Delta)$ normalized by

(2.2)
$$\mathcal{P}[\hat{\partial}\varphi](0) = 0$$

It follows from (0.3) that $\varphi \in \mathbb{Q}^0(K; \Delta)$ iff $\varphi \in \mathbb{Q}(K; \Delta)$ and $F_{\hat{\partial}\varphi}(0) = 0.$

Lemma 2.1. If $K \ge 1$, $\varphi \in \mathbb{Q}^0(K; \Delta)$, $\gamma := \partial \varphi$ and $r_l = \cos(\pi/2^{l+1})$, $r'_l = \sin(\pi/2^{l+1})$, l = 1, 2, 3, then (2.3)

$$k^{2}[F_{\gamma}](0) \leq 1 - \frac{2^{7}\sqrt{2}}{\pi} \left(\frac{1-|\varphi(0)|}{1+|\varphi(0)|}\right)^{\circ} \times \Phi_{K}^{2}(r_{1})\Phi_{1/K}^{2}(r_{1}')\Phi_{K}^{2}(r_{2})\Phi_{1/K}^{2}(r_{2}')\Phi_{K}(r_{3})\Phi_{1/K}(r_{3}')(2\Phi_{K}^{2}(r_{3})-1)$$

and

(2.4)
$$k^{2}[F_{\gamma}](0) \leq \sin 2P(K, |\varphi(0)|) + (1 - \sin 2P(K, |\varphi(0)|))(2\sin(\pi M(K)/2) + |\varphi(0)|^{2} + \sin P(K, |\varphi(0)|))$$

where

(2.5)
$$P(K,r) = \frac{\pi}{4} - 2(1-r)(1+r)^{-1} \arccos \Phi_K(\cos \frac{\pi}{8})$$

Moreover,

(2.6) $k[F_{\gamma}](0) \leq \sin 2P(K, |\varphi(0)|) \\ + \sin P(K, |\varphi(0)|) \cos^{2} 2P(K, |\varphi(0)|) (1 - 2\sin(\pi M(K)/2)) \\ - |\varphi(0)|^{2} - \sin P(K, |\varphi(0)|) \sin 2P(K, |\varphi(0)|))^{-1}$

as the denominator is positive and $P(K, |\varphi(0)|) \leq \pi/8$.

Proof. Fix $K \ge 1$ and $\varphi \in \mathbb{Q}^0(K; \Delta)$. Let $a = \varphi(0) \in \Delta$. Then $\psi := h_a \circ \varphi \in \mathbb{Q}_0(K; \Delta)$. Assume I is an arbitrary subarc of T. It follows from the quasi-invariance of the harmonic measure ω that

(2.7)
$$\frac{\frac{1}{K}\mu(\cos(\frac{\pi}{2}\omega(0,\Delta)[I])) \leq \mu(\cos(\frac{\pi}{2}\omega(\psi(0),\Delta)[\bar{\partial}\psi(I)]))}{\leq K\mu(\cos(\frac{\pi}{2}\omega(0,\Delta)[I])),}$$

cf. [H]. Here μ stands for the module of the Grötzsch extremal domain $\Delta \setminus [0, r]$, cf. [LV]. Since $\psi(0) = 0$ and $2\pi\omega(0, \Delta)[I] = |I|_1$ for any arc $I \subset \mathbf{T}$, we get by (2.7) and the definition of Φ_K

(2.8)
$$\Phi_{1/K}\left(\cos\frac{|I|_1}{4}\right) \le \cos\frac{|h_a\circ\gamma(I)|_1}{4} \le \Phi_K\left(\cos\frac{|I|_1}{4}\right)$$

.

Set $\alpha_{K,l} = 4 \arccos \Phi_K(r_l), l = 1, 2, 3$. An easy computation applying the identity

(2.9)
$$\Phi_K^2(r) + \Phi_{1/K}^2(\sqrt{1-r^2}) = 1$$
, $0 \le r \le 1$,

cf. [AVV, Theorem 3.3], shows that

(2.10)
$$\sin(\alpha_{K,l}/2) = 2\Phi_K(r_l)\Phi_{1/K}(r_l), \quad l = 1, 2,$$

and

(2.11)
$$\sin(\alpha_{K,3}) = 4\Phi_K(r_3)\Phi_{1/K}(r_3')(2\Phi_K^2(r_3)-1)$$

It follows from (2.8) and the inequality $|h_{-a}(I)|_1 = \int_I |h'_{-a}(z)| |dz| \ge (1 - |a|)(1 + |a|)^{-1} |I|_1$ that (2.12) $|\alpha(I)|_1 = |h_{-a} \circ h_{-a} \circ \alpha(I)|_1 \ge (1 - |a|)(1 + |a|)^{-1} |h_{-a} \circ \alpha(I)|_1$

$$\begin{aligned} |\gamma(I)|_{1} &= |h_{-a} \circ h_{a} \circ \gamma(I)|_{1} \ge (1 - |a|)(1 + |a|)^{-1} |h_{a} \circ \gamma(I)|_{1} \\ &\ge (1 - |a|)(1 + |a|)^{-1} \alpha_{K,l} \end{aligned}$$

for $|I|_1 = \pi/2^{l-1}$, l = 1, 2, 3. The inequalities (2.12), l = 1, 2, correspond to (1.2)-and (1.3) in [P2] after replacing $2\pi/(1+k)$ and $2\pi/(1+k)^2$ by $\alpha_{K,1}$ and $\alpha_{K,2}$, respectively. Define for every $\eta \in \text{Hom}(\mathbf{T})$ and any integers $n, m \in \mathbb{Z}$

(2.13)
$$\eta_m^n := \frac{1}{2\pi} \int_{\mathbf{T}} z^m (\eta(z))^n |dz| .$$

A calculation similar to that in the proof of Theorem 1.2 in [P2] shows that

$$\begin{aligned} |\gamma_0^2| &\leq \cos\left(\alpha_{K,2}\frac{1-|a|}{1+|a|}\right) = \sin 2P(K,|a|) ;\\ (2.14) \quad |\gamma_1^1| &\leq \cos\left(\frac{\pi}{4} + \frac{\alpha_{K,2}}{2}\frac{1-|a|}{1+|a|}\right) = \sin P(K,|a|) ;\\ 1 &\geq |\gamma_{-1}^1|^2 - |\gamma_1^1|^2 \geq \frac{2\sqrt{2}}{\pi}\sin^2\left(\frac{\alpha_{K,1}}{2}\frac{1-|a|}{1+|a|}\right)\sin\left(\alpha_{K,3}\frac{1-|a|}{1+|a|}\right) .\end{aligned}$$

Since $\varphi \in \mathbb{Q}^0(K; \Delta)$, $F_{\gamma}(0) = 0$. Differentiating at the point z = 0 both sides of the equality $\mathcal{P}[h_z \circ \gamma](F_{\gamma}(z)) = 0$, $z \in \Delta$, we see that

$$\gamma_{-1}^1 \partial F_{\gamma}(0) + \gamma_1^1 \overline{\partial} F_{\gamma}(0) = 1 \quad , \quad \gamma_{-1}^1 \partial F_{\gamma}(0) + \gamma_1^1 \overline{\partial} F_{\gamma}(0) = -\gamma_0^2 \; ,$$

hence

(2.15)
$$\partial F_{\gamma}(0) = \frac{\overline{\gamma_{-1}^{1}} + \overline{\gamma_{0}^{2}}\gamma_{1}^{1}}{|\gamma_{-1}^{1}|^{2} - |\gamma_{1}^{1}|^{2}} \quad , \quad \bar{\partial}F_{\gamma}(0) = \frac{-\overline{\gamma_{-1}^{1}}\gamma_{0}^{2} - \gamma_{1}^{1}}{|\gamma_{-1}^{1}|^{2} - |\gamma_{1}^{1}|^{2}}$$

and finally

(2.16)
$$1 - \left| \frac{\overline{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)} \right|^{2} = \frac{(1 - |\gamma_{0}^{2}|^{2})(|\gamma_{-1}^{1}|^{2} - |\gamma_{1}^{1}|^{2})}{|\overline{\gamma_{-1}^{1}} + \overline{\gamma_{0}^{2}}\gamma_{1}^{1}|^{2}}.$$

From this, (2.16) and (2.14) (2.17) $1 - \left|\frac{\overline{\partial}F_{\gamma}(0)}{\partial F_{\gamma}(0)}\right|^{2} = \frac{(1 - |\gamma_{0}^{2}|^{2})(|\gamma_{-1}^{1}|^{2} - |\gamma_{1}^{1}|^{2})}{|\gamma_{-1}^{1} + \gamma_{0}^{2}} \ge \frac{1 - |\gamma_{0}^{2}|}{1 + |\gamma_{0}^{2}|}(|\gamma_{-1}^{1}|^{2} - |\gamma_{1}^{1}|^{2})$ $\ge \frac{2\sqrt{2}}{\pi} \tan^{2}\left(\frac{\alpha_{K,2}}{2} \frac{1 - |a|}{1 + |a|}\right) \sin^{2}\left(\frac{\alpha_{K,1}}{2} \frac{1 - |a|}{1 + |a|}\right) \sin\left(\alpha_{K,3} \frac{1 - |a|}{1 + |a|}\right)$ $\ge \frac{2\sqrt{2}}{\pi} \left(\frac{1 - |a|}{1 + |a|}\right)^{5} \sin^{2}\frac{\alpha_{K,1}}{2} \sin^{2}\frac{\alpha_{K,2}}{2} \sin\alpha_{K,3} .$

Hence by (2.10) and (2.11) the bound (2.3) follows. We derive now (2.4). By (2.13) we get for every $\theta \in \mathbb{R}$

$$\begin{split} ||\gamma_{-1}^{1}| - 1| &\leq |\gamma_{-1}^{1} - e^{i\theta}| = \frac{1}{2\pi} |\int_{\mathbf{T}} (\gamma(z)\overline{z} - e^{i\theta})|dz|| \\ &\leq \frac{1}{2\pi} \int_{\mathbf{T}} |\gamma(z) - h_{-a}(e^{i\theta}z)||dz| + \frac{1}{2\pi} |\int_{\mathbf{T}} (h_{-a}(e^{i\theta}z)\overline{z} - e^{i\theta})|dz|| \\ &= \frac{1}{2\pi} \int_{\mathbf{T}} |\gamma(z) - h_{-a}(e^{i\theta}z)||dz| + |a|^{2} . \end{split}$$

Furthermore, by Theorem 1.4

(2.18)
$$\begin{aligned} 1 - |\gamma_{-1}^{1}| &\leq \min_{\hat{\sigma} \in \mathbb{R}} \frac{1}{2\pi} \int_{\mathbf{T}} |\gamma(z) - h_{-a}(e^{i\theta}z)| |dz| + |a|^{2} \\ &\leq 2\sin(\frac{\pi}{2}M(K)) + |a|^{2} . \end{aligned}$$

It follows from (2.16) that

$$1 - \left| \frac{\overline{\partial} F_{\gamma}(0)}{\partial F_{\gamma}(0)} \right|^{2} \geq \frac{(1 - |\gamma_{0}^{2}|^{2})(|\gamma_{-1}^{1}|^{2} - |\gamma_{1}^{1}|^{2})}{(1 + |\gamma_{0}^{2}|)(|\gamma_{-1}^{1}| + |\gamma_{1}^{1}|)} = (1 - |\gamma_{0}^{2}|)(|\gamma_{-1}^{1}| - |\gamma_{1}^{1}|) .$$

D. Partyka

Combining this, (2.14) and (2.18) gives (2.4). The last bound (2.6) is a direct conclusion from (2.14), (2.15), (2.18) and the following estimate

$$\begin{split} k[F_{\gamma}](0) &= \frac{|-\overline{\gamma_{-1}^{1}}\gamma_{0}^{2}-\gamma_{1}^{1}|}{|\gamma_{-1}^{1}+\gamma_{0}^{2}\gamma_{1}^{1}|} \\ &\leq |\gamma_{0}^{2}| + |\gamma_{1}^{1}|(1-|\gamma_{0}^{2}|^{2})(|\gamma_{-1}^{1}|-|\gamma_{0}^{2}||\gamma_{1}^{1}|)^{-1} \ . \ \Box \end{split}$$

The estimate of $k[F_{\gamma}](0)$ in the above lemma depends on K and |a|. The next lemma provides a bound of |a| which depends on K only. Consider in the class $\mathbb{Q}^{0}(K; \Delta)$ the basic distortion functional

(2.19)
$$\rho(K) = \sup\{|\varphi(0)| : \varphi \in \mathbb{Q}^0(K; \Delta)\}.$$

Lemma 2.2. For every $K \ge 1$

$$\rho(K) \le p(K) := \min\left\{2\sin\left(\frac{\pi}{2}M(K)\right), \\ 1 - 2\left(\sqrt{3}\Phi_K\left(\sqrt{3}/2\right)\Phi_{1/K}^{-1}(1/2) + 1\right)^{-1}\right\}$$

Proof. Fix $K \ge 1$, $\varphi \in \mathbb{Q}^0(K; \Delta)$ and set $\gamma = \hat{\partial}\varphi$, $a = \varphi(0)$. It follows from $\mathcal{P}[\gamma](0) = 0$ that for every arc $I \subset \mathbf{T}$ of length $|I|_1 = 2\pi/3$, $|\gamma(I)|_1 \le 4\pi/3$, cf. [LP] for details. Applying now (2.8) gives $|\varphi(0)| \le 1/2 + \sqrt{3}/2 \cot(\pi/3 + \arccos \Phi_K(\sqrt{3}/2))$, cf. [P1, (4)]. Hence by (2.9) we derive

(2.21)
$$\rho(K) \le 1 - 2\left(\sqrt{3}\Phi_K\left(\sqrt{3}/2\right)\Phi_{1/K}^{-1}(1/2) + 1\right)^{-1}$$

This estimate is not sharp because the right hand side tends to 1/2 as $K \to 1^+$. To improve it for small K close to 1 we will use Theorem 1.4. Since $\mathcal{P}[\gamma](0) = 0$, we have for every $\theta \in \mathbb{R}$

$$\begin{aligned} |\varphi(0)| &= |a| = \frac{1}{2\pi} |\int_{\mathbf{T}} h_{e^{-a}}(e^{i\theta}z)|dz| - \int_{\mathbf{T}} \gamma(z)|dz|| \\ &\leq \frac{1}{2\pi} \int_{\mathbf{T}} |h_{-a}(e^{i\theta}z) - \gamma(z))||dz| . \end{aligned}$$

Now, applying Theorem 1.4 gives $|\varphi(0)| \leq 2\sin(\pi M(K)/2)$ and so $\rho(K) \leq 2\sin(\pi M(K)/2)$ for $K \geq 1$. Combining this and (2.21) leads to (2.20). \Box

Consider the second distortion functional $\rho_*(K)$ in the class $\mathbb{Q}^0(K; \Delta)$ given by

(2.22)
$$\rho_*(K) = \sup\{\frac{1+|\varphi(0)|}{1-|\varphi(0)|} : \varphi \in \mathbb{Q}^0(K; \Delta)\}.$$

In view of the above lemma $\rho(K) < 1$ and so

(2.23)
$$\rho_*(K) = \frac{1+\rho(K)}{1-\rho(K)} \le p_*(K) := \frac{1+p(K)}{1-p(K)} < \infty , \quad K \ge 1$$

Now we are ready to prove the main result in this section which improves Theorem in [P1] and Theorem 3.1 in [P2] in the whole range of $K \ge 1$.

Theorem 2.3. If $K \ge 1$ and $\gamma \in \partial \mathbb{Q}_{\mathbf{T}}(K)$ then F_{γ} and E_{γ} are $(1+k)(1-k)^{-1}$ -qc. mappings and $k = k[E_{\gamma}] = k[F_{\gamma}]$ satisfies

$$\begin{array}{l} (2.24) \\ k^{2} \leq 1 - \frac{2^{7}\sqrt{2}}{\pi} p_{*}^{-5}(K) \times \\ \Phi_{K}^{2}(r_{1}) \Phi_{1/K}^{2}(r_{1}') \Phi_{K}^{2}(r_{2}) \Phi_{1/K}^{2}(r_{2}') \Phi_{K}(r_{3}) \Phi_{1/K}(r_{3}') (2\Phi_{K}^{2}(r_{3}) - 1) \leq \\ 1 - \frac{2^{7}\sqrt{6}}{3^{3}\pi} \Phi_{K}^{-5}\left(\frac{\sqrt{3}}{2}\right) \Phi_{1/K}^{5}\left(\frac{1}{2}\right) \times \\ \Phi_{K}^{2}(r_{1}) \Phi_{1/K}^{2}(r_{1}') \Phi_{K}^{2}(r_{2}) \Phi_{1/K}^{2}(r_{2}') \Phi_{K}(r_{3}) \Phi_{1/K}(r_{3}') (2\Phi_{K}^{2}(r_{3}) - 1) \\ and \end{array}$$

(2.25)
$$k^{2} \leq \sin 2P(K) + (1 - \sin 2P(K))(2\sin(\frac{\pi}{2}M(K)) + 4\sin^{2}(\frac{\pi}{2}M(K)) + \sin P(K))$$

where

(2.26)
$$P(K) = P(K, p(K)) = \frac{\pi}{4} - 2p_*^{-1}(K) \arccos \Phi_K(\cos \frac{\pi}{8})$$
,

and r_l , r'_l , l = 1, 2, 3, were defined in Lemma 2.1. Moreover,

(2.27)
$$k \leq \sin 2P(K) + \sin P(K) \cos^2 2P(K)(1 - 2\sin(\frac{\pi}{2}M(K))) - 4\sin^2(\frac{\pi}{2}M(K)) - \sin P(K)\sin 2P(K))^{-1}$$

whenever $P(K) \leq \pi/8$.

Proof. Fix $K \ge 1$ and $\gamma \in \partial \mathbb{Q}(K; \Delta)$. If $z \in \Delta$ then $\gamma_z := h_z \circ \gamma \circ h_{-F_{\gamma}(z)} \in \partial \mathbb{Q}(K; \Delta)$ and by (0.5) $h_{-F_{\gamma}(z)} \circ F_{\gamma_z}(0) = F_{\gamma}(h_{-z}(0)) = F_{\gamma}(z)$. Hence $F_{\gamma_z}(0) = h_{F_{\gamma}(z)}(F_{\gamma}(z)) = 0$ and applying (0.5) once again we have $k[F_{\gamma}](z) = k[h_{F_{\gamma}(z)} \circ F_{\gamma} \circ h_{-z}](0) = k[F_{\gamma_z}](0)$ for every $z \in \Delta$. Consequently, (2.28)

 $k := k[F_{\gamma}] = \sup_{z \in \Delta} k[F_{\gamma_z}](0) \le \sup\{k[F_{\partial \varphi}](0) : \varphi \in \mathbb{Q}^0(K; \Delta)\} .$

It follows from (2.5), (2.23) and (2.26) that for each $\varphi \in \mathbb{Q}^0(K; \Delta)$, $P(K, |\varphi(0)|) \leq P(K)$. From this, (2.28) and the formulas (2.3), (2.4) and (2.6) we easily derive corresponding bounds (2.24), (2.25) and (2.27)^{*}) in our theorem. Moreover, by (2.20) we get $p_*(K) \leq \sqrt{3}\Phi_K(\sqrt{3}/2)\Phi_{1/K}^{-1}(1/2)$, which completes the proof of (2.24). By definition, $E_{\gamma} = \check{F}_{\gamma}$. Therefore $k = k[E_{\gamma}] = k[F_{\gamma}]$ and $E_{\gamma} \in \mathbb{Q}((1+k)(1-k)^{-1}; \Delta)$. \Box

Corollary 2.4. If γ is an M-qs. automorphism of \mathbf{T} , $1 \leq M < \infty$, then F_{γ} and E_{γ} are $(1+k)(1-k)^{-1}$ -qc. mappings and $k = k[E_{\gamma}] = k[F_{\gamma}]$ satisfies the inequalities (2.24), (2.25) and (2.27) after K has been replaced by $\min\{M^{3/2}, 2M-1\}$.

Proof. Modifying the proof of Krzyż's Theorem from [K1] by applying Lehtinen's result (0.1) we deduce that M-qs. automorphism of **T** has a K-qc. extension to Δ with $K \leq \min\{M^{3/2}, 2M - 1\}$. In this way the corollary follows immediately from Theorem 2.3. \Box

3. Complementary remarks

 $\begin{aligned} & \text{Remark 1. Let } \phi_K(x) = \min\{4^{1-1/K}x^{1/K}, 1\} \text{ and } h(x) = (1-x)(1+x)^{-1} \text{ for all } 0 \leq x \leq 1, K > 0. \text{ Consider the following functions} \\ & \Phi_0[K,t](x) = \Phi_t \circ \phi_K \circ \Phi_{1/t}(x) , \\ & \Phi_1[K,t](x) = h \circ \Phi_0[1/K,t] \circ h(x) , \quad K > 0 , \\ & \Phi[K,t](x) = \begin{cases} \min\{\Phi_0[K,t](x), \Phi_1[K,t](x)\} &, K \geq 1 \\ \max\{\Phi_0[K,t](x), \Phi_1[K,t](x)\} &, 0 < K \leq 1 \end{cases} \end{aligned}$

¹ see Remark 1 in Section 3 for the completion of the proof of (2.27).

for $0 \le x \le 1$, t > 0. Since, as shown in [LV], $\Phi_2(r) = 2\sqrt{r}(1+r)^{-1}$, $0 \le r \le 1$, and $\Phi_{2^{n+1}} = \Phi_{2^n} \circ \Phi_2$, $\Phi_{2^{-n}} = \Phi_{2^n}$, $n \in \mathbb{N}$, all functions $\Phi[K, 2^n]$, K > 0, $n \in \mathbb{Z}$, are elementary. Moreover, it follows from [P3, Theorem 1.3, Corollary 1.4] that $\Phi[K, 2^n]$ approaches monotonically Φ_K as $n \to \infty$. Moreover, it follows from [P3, Theorem 1.5, Corollary 1.6] that

$$0 \le \Phi_0[K, 2^n](x) - \Phi_K(x) \le x^{2^{n+1}/K} \Phi_0[K, 2^n](x)$$

for $K \ge 1, n = 2, 3, 4, \ldots$,

 $0 \le \Phi_1[K, 2^n](x) - \Phi_K(x) \le 2((1 - h(x)^{2^{n+1}})^{-K2^{-n}} - 1)h^K(x)$ for $K \ge 1, n = 1, 2, 3, \dots,$

$$0 \le \Phi_K(x) - \Phi_0[K, 2^n](x) \le \left(\left(1 - x^{2^{n+1}}\right)^{-1/K2^n} - 1\right)\Phi_0[K, 2^n](x)$$

for $0 < K \le 1, n = 1, 2, 3, \dots$, and

$$0 \le \Phi_K(x) - \Phi_1[K, 2^n](x) \le 2((1 - h(x)^{K2^{n+1}})^{-1} - 1) \min\{4^{1-K}h^K(x), 1\}$$

for $0 < K \leq 1, n = 2, 3, 4, \dots$

All bounds in Lemma 2.2 and Theorem 2.3 depend on Φ_K . Applying the approximating sequence $\Phi[K, 2^n]$, $n = 0, 1, \ldots$, of Φ_K , we can estimate the right-hand side of (2.24), (2.25) and (2.27) by elementary functions with arbitrarily preassigned accuracy due to the above inequalities, cf. [P4, Theorem 3.1]. For example, we can determine the constants K_1 and K_2 such that the bound (2.27) is better than that given in (2.25) for $1 \leq K < K_1$ and the bound (2.25) is better than that in (2.24) for $1 \leq K < K_2$. Relevant computer calculations give $0 < K_1 - 1.053180 < 10^{-6}$ and $0 < K_2 - 1.113057 < 10^{-6}$. Moreover, $P(1.1) > \pi/8$ and $2\sin(\frac{\pi}{2}M(1.1)) + 4\sin^2(\frac{\pi}{2}M(1.1)) + \sin P(1.1)\sin 2P(1.1) < 1$, which completes the proof of (2.27).

Remark 2. Theorems 1.1 and 1.2 are counterparts of Corollaries 2.4 and 2.7 in [K2], respectively, for M-qs. functions h on \mathbb{R} such that σ , $\sigma(t) = h(t) - t$, is 2π -periodic on \mathbb{R} normalized by $\int_0^{2\pi} \sigma(t) dt = 0$. They enable us to adopt some Krzyż's result from [K2] for functions of the form $\mathbb{R} \ni t \mapsto h(t) - t \in \mathbb{R}$ where $h : \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying $\gamma(e^{it}) = e^{ih(t)}, -\pi < h(0) \leq \pi$ and $\gamma \in \partial \mathbb{Q}_0(K; \Delta)$, but we will not develop this point here.

REFERENCES

- [AVV] Anderson, G.D., M.K. Vamanamurthy, and M. Vuorinen, Distortion function for plane quasiconformal mappings, Israel J. Math. 62 (1988), 1-16.
 - [BA] Beurling, A., and L.V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
 - [BS] Behnke, H., and F. Sommer, *Theorie der analytischen Funktionen*, Springer-Verlag, Berlin Heidelberg New York, 1976.
- [C] Choquet, G., Sur un type de transformation analytique généralisant la réprésentation conforme et définie au moyen de functions harmoniques, Bull. Sci. Math. (2) 69 (1945), 156-165.
 - [DE] Douady, A., and C.J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. no. 1-2, 157 (1986), 23-48.
 - [HP] Hersch, J., and A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudoanalytiques, C. R. Acad. Sci. Paris. 234 (1952), 43-45.
 - [H] Hersch, J., Longueurs extremales, mesure harmonique et distance hyperbolique, C. R. Acad. Sci. Paris 235 (1952), 569-571.
 - [Kn] Kneser, H., Lösung der Aufgabe 41, Jahresber. Deutsch. Math. Verein. 35 (1926), 123-124.
 - [K1] Krzyż, J.G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12 (1987), 19-24.
 - [K2] Krzyż, J.G., Harmonic analysis and boundary correspondence under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 14 (1989), 225-242.
 - [K3] Krzyż, J.G., Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 47 (1993), 90-95.
 - [LP] Lecko, A., and D. Partyka, An alternative proof of a result due to Douady and Earle, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 42 (1988), 59-68.
 - [Le] Lehtinen, M., Remarks on the maximal dilatation of the Beurling-

Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9 (1984), 133-139.

- [LV] Lehto, O., and K.I. Virtanen, Quasiconformal mappings in the plane, Grundlehren der Math. Wissenschaften 126, 2-nd., Springer-Verlag, New York, Heidelberg and Berlin 1973.
- [P1] Partyka, D., A distortion theorem for quasiconformal automorphisms of the unit disk, Ann. Polon. Math. 55 (1991), 277-281.
- [P2] Partyka, D., The maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Maria Curie-Skłodowska, Sect. A 44 (1990), 45-57.
- [P3] Partyka, D., Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 18 (1993), 343-354.
- [P4] Partyka, D., Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 45 (1992), 99-111.
- [P5] Partyka, D., The maximal value of the function $[0,1] \ni r \mapsto \Phi_K^2(\sqrt{r}) r$, (1994), (to appear).
- [SZ] Sakan, K., and J. Zając, The Douady-Earle extension of quasihomographies, (1994), (to appear)
- [Z] Zając, J., The distortion function Φ_K and quasihomographies, edited by H. M. Srivastava and S. Owa, World Scientific, New Jersey, 1992, Current Topics of Analytic Function Theory, 403–428.

Instytut Matematyki UMCS Plac M. Curie Skłodowskiej 1 20–031 Lublin, Poland e-mail: partyka@golem.umcs.lublin.pl