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Abstract. This paper provides a new bound of the functional |¢(0)| in the
class Q°(K;A) of all K—quasiconformal self-mappings ¢ of the unit disc A nor-
malized by a vanishing integral of their boundary values. Let ¢x, K>1, denote
the Hersch-Pfluger distortion function. Using some properties of the function
[0,1]3r—&3 (/7)—r a bound of |¢(0)|, as well as an improved estimate of the
maximal dilatation of the Douady-Earle extension of a quasisymmetric automor-
phism of the unit circle are derived.

0. Introduction. Notations. Statement ot_' results

Let C =Cu {oo} denote the extended complex plane. A sense—
preserving homeomorphism ¢ of a domain  C C onto a domain
' C C is said to be K—quasiconformal (abbreviated: K—qc.), 1 <
K < oo, if for every quadrilateral Q = Q(z;, 23, 23, 2z4) whose clo-
sure is contained in 2, Mod(¢(Q)) < K Mod(Q) (the geometric
definition). Here Mod(Q) stands for the module of @, cf. [LV].
We will write Q(K;Q,Q') for the class of all such mappings and
Q) = Urckcoo QEK;Q,9Q'). The value Klp] = inf{K > 1:
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¢ € Q(K;Q,0')} is called the maximal dilatation of ¢ € Q(£,Q').
In order to shorten the notation we write Q(K;Q) and Q(f2) for
Q=Q' If ( € N is arbitrarily fixed then the notation ¢ € Q;(K; Q)
(Q¢(£2)) means that ¢ € Q(K;Q) (Q(R)) and ¢(¢{) = {. Assume
Q c € is a simply connected domain bounded by a Jordan curve
=09 cC C. If F is a complex—valued function on § then we put
OF(z) = limy—, F(u) if the limit exists as u approaches 2z in 2 and
OF(z) = 0 otherwise. It is well known that every ¢ € Q(Q) has a
continuous extension to I' being a sense-preserving homeomorphic
self-mapping of ' , cf. [LV]. Set IQK;N) = {8y : ¢ € QK;Q)}
and 0Q(Q) = {J¢ : ¢ € Q(N)}. Let us denote by A, T and C4 the
unit disk {z : |z| < 1}, the unit circle {z : |z| = 1} a.nd the upper half
plane {z : Im z > 0}, respectively.

In the famous paper [BA] Beurling and Ahlfors characterized the
class OQ(C4) by means of so—called quasisymmetric (abbreviated:
gs.) homeomorphisms of the real axis R, cf. also [LV]. Moreover,
if ¢ € Q(K;Cy4) then 9y is A(K)-gs., cf. [LV] for the proof and
the definition of the A-distortion function. Conversely, if f is an
M-qs. homeomorphism of R, k > 1, then the extension formula of

the Beurling-Ahlfors type generates F' € Q(C4) and the best bound
known so far

(0.1) K[F) < max{2M -1, M*/?}

was found by Lehtinen in [Le].

Let Hom(T), (Hom™ (T)) stand for the class of all (sense—preser-
ving) homeomorphic self-mappings of T. A counterpart of an M-
gs. homeomorphism of R is an M-qs. automorphism v of T, i.e.
Y € Hom™ (T) satisfies the inequality M~! < |y(L)1/|v(I2)y < M
for each pair of adjacent closed arcs I1,I; C T of equal arc-length
measure 0 < |I|; = |I3]; € 7. Krzyz introduced this notion in [K1]
and proved that ¥ € Hom™ (T) is M—gs. iff there exists ¢ € Qo(K; A)
such that 5¢ = v and the correspondence between M and K is the
same as in the case of = C,, after a small modification of his
Proof. A more sophisticated but conformally invariant characteriza-
tion of OQ(R) for arbitrary © by means of quasihomographies, or
1-dimensional qc. mappings of ' due to many formal similarities to

Fﬁe class of plane qc. mappings, was studied by Zajac in [Z]. Also cf.
3].
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We use the symbol P[f] to denote the Poisson integral of a
complex—valued | - |;-integrable function f on T, i.e.

02 Pl =5 / f(u)Re 2E2

|du|, z€eA.

It follows from the noteworthy Kneser-Choquet theorem for convex
domains, cf. [Kn], [C]; that P[] is a sense-preserving diffeomorphic
self-mapping of A and obviously dP[y] = v for each ¥ € Hom*(T).
Consequently, for every z € A there exists the uniquew = F,(z) € A
satisfying the equality ¢

(0.3) Plh;09)(w) =0
where
(0.4) ha(u) = “___‘;, a€A,zeC.

This shows that F, is a sense—preserving real-analytic dlffeomorphjc
self—mappmg of A, 6F = 4 and

(0.5) Fypopoy =V0Fyof, p,veQl;A),

provided v € Hom+(T), cf. [LP, Theorem 1.1)]. Foilowmg [BS] we

use the symbol f to denote the inverse mappmg of f if it exists, while

f~! = 1/f. The inverse mapping E., := F is a continuous extension
of v € Hom*(T) to A conformally mva.riant, ie.

(0.6) Ejponosy =0 Ejov, p,veQL;A),

by (0.5). As a matter of fact E. := F, coincides with the mapping
E(v) found by Douady and Earle in [DE, Theorem 1}, and so we call
E, the Douady-Earle extension of 4. It was the first conformally
invariant analytic extension of v € Hom™*(T) to A. In the already
mentioned eminent paper [DE] Douady and Earle showed that E., €
Q(A) iff v € Q(A). In fact, they proved that K* := sup{K|[E,] :
v € 0Q(K;A)} < 4-10%%K f. [DE, Proposition 7], and given
€ > 0 there exists § > 0 such that K* < K3t if K <146, cf.
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[DE; Corollary 2]. This means that K* — 1 as K — 1% and so
their explicit estimate, starting from 4 - 10%¢%% for K = 1, is very
Inaccurate in the range of small K close to 1. Thus, analogously to
(0.1), a natural problem appeared, to find an explicit estimate L(K)
of K* for all K > 1 which is asymptotically sharp, i.e. L(K) — 1
as K — 1%. The first bound L of this kind was found for small K,
1 < K £ 1.01, in [P1, Theorem] and then it was improved for all
K > 1in [P2, Theorem 3.1]. In this paper we proceed with the study
of this topic. We extensively borrow from the techniques developed in
[P1] and [P2]. However, an essential progress in this direction could
be achieved due to two circumstances. The first one is the following
equality, cf. [P5, Theorem 1.1, Corollary 1.2,

(0.7) max [®%(vr)-r|=M(K), K>0,

" 0<r<l

where ®x is the Hersch-Pfluger distortion function, cf. [HP], [LV],
and

_AMVEK) -1
2 D) 1
M(1/K)=M(K), K>1.

08) M(K) =28 (1/v2) - 1

The second one is the inequality (1.8). Combining these ideas we
derive in Section 1 Theorem 1.4 which is the main proving tool of
Lemmas 2.1 and 2.2 for K close to 1 in Section 2. The proof of
(2.3) in Lemma 2.1 is an adaptation of the first part of the proof of
Theorem 3.1 and the proof of Theorem 1.2 in [P2]. Roughly speaking,
We modify those proofs by using the quasiconformal invariance of the
harmonic measure instead of the quasisymmetric characterization of
the class 0Qo(K; A). Lemma 2.2 is an improvement of [P1, Lemma)
fol‘ small K > 1. Lemmas 2.1 and 2.2 imply Theorem 2.3 which
1S our main result. It provides a new explicit and asymptotically
sharp estimate L(K) of K* for all K > 1 which essentially improves
those in [P1, Theorem] and [P2, Theorem 3.1*)]. Combining this

——

*) There is a minor error in the proof of this theorem. The theorem remains
true after replacing the coefficient 1/(27v/6) by 9\/3/(32#) in the formula
defining F(K).
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result with (0.1) yields a new bound of K* which depends on the
quasisymmetry constant M only. The problem of estimating K* for
quasihomographies was studied by Sakan and Zajac in [SZ]. They also
applied (0.7) to get asymptotically sharp estimate of K*. Section 3
provides comments dealing with two previous sections.

The author would like to express his sincere thanks to Professors
Ken-ichi Sakan and Jézef Zajac for their very helpful comments.

1. Some estimates involving the function M (K)

It was shown in [P5, Theorem 3.1] that

(1.1) orgaécl |OF(r) — r| < M(K)

for every F € Q(K;C,) satisfying OF(z) = 2z, z = 0,1, 0, and
the equality is attained for some extremal mapping Fx such that
OFk(rk) = 1 — ri where 1 — 2rx = M(K). Let f(t) = OF(t)
for 0 <t < 1. If f(t) > t then we put g(t) = f(t). Otherwise,
we put g(t) = ac + b — f(ar + by — t) where (a¢,b:) C [0,1] is the
bigest open interval such that f(r) < r for every a; < r < b;. ¢
is an increasing function on [0, 1] because f does so. Furthermore,
0<g(t)—t=a¢+bt —t—f(at+b¢—t)<bg —ts 1—tlff(t) < t.
Therefore 0 < g(t)—t < min{1-t AI(K)} forevery 0 <t < 1by(1.1)
and the inequality f(t) < 1. Since f [f(r) —rldr = f (9(r) = r)dr
if f(t) <t, we obtain

[lléF(r)—r]dr= [l (r)—r)dr
i ) ] (9(r) —r)

< /l min{l — r, M(K)}dr = M(K) - iM*(K)

provided F € Q(K;C4). In what follows we derive counterparts
of the estimates (1.1) and (1.2) for the unit disk. We will use the
symbol Arg z to denote the argument of z € C\ {0}, i.e. the unique
t, —m < t < 7, satisfying z = |z|e'".

Theorem 1.1. If K > 1, ( € T and ¢ € Qo(K; A) satisfies
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0(¢) = ¢, dp(—() = —¢ then

(1.3) max | Arg(dp(2)/2)| < *M(K) ,
as well as
(1.4) max |0p(z) — z| < 2sin(rM(K)/2) .

Proof. Let K > 1 and ¢ € Qy(K;A) satisfies de(¢) = ¢,
5cp(—( ) = —( for some ( € T. Without loss of generality we can
assume that ( = 1. It can be always achieved after a suitable'rotation.
Following Krzyz, cf. [K1], we assign to ¢ a K—qc. self-mapping F' of
C;+ such that

(1.5) pe™)=emF | 2eCy

and OF keeps the points 0, 1, 2 fixed. It follows from (1.1) that
|6F(t) — t| < M(K) for every t € R. By this and (1.5) we have
|Arg(5<p(e“)e"“)| = |7dF(t/x) — t| < *M(K) for all t € R, which
proves (1.3); (1.4) is an obvious consequence of (1.3). O

Remark. Unfortunately, the estimates (1.3) and (1.4) are not

sharp for K > 1. It is caused by the fact that the extremal function

Fk is not periodic with the period 2. Therefore the strict inequality
holds in (1.3) and (1.4) for K > 1. However, the obtained results
seem to be fairly accurate at least for K close to 1.

. Theorgm 1.2. If K> 1, ( € T and p € Qo(K;A) satisfies
9¢(¢) = ¢, 9p(—C) = —( then

(18) 3 [ 1Arg(Ge(a)/2)ldel < (M(K) - }M(K))

Moreover,

(1.7 = /r |8¢(z) — z||dz| < 2sin($(2M(K) — M?*(K))) .
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Proof. Let ¢ and F be as in the proof of the previous theorem.
Applying (1.2) and (1.5) we get

x
& [ 1AcsBo(a)/Dldsl < 3 [ m0F(e/) - i
< (M(K) - }MP(K)),

which proves (1.6). Similarly, by using Jensen’s inequality for concave
functions, we have

2r ;
#[T|S‘P(Z) - z||dz| = 2%[(} 2sin%|1r¢9F(;';) — t|dt <
2r
25in(-2{;/ %lﬂ'éF(;‘;) — t|dt) < 2sin( F(2M(K) - M*(K))),
0

which proves (1.7). O

We proceed with extending the above theorem to any ¢ € Q(K; A).
We first prove the basic statement in this paper.

Lemma 1.3. For every a € A and v € Hom™(T)

(18) 2 [ 1Arg((ha o 7)(e)/hala)llds] < magx] Arg(a(2)/2)]

Proof. Fix a € A and v € Hom™(T). Let
(1.9) m = max | Arg(7(z)/2)] .

Clearly, if m = = then (1.8) holds. Assume m < w. For any
z,w € T we denote by I(z,w) the closed arc directed counterclock-
wise from z to w. Consider the function f : T — R defined by
£(2) = H(ha(2), ha 0 /()]s as Arg(1(2)/2) > 0 and f(z) = {(ha o
%(z), ha(z))l1 otherwise. We assign to f two functions fi and f_
defined on T as follows: fi(z) = f(z) for Arg(y(z)/z) > 0 and
f-(z) = 0 otherwise, f_(z) = f(ze'™) for Arg(y(ze'™)/ze'™) < 0
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and f_(z) = 0 otherwise. Evidently, f(z) = f4+(z) + f-(ze™*™) and
consequently :

/T f(2)lde] = /T fo(2)ldz] + /T f-(zem™)\dz]

(1.10) A
- /T(f+(2) + f-(2))ldz| .

Since v and h, are sense-preserving, we conclude from (1.9) that
f+(2) + f-(2) < |I(ha(2), ha(2€'™))|1. Hence by (1.10) and Fubini’s
and Cauchy’s integral theorems

o [ el < o [ (e hatee™hlde

- -—1 / lha(I(z, z6"™))| |dz| = / / = laf — 10 dt|dz|
i ; |1 — @ze't|?
T or / / 11— aze"l2 M = azenpe 42Ht = 21r J 2mﬂ EEEn

0

This and the obvious inequality | Arg((ha o ¥)(2)/ha(2))| < f(2),
z € T, imply (1.8). O

Theorem 1.4. If K > 1, ¢ € Q(K;A) and a = p(0) then
v := Oy satisfies

(111)  mink / | Arg(h_a(e2)/7(2))|ldz| < *M(K) ,
as well as

(112) minde [ h-a(e2) = 7(2)lld| < 26in(FMK) .

Proof. Fix K > 1 and ¢ € Q(K; A). By the Darboux property
there exist two points (;,(2 € T such that d(he 0 p)(¢)) = (2 and
d(h, 0 @)(—=¢1) = —(2. Then, setting €' = (3/¢; and ¥(z) := ha 0
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p(e™z2), z € A, we see that 1) € Qo(K; A) and B keeps the points
{2, —(2 fixed. Applying Lemma 1.3 and Theorem 1.1 we have

& [ 1Arg(h-u(c*2)/)les
= & [ IArg(h-u(2)/h-a 0 e 07(c™*)lds]
T .
=+ /T | Arg(h—a(2)/h—a 0 89(2))||dz]
< max | Arg(80(2)/2)] < TM(K) ,

which proves (1.11). Hence by Jensen'’s inequality for concave func-
tions

& [ Ihoa(es) (|
- 2ein } Arg(h-(e2) (e
< 2sin( [ | Arg(hoa(e*2)/ (2Dl < 2sin(MK)

and this yields (1.12). O

2. An estimate of K[E,] for v € 8Q(K;A)

Suppose 2 C C is a domain and ¢ is a sense—preserving dif-
feomorphism of © onto Q' = (). Then the Jacobian |9p(¢)[? —
|0(¢)|? is positive at every ( € Q. Define k[p](¢) = |8¢(¢)/de(C)|
for ( € Q and k[p] = sup;eq k[¢](€). It is well known that ¢ €
Q(Q, Q) if k[p] < 1, and

(2.1) Kle) = (1 + k[o])(1 = kle])™?

cof. [LV]: We denote by Q°(K; A) the class of all ¢ € Q(K; A) nor-
malized by

(2.2) P[dy)(0) =0 .
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It follows from (0.3) that ¢ € Q°(K;A) iff ¢ € Q(K;A) and
F3,(0) =0.

Lemma 2.1. IfK > 1, ¢ € Q°(K;A), v := 0p and r; =
cos(m/2*1), r| = sin(7/2!*1), [ = 1,2,3, then
(2.3)

7 L 5
F(F](0) < 1- 24 (1edl)

Bl (r1) @]k (r)) Pk (r2)®]  (r2) B i (r3) By e (r ) (2% (r3) — 1)

and
k*[F,)(0) < sin2P(K, |¢(0)])
(2.4) - + (1 —sin2P(K, |¢(0)]))(2sin(r M (K)/2)
+ |(0)I* + sin P(K, |¢(0)]))
where
(2.5) P(K,r)=X-2(1-r)(1+r)""arccos ®x(cos ¥) .
Moreover,
K[F,)(0) < sin2P(K, [o(0))
(2.6) 4+ sin P(K,|¢(0)|)cos? 2P(K, |¢(0)|)(1 — 2sin(xM(K)/2)
— (0)|* — sin P(K, |o(0)]) sin 2P(K, |(0)])) !
as the denominator is positive and P(K,|¢(0)|) < =/8.
Proof. Fix K > 1and ¢ € Q°(K;A). Let a = ¢(0) € A. Then

Y := haoyp € Qo(K;A). Assume [ is an arbitrary subarc of T. It
follows from the quasi-invariance of the harmonic measure w that

(2.7 - K 1(cos(Fw(0, A)[I])) < p(cos(Zw((0), A)[0¥(I))))
e aTt < Kp(cos(Zw(0,A)[1))) ,

cf. [H]. Here y stands for the module of the Grotzsch extremal domain
A\ [0,7], cf. [LV]. Since %(0) = 0 and 27w(0, A)[I] = |I|; for any
arc I C T, we get by (2.7) and the definition of ®x

(2.8) /K (COS E..h) < cos L*-L‘:(M <Pk (cos E‘h) :
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Set ak,; = 4arccos Bk (r1), | = 1,2,3. An easy computation applying
the identity

(2.9) ®%(r) + 8}k (V1-r2) =1, 0<r<1,
cf. [AVV, Theorem 3.3], shows that
(2.10) sin(ak,1/2) = 28 (r1)®y k(r) , 1=1,2,

and

(2.11) sin(ak3) = 4‘I>K(r3)4>1/K(r;)(2<I>";((r3) -1).

It follows from (2.8) and the inequality |h_o(I)|y = [; |h_,(2)l|dz| >
(1 —lal)(1 + [a])~* 1] that
(2.12)

(D)l = |h—a 0 ha 0 ¥(I)]x 2 (1 = lal)(1 + |a]) ™" |ha 0 ¥(I)]x

> (1 - lal)(1 +la)) ™ ek,
for |I|; = 7/2'-', 1 = 1,2,3. The inequalities (2.12), I = 1,2, cor-
respond to (1.2)-and (1.3) in [P2] after replacing 27 /(1 + k) and

27/(1 + k)% by ak, and ag,, respectively. Define for every n €
Hom(T) and any integers n,m € Z

(2.13) R RO

A calculation similar to that in the proof of Theorem 1.2 in [P2] shows
that

31 < cos (aka i) = sin2P(K,|a]) ;
(2.14) |7}| < cos (f i Lg_;_ﬂ_}) = sin P(K, |a) ;
1> |71_1|2 - |’y;|2 > %ésin2 (a—’;h‘-i—;H) sin (aK::’:_-:H) .

Since p-€ Q°(K; A), F,(0) = 0. Differentiating at the point z = 0
both sides of the equality P[h; 0 7](F,(z)) =0, z € A, we see that

¥L10F5(0) + v]OF,(0) =1 , 4 0F,(0)+1]0F,(0) = —12,
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hence
255, Gt L | 1 1
7L+ v n L7 -
2.15 OF,(0)= —————— , O0F,(0)= —————~ ,
215) 00 = o B P 0 = P e
and finally
= 2 2 2
R _ (L= BERBL P - )
F,(0) AT
From this, (2.16) and (2.14)
(2.17)
3r, 0% -2 1Rl s ) S 2 2
1~ |org| = T 2 i~ il

> itan (ou; aka :_+H) gin? (a_lé,l:_ﬂ%}) sin (OtK.a ﬁl%l)

2v/2 (1-|a| 2 a 2 ak,a
2o T+7a] sm —2‘—sm -4 sinaggs .

Hence by (2.10) and (2.11) the bound (2.3) follows. We derive now
(2.4). By (2.13) we get for every § € R

Il =115 Ity = el = &1 [ ()% - )il
<& [ 1) = ha(e )l + | [ (hoa(e2)7 = e
=& [ 1)~ hoale®)llds] + 1ol
Furthermiore, by Thearaidl 4

1- Iyl < min & / I(2) = hea(e®2)lidz] + af?

< 2sin(F M(K)) + |a|? .

(2.18)

It follows from (2.16) that

= 2 22 .2 12
__|aFy(0) A=lw YU =Iml®) _ 7 .2 3
1 ‘BF,(O) 2 O+, [+ — (1= o D(lv=1l = Iml) -
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Combining this, (2.14) and (2.18) gives (2.4). The last bound (2.6)
is a direct conclusion from (2.14), (2.15), (2.18) and the following
estimate

-7, %l
k — '-—“‘—--—'
[F1(0) REIS RFRH
< el ImlQ = e )izl = hellu)™ . O
The estimate of k[F,](0) in the above lemma depends on K and

la. The next lemma provides a bound of |a| which depends on K
only. Consider in the class Q°(K; A) the basic distortion functional

(2.19) p(K) = sup{|p(0)| : ¢ € Q(K; A)} .

Lemma 2.2. For every K > 1

p(K) < p(K) := min{2sin(F M(K)),
(2.20) _ o 1-2(vV3ek(V3/2)87 4 (1/2)+1) T}

Proof. Fix K > 1, o € Q%K;A) and set v = 8y, a = ¢(0).
It follows from P[y](0) = 0 that for every arc I C T of length |I|; =
2n/3, |[7(I)l1 < 4n/3, cf. [LP] for details. Applying now (2.8) gives
lp(0)| < 1/2+V/3/2 cot(m/3+arccos @k (V3/2)), cf. [P1, (4)]. Hence
by (2.9) we derive

(221)  p(K) S 1-2(V38k(V3/2)87 ) (1/2)+1) " .

This estimate is not sharp because the right hand side tends to 1/2
as K — 1%. To improve it for small K close to 1 we will use Theorem
1.4. Since P[v](0) = 0, we have for every § € R

1) = Jal = £ ]T hoa(e®2)ldz| — [ 4(z)ldel

JT

<L jT Ih—a(e2) = 7(2))ldz]
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Now, applying Theorem 1.4 gives |¢(0)| < 2sin(#M(K)/2) and so
p(K) < 2sin(rM(K)/2) for K > 1. Combining this and (2.21) leads
to (2.20). O

Consider the second distortion functional p.(K) in the class
Q°(K; A) given by

(2.22) pe(K) = sup{:—ilﬁ%} 0 € QUK;A)} .

In view of the above lemma p(K) < 1 and so

(223)  pu(K)= 28R <po(K):= B <0, K21.

Now we are ready to prove the main result in this section which
improves Theorem in [P1] and Theorem 3.1 in [P2] in the whole
range of K > 1.

Theorem 2.3. If K > 1 and v € 6Qr(K) the-n F, and E, are
(1 + k)(1 — k)~!-gc. mappings and k = k[E,| = k[F,] satisfies
(2.24)
K <1- 22p73(K)x
@ (r1)®3 /K(Tl)‘l’2 (r2)®3, K (r3) @k (r3) @1/ K (r5)(29%(r3) — 1) <
1- 588.5(342) 85, (1)x
% (1)@}, k() @k (12)@F /K (2) Bk (r3) @1/ (r3) (2% (r3) = 1)
and
k? < sin2P(K) + (1 — sin2P(K))(2sin(3 M(K))

(2.25)
+ 4sin*(ZM(K)) + sin P(K))

where
(2.26) P(K)=P(K,p(K))=7%- 2p. ' (K)arccos ®k(cos §) ,
and ry, vy, 1 = 1,2,3, were defined in Lemma 2.1. Moreover,

k < sin2P(K) + sin P(K)cos® 2P(K)(1 — 2sin(3 M(K))

(2.27) - 4sin2(§M(K)) — sin P(K)sin 2P(K))—l
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whenever P(K) < w/8.

Proof. Fix K > 1 and v € 0Q(K; A). If z € A then v, := h, 0
7oh_p, sy € BQUE; A) and by (0.5) h_, (10 Fy,(0) = Fy(h—:(0)) =
F.(z). Hence F,,(0) = hp, (;)(Fy(z)) = 0 and applying (0.5) once
again we have k[F,](z) = k[hr, (z)0 Fyoh_.](0) = k[F,](0) for every
z € A. Consequently,

(2.28) :

ki= K[F) = sup K{F,)(0) < sup(K{Fy,J(0) ¢ € Q(K; A)}

It follows from (2.5), (2.23) and (2.26) that for.each ¢ € Q°(K;A),
P(K,|p(0)]) < P(K). From this, (2.28) and the formulas (2.3),
(2.4) and (2.6) we easily derive corresponding bounds (2.24), (2.25)
and (2.27)*) in our theorem. Moreover, by (2.20) we get p.(K) <
\/§‘I>K(\/§/2)<I>l_/lk(l/2), which completes the proof of (2.24). By
definition, E, = F,. Therefore k = k[E,] = k[F,] and E, €
Q1+ K)(1- k) A). O

Corollary 2.4. If v is an M-gs. automorphism of T, 1 <
M < oo, then Fy and E., are (1 + k)(1 — k)~'-gc. mappings and
k = k[E,] = k[F,] satisfies the inequalities (2.24), (2.25) and (2.27)
after K has been replaced by min{M3%/2,2M — 1}.

Proof. Modifying the proof of Krzyz's Theorem from [K1] by
applying Lehtinen’s result (0.1) we deduce that M—gs. automorphism
of T has a K—qc. extension to A with K < min{M3/2,2M —1}. In
this way the corollary follows immediately from Theorem 2.3. O

3. Complementary remarks

Remark 1. Let ¢x(z) = min{4!~1/Kz1/K 1} and h(z) = (1 —
z)(1+z) ! forall0 < z <1, K > 0. Consider the following functions
Qo[K, t](.’t) = ‘bg o] ¢K (o} Ql/,(z) y
¢1[K,t](1)=h0¢0[1/K,t]0h(.’t) ’ K>01
3 ; *
8(K, t](z) = { min{®y (K, t|(z) , ®,(K,t](z)} , K>1
max{®o[K,t|(z), :1[K,t](z)} ,0<K <1

*) see Remark 1 in Section 3 for the completion of the proof of (2.27).
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for 0 <z <1,t> 0. Since, as shown in [LV], ®2(r) = 2\/r(1 + )7},
0<r<1,and ®3n+1 = B30 0 By, By-n = B3, n € N, all functions
®[K,2"], K > 0, n € Z, are elementary. Moreover, it follows from
[P3, Theorem 1.3, Corollary 1.4] that ®[K, 2"] approaches monoton-
ically @) as n — oco. Moreover, it follows from [P3, Theorem 1.5,
Corollary 1.6] that

0 < &[K,2")(z) — ®x(z) < 2% /K &,[K,2"(z)

for K>1,n=23,4,...,

0< &[K,2"(z) — Bk (z) < 2((1 — A=) )" — 1)rK ()

for K>1,n=1,23,...,

0 < Bk (z) — Bo[K,2")(z) < ((1—22"") V5 ¥ 2 1)8,(K, 2"|()
for0<K<1,n=1,2,3,...,and

0 < &x(z) — &,[K, 2")(z)
<2((1 = hz)¥*""") ™" 1) min{4!~¥rK(2),1}

for0< K<1,n=2,34,....

All bounds in Lemma 2.2 and Theorem 2.3 depend on ®x. Ap-
plying the approximating sequence ®(K,2"),n =0,1,..., of ®x, we
can estimate the right-hand side of (2.24), (2.25) and (2.27) by ele-
mentary functions with arbitrarily preassigned accuracy due to the
above inequalities, cf. [P4, Theorem 3.1]. For example, we can deter-
mine the constants K; and K, such that the bound (2.27) is better
than that given in (2.25) for 1 < K < K, and the bound (2.25) is
better than that in (2.24) for 1 < K < K,. Relevant computer calcu-
lations give 0 < K; —1.053180 < 10~ and 0 < K,—1.113057 < 107°.
Moreover, P(1.1) > 7/8 and 2sin(¥M(1.1)) + 4sin’(FM(1.1)) +
sin P(1.1)sin 2P(1.1) < 1, which completes the proof of (2.27).

Remark 2. Theorems 1.1 and 1.2 are counterparts of Corol-
laries 2.4 and 2.7 in [K2], respectively, for M-gs. functions h on
R such that o, o(t) = h(t) — t, is 2r—periodic on R normalized by
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02: o(t)dt = 0. They enable us to adopt some Krzyz’s result from
[K2] for functions of the form R 3t +— h(t)—t € R where h: R —» R
is a continuous function satisfying y(e**) = '**) —r < h(0) < 7 and
v € 8Qo(K; A), but we will not develop this point here.
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