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Univalent Harmonic Mappings in the Plane

Abstract. Lately, G.Schober [SI] and P.Duren [DI] have written excellent 
surveys of univalent planar harmonic mappings. We give here an update of this 
theory.

%
1. Introduction

Let D be a domain of the extended complex plane C. A harmonic 
mapping is a complex-valued function w = /(z) = u(z) + iv(z) which 
satisfies = 0 on D, i.e., u and v axe real-valued harmonic functions 
on D. Observe that, in contrast to other authors, we do not require 
f to be univalent on D. For instance, any analytic or anti-analytic 
function is a harmonic mapping. Since u and v are real parts of 
locally analytic functions defined on D, it follows that f admits the 
representation

(!) f(*) = h(z) + g(z)

where h and g are locally analytic on D. For example, /(z) = z — 
l/z + 2 In \z | is a univalent harmonic mapping from the exterior of the
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unit disk U onto C\{0} where h(z) = z+logz and g(z) = log 2 — \/z. 
If D is a simply connected domain of C, then h and g are (globally) 
analytic functions on D. On the other hand,

/>' = /,= (df/dx - idf/dy)/2 

and
g' = f* = (df/dx + idf I dy\/2

are always (globally) analytic functions on D. In contrast to the linear 
space H(D) of analytic functions, the product and the composition 
of two harmonic mappings are in general not harmonic. Furthermore, 
neither the reciprocal 1/f nor the inverse f~l (whenever they exist) 
of a harmonic mapping f is in general harmonic. However, the com­
position of a harmonic mapping with a conformal premapping is a 
harmonic map. Moreover, an affine transformation applied to a har­
monic map is also harmonic. E.Reich [R2], [R3] has given a complete 
description of the harmonic mappings f and g with the property that 
9 o f is also harmonic. In particular, as a special case, he obtains the 
following Choquet-Deny Theorem [Cl]:

Theorem 1.1. Suppose, f is a sense-preserving harmonic home- 
omorphism and is neither analytic nor affine. Then f"1 is also har­
monic if and only if

C - e~Az/B
M = D + Az + B log —---- =====

C - e~Az!B

where A, B, C and D are non-zero complex constants and |C| > 
supz ¡e~Az/B\.

Since the absolute value \ f\ of a harmonic map f is subharmonic, 
it follows that f satisfies the maximum modulus principle. Further­
more, if f is not a constant, we conclude from (1) that the inverse 
image of a point is a union of points and analytic arcs. We say that 
a continuous map f is light, if the image of each continuum is a 
continuum. There are harmonic mappings which are not light. For 
instance, z + z and z + 2 — z2 + z2 map the imaginary axis onto the 
origin and 2 — 1/2 maps the whole unit circle dU onto the origin. Let
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p and q be two analytic polynomials of degree n and m. If n / m, 
then the harmonic polynomial P = p + q is light. A complete char­
acterization of the local behaviour of a light harmonic mapping has 
been given by A. Lyzzaik in [L3], It contains, as a special case, the 
following result due to J.Lewy [L2]

Theorem 1.2. A harmonic mapping is locally univalent in a 
neighbourhood of a point zq if and only if its Jacobian Jf(z) does not 
vanish at zo.

Remarks 1.1.
1.1.1 Theorem 1.2 fails to be true for harmonic mappings in higher 

dimensions. The following counter-example is due to J.C. Wood 
[W2]. Define

u(x, y, z) = x3 - 3iz2 + yz, u(i, y,z) = y - 3xz, 
w(x,y,z) = z.

Then the mapping is univalent on R3 but the Jacobian vanishes 
on the plane x — 0.

1.1.2 Starkov [S8]'has studied in details the behaviour of locally uni­
valent harmonic maps.

Open problem 1.1. Does Theorem 1.2 hold for complex-valued 
pluriharmonic mappings ?

Suppose that f is a univalent harmonic mapping defined on D. 
Then, either f is sense-preserving or sense-reversing. In the first case, 
the Jacobian

(2) J/(z) = IA I2 - |M2 = Ifi'l2 - |?'|2

is strictly positive on D. If the second case holds, then f is sense- 
preserving. Suppose that f is a univalent harmonic sense-preserving 
mapping. The second dilatation function afz) of f is defined by

(3) ■ o(2) = g'(z)/h'(z) = hW//,(z)

which is an analytic function on D and satisfies |a(z)| < 1 for all
: € D.



Univalent Harmonie Mappings in the Plane 15

More generally, we have

Theorem 1.3. A non-constant complex-valued function f is a 
harmonic and sense-preserving mapping on D if and only if f is a 
solution of the elliptic partial differential equation

(4) ££)=<■(*)/,«, aeH(V), |a|<l

on D.

Proof. The necessity follows directly from relation (3). Since 
|a| < 1 whenever h' 0, the zeros of h' are removable singularities 
for a or else a = 0. On the other hand, if a € H(U) and |a| < 1, the 
sufficiency follows from

7«, = (A). = (A)7 = (af,)i = afz7

which implies that = 0 on U. □

Another interpretation of (4) is a generalized Cauchy-Riemann 
equation. Indeed, using real notation, equation (4) is equivalent to

= f-Mp) Reip} V 
V«»/ V-Mp} - MP}/ W

where p is the analytic function (l + a)/(l — a). Observe that Re{p} > 
0 on U and that p belongs to the Toeplitz class P if a(0) = 0. One 
easily recognizes the Cauchy-Riemann equation if a = 0.

It follows that univalent sense-preserving harmonic mappings are 
locally quasiconformal. Observe that we allow that |a(z)| approaches 
1 as 2 approaches the boundary dD of D. Therefore, univalent har­
monic mappings do not have the same boundary behaviour as of 
quasiconformal mappings. The following two examples show the dif­
ference.

Example 1.1. The mappings /(z) = z — 1/z + Cln |z|, |C| < 2, 
are univalent sense-preserving and harmonic on the exterior A of the 
unit disk U and we have /(A) = C \ {0}. The whole unit circle is 
mapped onto the origin. For more details, see [HS3].
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Example 1.2. The Caratheodory kernel theorem does not hold. 
The mappings

/n(^) = j log + 2Re f (n — l)izJ (n-(n-l)t:z)(l - z2)
dz

are univalent and harmonic on U and fn(U) is the horizontal strip 
Q = {w : |Im w| <-7r/4}. Furthermore, the sequence converges 
locally uniformly to the univalent harmonic mapping

. 1, 1 + z ~~ i iz ,=2io« +2Ri y (i - ,>)(i

The image f(U) is the triangle with vertices 7r/2 + i7r/4, —7r/2 + 
¿7t/4 and which is not the kernel Q. For more details, see
[HS3].

In general, we have

Theorem 1.4. The limit function f of a locally uniformly con­
vergent sequence of univalent harmonic mappings fn on D is either 
univalent on D, is a constant, or its image lies on a straight line.

Proof. Suppose that f is not a constant. Since the map­
pings fn are univalent on D, their Jacobians J¡n do not vanish on 
D. We may assume that they are positive. Hence, the second di­
latation functions an defined in (3) satisfy |an| < 1 on D. More­
over, it was shown in [HS3] that the sequence an converges locally 
uniformly to the dilatation function a of the limit function f. If 
|a| < 1 on D, then f is univalent (locally quasiconformal) on D. In 
the other case, we have a(z) = e’^ for some real /? which implies 
by (3) that g' = e'^h' i.e., g = e'^h + const. Therefore, we have 
/(z) = 2e-,|3/2Re{/i(z)e'^/2} + const.. □

Let f be a sense-preserving harmonic mapping on D. Then f is 
locally of the form

(5) = + A^Z ~ Z°}n + B(Z ~ Z°)n
+ o(|z - z0|n); |B| < |A|, n e N.

If /(z0) = 0, then we say that f has a zero of order n at zq. It 
follows then that the argument principle holds on any cycle in D. It
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can be applied in order to get uniqueness results as for example in 
[BHH1] and [BHH2], or to prove univalence of certain mappings (see 
e.g., [BHH1] and [HS4]). J. Clunie and T. Sheil-Small [CSl] used the 
argument principle to show the following result:

Theorem 1.5. Let fn be a sequence of univalent harmonic 
mappings defined on D such that /„(zo) = 0 for some zo 6 D and 
suppose that they converge locally uniformly to f. Then f(D) lies in 
the kernel of {fn(D)}-

In Section 2, we shall give a survey on univalent harmonic map­
pings defined on a simply connected domain D of C. Section 3 deals 
with univalent harmonic mappings defined on multiply connected do­
mains.

Recently several excellent survey articles have, been written on 
harmonic mappings between Riemannian manifolds. For example, 
[ELI], [ESI], [Jl], [J2], [S2] and [S3] are some of these.

2. Univalent harmonic mappings on a simply connected 
domain

2.1 Motivation

Univalent harmonic mappings are closely related to minimal sur­
faces. Let Q be a domain in the (u,u) - plane and let S be a non- 
parametric surface over Q. In other words, we suppose that the sur­
face can be expressed by the function s = s(u,u). Then the folowing 
characterisation holds:

Theorem 2.1. A non-parametric surface S is a minimal sur­
face if and only if there is a univalent harmonic mapping f = u + iv 
from a domain D onto fi such that s2z = —afz = — fafz holds where 
a is defined in (4).

It is interesting to note that the normal vector ~h* of the surface S, 
called the Gauss map, depends only on the second dilatation function
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a. Indeed, we have

(6) ~n = (Im{v/a},Re{v/a}, 1 - |a|)/(l + |a|) .

Observe that ~n is vertical if and only if a = 0 and it is horizontal 
if and only if |a| = 1.

2.2 Univalent harmonic mappings defined on the plane

There are very few harmonic mappings which are univalent on 
C. Indeed, J. Clunie and T. Sheil-Small have shown in [CSl]:

Theorem 2.2. The only univalent harmonic mapping defined 
on the plane is the affine transformation

(7) fW = Az + B~z + C, |A| / |B|.
%

The proof is based on the fact that the second dilatation function 
a of f is constant on C and we have |a| 1. It follows then that
$ . = f — af is a»univalent analytic function on C. Hence, we have 
$ = cz + d and Theorem 2.2 follows.

Theorem 2.2 says that there are no univalent mappings from the 
plane onto a proper subdomain of C. Since, in general, the inverse of 
a univalent harmonic mapping is not harmonic, it is natural to ask if 
there are other univalent harmonic mappings whose image is C. The 
answer is no [CSl] and we shall give a new proof for it after we show 
the following lemma .

Lemma 2.1. Let f = h + g be a univalent harmonic and sense­
preserving mapping from a domain D onto the domain fi. Suppose 
that z\ and zi, z\ 22, are two points in D such that the line segment 
7 = {wt = i/(2i) + (1 — 0/(22) : 0 < t < 1} belongs to Q. Then we 
have

(8) |/i(22) - h(zi)| > |ff(z2) -P(2i)|.

Proof. The proof is essentially due to J. Clunie and T.Sheil- 
Small [CSl]. Let fij be a convex subdomain of Q containing the line
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segment 7. Define D\ = f 1 (Qi) and consider the mapping

(9) ^(z) = eiah(z) - e~iag(z).

Then </>a is a conformal mapping from Di onto a domain Ga 
which is convex in the horizontal direction. Therefore <j>'a does not 
vanish on D\ and we have

h(z2) - c_2,a(5(z2) ~

for all a £ [0,27r). Therefore we have |/i(z2) —/i(2i)| / |<7(z2) —fl'(2:i)l-
Let Zt € D be defined by /(zt) = wt = tf(zi) + (1 — t)/(z2);

0 < t < 1. Then we get

h(zt) - Zt(zi) 
zt - Zi

g^zt} - g(zi) 
zt - Zl

for all t € (0,1). Passing to the limit t —♦ 0, we have |/i'(zi)| > 
l<7z(zi)| since f is sense-preserving. Lemma 2.1 follows by a continuity 
argument. □.

Theorem 2.3. The only univalent harmonic mappings f satis­
fying f(D) = C are of the form (7).

Proof. First, observe that the domain D is simply connected. 
By applying a conformal premapping from the unit disk U onto £>, 
we may assume, without loss of generality, that D = U and that 
/(0) = /i(0) = g(0) = 0. Furthermore, we may assume that f is sense­
preserving; indeed, if not, consider f. Next, we have lim|,|_i /(z) = 
00.

By Lemma 2.1, we have |/| < |/i| + |^| < 2|/i| which implies 
that limr_.j |/i(re,1)| = 00. But no such analytic function exists and 
Theorem 2.3 follows from Theorem 2.2. □

Open problem 2.1. H.S. Shapiro posed in [S4j the following 
question: Is there a homeomorphism from the unit ball in R3 onto 
R3 whose coordinate functions are harmonic ?
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Remarks 2.1.
2.1.1 J. Clunie and T. Sheil—Small [CSl] have shown that if f is 

a univalent sense-preserving harmonic mapping defined on the 
unit disk U, then each circle {w : |w — /(0)| = r|/z(0)|}, r > 
271-^6/9 , contains at least one point of <C \ f(U). The constant 
2tt^/6/9 rj 1.710 is best possible.

2.1.2 We have given a new proof of the famous Bernstein’s theorem 
which says that the only minimal surfaces over the whole plane 
are planes. Indeed, we have shown, that D = C and a(z) is a 
constant. Bernstein’s theorem follows now from the relation (6).

2.3 The classes Sh and

Let D be a proper simply connected domain of C and f a uni­
valent harmonic mapping from D to C. Since the composition of a 
univalent harmonic mapping with a conformal premapping is a uni­
valent harmonic map, we may assume that D is the unit disk U and 
that f is sense-'preserving on U. Furthermore, since fz does not van­
ish on U (Theoreml.2), we may normalize f by the transformation 
(/(z) — /(0))//z(0). Then f admits the unique representation

oo oo

(10) f = h + g = z + a*zk + ZL bkzk ■

k-2 k=l

Observe that 6, = a(0).

Definition 2.1. The class Sh consists of all univalent harmonic 
and sense-preserving mappings f = h + o which are normalized by 
g(0) = h(0) = 0 and A(0) = 1.

Applying the affine postmapping (w — a(0)w)/(l — |a(0)|2) to f 
we can transform f to a function whose dilatation function vanishes 
at the origin.

Definition 2.2. The class S°H consists of all mappings f = 
h + g G Sh such that /y(0) = 0.

Remark 2.2. The condition /z(0) = 0 is equivalent to the 
condition a(0) = 0, or to g(z) = O(z2) as z —> 0.
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Since mappings in S°H are Ar-quasiconformal on the disks 
{z : |z| < r}, 0 < r < 1, where Kr = (1 + r)/(l — r), it follows 
that is compact with respect to the topology of locally uniform
convergence. Furthermore, we have

max max |f(z)| < 2 max max |/(z)| fesH |z|<rIJV 71 “ fes°u |z|<r

which shows that Sh is a normal family. Note that Sh is not compact. 
Indeed, the affine transformations fn(z) = z + n/(n + l)z belong to 
the class Sh and the sequence converges locally uniformly to /(z) = 
z + z which is nowhere univalent. The following interesting distortion 
theorem is due to J. Clunie and T. Sheil-Small [CSl].

Theorem 2.4. If f € S°H, then |/(z)| > |z/[4(l — z)2]|. In 
particular, we have {w : |w| < 1/16} C f(U).

Open problem 2.2. It is not known if the above estimate is 
sharp. There are some indications that perhaps the factor 1/4 can 
be replaced by 2/3. A possible candidate for the extremal function 
is the radial slit-mapping

(H) /(*)
z — z2/2 + z3/6 z2/2 + z3/6

(1 - z)3 + (1 - z)3

whose dilatation function is a(z) = z.

Remarks 2.3.
2.3.1 Let L be a linear continuous functional on the set h(U) of all 

harmonic mappings defined on U. Then we have

T(/) = L(h + </) = + T2(ff)

where Li and belong to H'lJJ}, the topological dual space of 
/f(CZ).

2.3.2 Since S°H is compact, each real continuous functional attains its 
maximum and its minimum on S°H. Hence, there are uniform 
bounds for the absolute value of the coefficients an and bn in
(10). Applying Schwarz’s Lemma to the dilatation a(z), one gets
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immediately the sharp inequality ¡¿>2! < 1/2. The best known 
estimate for 02 is so far |«21 < 49. There is a conjecture that 
|an| < (2n + l)(n -(- l)/6 and |6n| < (2n — l)(n — l)/6 and 
that equality is attained by the mapping given in (11). Another 
attractive conjecture is that |a„| — |fc„| < n holds for all f € S°H. 
For further investigations see e.g. [CSl].

Y. Abu-Muhanna and A. Lyzzaik [AL1] have shown the following 
interesting result

Theorem 2.5. Let f = h + g be a univalent harmonic mapping 
defined on the unit disk U. Then there is a universal p > 0 such that 
f belongs to the standard class hp and that h and g belong to Hp.

Open problem 2.3. Using the estimate |ci21 < 49 and following 
the arguments given by Y. Abu-Muhanna and A. Lyzzaik, we conclude 
that f G hp for all p 6 (0,10~4). Find the exact range for p.

2.4 Univalent harmonic mappings onto convex domains

2.4.1 The Rado-Kneser(—Choquet) theorem. In 1926, T. 
Rado [Rl] asked to prove the following result:

Theorem 2.6. Let f* be a homeomorphism from the unit circle 
dU onto the boundary of a bounded convex domain ii. Then the 
solution f = u + iv of the Dirichlet problem fzj = 0 on U and 
f = f* on dU (the Poisson integral) is univalent on U.

The same year, H. Kneser has shown in [Kl] a much stronger 
result. Since his proof is not everywhere accessible, we reproduce it 
here.

Theorem 2.7. Let f* be a homeomorphism from the unit circle 
dU onto the boundary of a bounded Jordan domain Q. Then the 
solution f = u + iv of the Dirichlet problem ftz = 0 on U and f = f* 
on dU (the Poisson integral) is univalent on U if and only if f(U) =
ft.
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Proof ([Kl]). Observe that ft C /(U) is a topological property 
which holds for all continuous extensions of f*.

(a) Suppose that f(U) / ft. Then there is a zj € U and a ¿2 G U 
such that /(zj) 6 ft and /(Z2) ft. If |a| — 1 changes the sign in U, 
then f is not univalent on U (see Theorem 1.2). Hence, suppose that 
|a| / 1 on 17. Since f is not a constant, it follows that f is an open 
mapping. Let 7 = {z(<) : 0 < t < 1} be an arc in D from zj to Z2. 
Define zr = inf{< : z(f) $ ft}. Then f(zr) = /(C) for some ( 6 3ft 
which implies that there is a neighbourhood of f(zr) whose preimage 
consists of at least two components. This contradicts the uni valence
of/.

(b) Suppose now that f(U) = ft and that the Jacobian J/(z))
of / vanishes at a point z<> 6 D. Then the linear system cux + dvx = 
0, cuy + dv9, = 0 admits a non-trivial solution (c, d). Define *P = 
cu + dv and let T be the fine segment in ft passing through the point 
Wo = /(z0). Denote the end-points of T by P and Q. Since /* is a 
homeomorphism from the unit circle *P onto 3ft, 'P is not constant 
on D. Therefore, the preimage of 7 = /-1(r) splits at zo in an even 
number of branches. Each branch may split again at other points; but 
they have to end at /-1(P) or /-1(Q). Hence, there is an open subset 
G of D such that *P restricted to dG is constant. This implies that 
'P is constant on G and hence on D which leads to a contradiction. 
So far, we have shown that / is locally univalent in D. If / is sense­
preserving, then the argument principle shows that / is univalent. If 
/ is sense-reversing, consider /*. □

Theorem 2.7 implies Theorem 2.6. Indeed, we have / = f f*dw, 
where the harmonic measure dw is a probability measure. Therefore 
we have ft C /(t/) C coft If ft is a bounded convex domain, then we 
conclude that /(£/) = ft and Theorem 2.6 follows.

Remarks 2.4.
2.4.1 In 1945, G. Choquet gave in [Cl] another proof for Theorem 

2.6, using the Poisson integral. One may also use the following 
arguments which were introduced by J. Clunie and T. Sheil- 
Small in [CSl]. Let / = h + g and define </>a as in (9), i.e., 
<Ao(^) = e‘“/i(z) — e-’“<7(z). Then </>Q is a pointwise horizontal 
translation of e’°/. In other words, we have <^o(z) = e,Q/(z) — 
2Re{e_,Q,<7(.z)}. The mappings <f>Q are convex in the horizontal
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direction and hence, conformal for all real a. Therefore, does 
not vanish on U which implies that the Jacobian Jf does not 
vanish on U.

2.4.2 Theorem 2.6 is false if ft is not convex. This was already observed 
by G. Choquet [Cl].

2.4.3 Theorem 2.6 does not hold if ft is an unbounded convex domain.
2.4.4 An extension of Theorem 2.6 and Theorem 2.7 to multiply con­

nected domains will be given in Section 3.
2.4.5 Theorem 2.6 and Theorem 2.7 do not hold in Rn,n > 3. R.

Laugesen gave an example of a homeomorphism f* = (f* 5/25/3) 
from the unit sphere of R3 onto itself such that the Poisson 
integral / = (/i,/2,/s) maps the unit ball onto itself, but is not 
a univalent harmonic mapping.

2.4.6 A conformal mapping from U onto itself is uniquely determined 
by the correspondence of three boundary points. Theorem 2.6 
shows that there axe many univalent harmonic mappings from 
U onto U.

2.4.7 P.Duren and G.Schober, cf. [DSl] and [DS2], used Theorem 2.6 
to develop a.variation for univalent harmonic mappings from the 
unit disk U onto a fixed convex domain ft. In particular, they 
gave for the case ft = U, sharp estimates for the coefficients and 
the distortion of the partial derivatives. A somewhat different 
approach is due to R.Wegmann [Wl].

Definition 2.3. Let ft be a simply connected Jordan domain 
of C and let $ be a conformal mapping from U onto ft.. A function 
/* from dU into 9ft is called a weak homeomorphism from dU 
into 9ft if /* is the pointwise limit of a sequence of homeomorphisms 
from dU onto 9ft. In other words, /* is a weak homeomorphism on 
917 if and only if = arg$-1 o /*(e,t) (which exists a.e. on 917) 
is non-decreasing on [0, 27t] and satisfies i/>(27r) = i/>(0) + 27r.

Note that a weak homeomorphism can be constant on an interval 
of dU and may have jumps; but it never can change the orientation. 
It follows immediately that Theorem 2.6. holds also for continuous 
weak homeomorphisms on dU. On the other hand, Theorem 2.7 holds 
true for /*, a weak homeomorphism from dU into 9ft, if its range 
consists of at least three different points.
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Open problem 2.4. Does Theorem 2.7 hold for complex-valued 
pluriharmonic mappings ?

2.4.2 The class Kh

Definition 2.4. A harmonic mapping f defined on the unit 
disk U belongs to the class Kh (Kqh resp.) if f G Sh (J € S°h resp.) 
and if ft = /(I7) is a convex domain.

Using the fact that the associated functions <J)Q defined in (9) are 
univalent mappings onto domains convex in the horizontal direction if 
and only if f is univalent and /(C7) is a convex domain, J.Clunie and 
T.Sheil-Small[CSl] gave sharp estimates for the Fourier coefficients 
°f f. They also have shown the remarkable result that {w : |w| < 
1/2} C /(U) whenever f € K^ which is already best possible for 
normalized conformal mappings onto convex domains.

2.4.3 Other special classes. We finish Section 2.4 with some 
remarks on harmonic mappings in Sh (Sh resp. which are either 
close-to-convex or typically real. Recall that a domain Q is close- 
to-convex if the complement of Q can be written as a union of non­
crossing open half-lines. If f = h + g € Kh, then </>o defined in (9) 
maps U onto a close-to-convex domain for all a 6 R. It follows then 
(see [CSl]) that h(z) — Cg(z) is a univalent close-to-convex mapping 
°n U for all fixed C ICI — 1- Conversely, J. Clunie and T. Sheil-Small 
[CS1] have shown the following interesting result

Theorem 2.8. Let h and g be analytic in U and suppose that 
\9'(ty\ < \h'(Qi)\. If h(z) — £g(z) is a univalent close-to-convex map­
ping defined on U for all fixed |£| = 1, then f = h + g is a univalent 
harmonic mapping from U onto a close-to-convex domain.

Observe that the univalence of f follows directly from the uni- 
valence of the mappings h(z') — (g(zfi

A harmonic mapping f on U is called typically real if f(z) is real 
if and only if z is real. For example, a univalent harmonic mapping 
whose Fourier coeffients are real is typically real. Furthermore, f = 

+ 9 is typically real if and only if <j> = h — g is typically real. Sharp
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coefficient estimates have been given in [CSl]. However, there axe 
univalent (orientation-preserving) harmonic mappings f = h+7j on U 
which are recti on the real axis with h'(0) > 0 and </(0) > 0 but fail to 
be typically real (see e.g. [BHH2]). Furthermore, there axe univalent 
(orientation-preserving) harmonic non-typically real mappings f = 
h + g satisfying /(0) = 0 and /z(0) = 1 and whose image f(U) 
is symmetric with respect to the real axis. However, if the second 
dilatation function a has real coefficients, then, in both cases, f is 
typically real.

2.5 Mapping problems

Recall that haxmonic and sense-preserving mappings defined on 
the unit disk U axe solutions of the elliptic partial differential equation

/y(z) = a(z)/z(z); a E H(U), |a| < 1

on ¡7. It is natural to ask the question if for each given dilatation 
a(z),a E H(U); |a| < 1, and for each given simply connected domain 
Q there is a univalent solution of (4) which maps U onto Q. Unfor­
tunately the answer is no. Indeed, it has been shown in [HS2] that 
if a is a finite Blaschke product, there is no univalent haxmonic map­
ping from U onto any bounded strictly convex domain. However, the 
following result has been given in [HSl] and [BHH1].-

Theorem 2.9. Let Q be a given bounded domain of C such that 
its boundary d£l is locally connected. Suppose that a satisfies a E 
H(U), |a| < 1 on U. Choose wq in Q. Then there exists a univalent 
solution of (4) having the following properties:
(i) /(0) = w0, A(0) > 0 and f(U) C Q.

(ii) There is a countable set E on dU such that the unrestricted limits
/*(elt) = limz_e;i f(z) exist on dU \ E and they are on dfi.

(iii) The functions fl(elt') = esslimjit f*(e'a) and f^_(e,t') = 
e35lima|t/*(e,a) exist on dU

(iv) The cluster set of f at e’* is the line segment from fl_(elt) to
/&")•

(v) If, in addition, |a| < k < 1 and Q is a strictly starlike domain 
then f is uniquely determined. Uniqueness also holds for sym­
metric it if a has real coefficients [BHH2].
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Remarks 2.5.
2.5.1 If |a| < k < 1 then E is empty and f admits a continuous 

extension to ft. Furthermore, we have f(U) = ft. If, in addition, 
ft is a Jordan domain, then f extends to a homeomorphism from 
U onto ft.

2-5.2 There is no analogue theorem for multiply connected domains.

Open problem 2.5. Prove or disprove the uniqueness of map­
pings satisfying Theorem 2.9. There are several kinds of uniqueness 
theorems for quasiconformal mappings. But none of them applies 
to our case. Suppose that the boundary 5ft is smooth enough. If 
°ne knows that two mappings f and F satisfy Theorem 2.9’and that 
A(0) = Fz(0) then one can conclude that f = F (see e.g. [GD2] and 
[B2]).

2.6 Boundary behaviour

If the second dilatation function a of a univalent harmonic map- 
Plng f satisfies |a( z) | < k < 1 for all z G U, then f is a quasiconformal 
tttap and its boundary behaviour is the same as for conformal map- 
Plngs. However, if a aproaches one as z tends to the boundary, then 
the boundary behaviour of f is quite different. It may happen that 
the boundary values are constant on an interval of dU or that there 
9X6 jumps as the following example shows.

Example 2.1. The Poisson integral f of the boundary function

1, if 1*1 < */3 

« e2”7’, if 7r/3 < i < 7T

k e-2ir’/3, if — 7r/3 > t > — 7T

ls a univalent harmonic mapping from the unit disk onto the triangle 
with vertices 1 , e2”/3 and e-2’’/3.

Theorem 2.10. Lei
0) ft be a bounded domain of C such that its boundary 5ft is locally 

connected.
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(ii) a(z) € H(U), |a| < 1 on U and |a(e,4)| = 1 on an interval 
J = {elt,P < t < 7}, /? < 7 < + 27r.

(iii) /(z) be a univalent solution of (4), such that f(U) C and that 
f*(elt>) = limx_e.t /(z) G dft a.e
Then we have

(12) /*(e’4) - a(e’4)/*(e*4) + J = const

on J.

To prove Theorem 2.10, one shows that

d/xr(i) = ¿/(re’4) — a(re,4)d/(re’4) = »re,4(l — |a(re’4)|2)/i'(re,4)di

converges weakly to the identical zero measure on J as r tends to 
one.

Corollary 2.1. Let £l,a,f and f* be as in Theorem 2.8. Then, 
either f* jumps at e’4, or is constant in a right or left neighborhood of 
e’4, or the curvature is strictly negative at /*(e’4). In particular (see 
[HS2] and [S6]/ if Q is a bounded convex domain and if a is a finite 
Blaschke product containing N factors, then f* ¿s piecewise constant 
and f(U) is a polygon with N + 2 edges.

Y. Abu-Muhanna and A. Lyzzaik [AL1] gave a prime-end theory 
for univalent harmonic mappings. In particular, they have shown 
that no continuum of dU can be mapped onto a cusp. On the other 
hand, T. Sheil-Small [S6] considered harmonic mappings defined on 
U whose boundary function /*(e’4) is a step function.

2.7 Univalent logharmonic mappings

Suppose we want to study minimal surfaces whose Gauss map 
(normal vector) is periodic. Then we are led to univalent harmonic 
mappings with periodic partial derivatives. We may restrict ourself 
to periods of 2iri.

Let D be the left half-plane {z : Re z < 0} and consider the set F 
of all univalent harmonic and sense-preserving mappings F = U + iV
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defined on D such that

13) F(z 4- 2%i) = F(.z) + 2iri

>n D and

14) Re{F(—oo)} = lim Re{F(x + iy)} = — oo.
z—*—oo

It follows then that F E F admits the representation

15) F(z) = z + 2px + H(z) + G(z)

vhere
(i) Re/? > -1/2,
d*) H and G axe analytic in 79,
iii) G(—oo) = limI__oo G(x + iy) = 0,
iv) #( —oo) = limI__oo H(x + iy) exists and is finite, and
(v) H(z + 27ri) = H(z) + 2iri and G(z + 27ri) = G(z) + 2iri on D.

Furthermore, the second dilatation function A = G' /H' of F 
¡atisfies the properties:

(I) A E H(D) and |A| < 1 on D,
,16) (II) A(z + 2iri) = A(z) and

(III) A(—oo) = lim A(x + iy) exists and is finite.
X—* —OO

Observe that p defined in (15) depends only on a(—oo). Suppose 
n°w that the domain Q has the property 

(1?) fi = {w = u + iv : —oo < u < tio(v) , v E R} ,

where u0 satisfies uq(v + 2%) = uo(v), v E R.
The following mapping theorem corresponds to Theorem 2.9 and 

95 been proved in [AH2].

Theorem 2.11. Let Q be given as in (17) and let A be as in
)• Then there exists a univalent solution F o/(4) such that 

W F is of the form (15),
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(ii) tf(-oc) exists and is real,
(iii) F(P) C Q and
(iv) F(z) exists and lies on d£l for almost all t.
(v) F is uniquely determined if Q is strictly convex in the horizontal 

direction, i.e., if each horizontal line intersects d£l in exactly one 
point of C.

Again, if |a| < k < 1 on D, then f(D) = Q. The proof uses 
the transformation /(() = exp(F(log ()), ( 6 U or equivalently, 
F(z) = log/(ez) Observe that f is univalent on U if and only if F 
is univalent on D and that f is a solution of the non-linear elliptic 
partial differential equation

(18) A = Wlfifz, a € H{V) and |a| < 1

where a(£) = A(ez). Any non-constant solution of (18) is called a 
logharmonic mapping. Such mappings have been studied in several 
papers, as for example [AB1], [AHI], [AH2] and [AH3]. In many 
cases, it is easier to work with logharmonic mappings than with 
harmonic maps of the form (15), even if the differential equation 
is nonlinear. For instance, it has been shown in [AHI] that f is a 
logharmonic automorphism on U satisfying /(0) = 0 and /x(0) > 0 
if and only if there is a normalized starlike conformal mapping and 
a (3 > —1/2 such that

(19) /(z) = |z|wi(z)/Wz)|, z s V

with the branch l2^ = 1. Using the transformation F(z} = log/(e*), 
we conclude that F € F is an automorphism on the left half-plane 
D if and only if there is a 0 > —1/2 and a probability measure p 
defined on the Borel <r-algebra over [0,27r) such that F(z) = z+20x — 
2i Jo* argt1 “ eit+z]d^t).

2.8 Constructive methods

There are several constructive methods for conformal mappings 
from a simply connected domain Q containing the origin onto the unit 
disk U, or from U onto Q. Some of them are based on extremal prob­
lems. For example, define 2V(fi) = {/ € /f(Q) : /(0) = 0, /'(0) = 1}
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and let $ be the Riemann mapping from U onto Q (4> conformal, 
$(0) = 0 and <£'(0) > 0). Then the unique solution /(z) of the 
extremal problem

min / \f'\2dxdy 
feNWJn '

is the conformal mapping $'(0)$-1(z) which maps ft onto the disk 
of center 0 and radius $'(0). Another extremal problem is

/eN(ii) z€n

which has the same solution as in the previous optimization problem.
Other methods use the boundary correspondence together with 

the Cauchy-Riemann equations (e.g. Theodorsen method). While 
such methods may be modified for K-quasi conformal mappings, they 
are not applicable for univalent harmonic maps since collapsing may 
appear. Observe also that most known methods give approximations 
of the Riemann mapping $_1. The mapping $ can then be obtained 
by inverting $_1. Such a procedure does not apply for univalent 
harmonic maps. Indeed, knowing the mapping /-1 we do not know 
how to retrieve f.

The following method was first introduced for conformal map­
pings by G.Opfer [01] and [02]. Let Q be a strictly starlike domain 
(i.e. each radial line from the origin hits the boundary dil in ex­
actly one finite point. Then dfi admits the parametric representation 
u>(f) = <t < 27r. The Minkowski functional i/(w) is defined
by

0,
|w|/R(t) ,

if w = 0
if w = Iwle’* / 0.

If E is an arbitrary subset of C, define /x(E) = suPwg£ i'(ttf). Further­
more, for any complex-valued function f defined on a domain D, we 
put /z(/) = /x(/(Z>)). The following result has been shown in [BHH1].

Theorem 2.12. Let a G H(U) and suppose that |a] < k < 1 on 
U. Denote by Na the set of all solutions f o/(4) which are of the form 
f(z) = z + a(0)z + o(|z|) as z —> 0. Denote by F the unique univalent 
solution of (4) which is normalized by F(0) = 0 and Fz(0) > 0 and
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which maps the unit disk U onto the strictly starlike domain fi. Then 
there is a unique function f € Na which solves the extremal problem

min p(/). feNa

Furthermore, we have f — F/Fz(0).

To approximate f, we proceed in the following way (for more 
details see [BHH1]).

(i) Approximate a(z) by a polynomial ai(z), |«i | < 1.
(ii) Define

Pi(z) = z + / ai(s)ds , 
Jo

Pn(z) — zn+ni sn~1ai(s)ds ,qn(z) = i[zn-n f sn_1a1(s)ds], 
> Jo Jo

(iii) Put = {pi + A„pn + 52^=2 ^nin}, An and p„ real, 
and let /n be a solution of minygv^ p(/). Then /n converges 
locally uniformly to the mapping f = F/FZ(Q).

(iv) Define Ct = e2ir,i:/Ai) 1 < k < M. Then the solution of the 
mathematical program

(20) minC

N N

^(pi(Cfc) + 52 + 52 < c,
n=2 n=2

An € R, p„ € R, 2 < n < N and 1 < k < M

approximates the univalent harmonic mapping f = F/Fz(0).
(v) If, in addition, Q is a bounded convex domain, then (20) becomes

a standard linear program.

Constructive methods for univalent harmonic mappings defined 
on the exterior of the unit disk have been studied in [HN1].
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3. Univalent harmonic mappings on multiply connected 
domains

3.1 Univalent harmonic mappings of the exterior 

of the unit disk

Let if be a compact of C such that K and its complement C \ K 
are connected. We are interested in sense-preserving univalent har­
monic mappings f defined on the domain D = C \ K which keep 
infinity fixed. Applying the conformal premapping $ from the ex­
terior A of the unit disk U onto D normalized by $(oo) = oo and 
$'(oo) > 0 to /, we may assume without loss of generality that 
D = A, /(oo) = oo, = 1 and that / is sense-preserving. So
fax, / can be written in the form

(21) /(z) = z + Bz + 2C\n\z\ + h(z) + g(z)

where h(z) = 52^Loa„z_" and <7(z) ~ bnz~n are analytic
functions on A U {oo} and |B| = |a(oo)| < 1. Furthermore, applying 
a translation, we may assume that ao = 0.

Definition 3.1. The class Eh consists of all univalent har­
monic and sense-preserving mappings / defined on A which are of 
the form (21) and for which ao = 0.

Applying the affine postmapping 'P(w) = [w — a(oo)w]/[l — 
|a(oo)|2] to / we can transform / to a function whose dilatation 
function vanishes at infinity.

Definition 3.2. The class E# consists of all mappings / in 
Eh such that /r(oo) = 0.

In contrast to conformal mappings, there is no elementary iso­
morphism between Sh and Eh- Another difference is the fact that 
there are univalent harmonic mappings from A onto the whole plane 
minus a point. The following Theorem characterizes such mappings.

Theorem 3.1 [HS4]. A harmonic function F is a univalent 
harmonic and sense-preserving mapping from A onto C \ {p} if and
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only if F is of the form

(22) F(z) = A[z + cdz + 2(c + d)ln |z| — cd/z — 1/j] + p , 

where A € C \ {0}, |c| < 1 and |d| < 1.

The corresponding second dilatation function a is of the form

It is interesting to note [HS4] that there is no mapping in Eh 
such that C \ /(A) is a continuum and such that f is a solution of

_____ cz -4- 1 dz -4- 1
(24) A(3) = —— —fz(z), |c| < 1 and |d| < 1.

z c z + a

In particular, no such mapping exists from A onto Ar = {z : r < 
|z|} for any r > 0. However, for all other dilatation functions a(z) we 
can find a solution of (4) which belongs to Eh and whose image is 
Ar for some r > 0 [HS4].

Finally, let us mention that some extremal problems concerning 
mappings in Eh or E# have been solved in [HS3].

3.2 Univalent harmonic ring mappings

Fix r 6 (0,1) and let A(r, 1) be the annulus {z : r < |z| < I}. 
In this section we consider univalent harmonic mappings from A(r, 1) 
onto A(R, 1) for some R € [0,1). If f is conformal, then R = r and f 
is a rotation /(z) = e’7z. However, there are univalent harmonic (and 
sense-preserving) mappings from A(r, 1) onto A(0,1). For instance,

is such a mapping. But there are many other ones, as we shall see in 
Theorem 3.4’. On the other hand, 72(r) cannot be arbitrarly close to 
one. J.C.C. Nitsche [Nl] has given the following elegant proof of this 
fact.
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Theorem 3.2. For each r € (0,1) there is an Ro(r) G (0,1) 
such that, if f = u + iv is a univalent harmonic mapping from A(r, 1) 
onto A(R, 1), then R < 72o(r).

Proof [Nl]. Define 7 = {z : |z| = (l+r)/2}. Then, by Harnack’s 
inequality, there is a constant K(~f) > 1 such that ^(22) < Kh(zi) 
for all positive harmonic functions h on A(r, 1) and all 21 and 22 G 7. 
Define h — 1 — u. Then h is a positive harmonic function on A(r, 1). 
Next, there is a z\ 6 7 such that h(2i) < 1 — R and there is a 22 G 7 
such that 1 + 72 < Hence, 1 + 72 < ¿1(22) < Kh(z-i') < 7C(1 —72) 
which implies that 72 < (7f — + 1) < 1. □

Remarks 3.1.
3.1.1. The proof of Nitsche does not use the univalence of f but rather 

the fact, that 7(?) contains a point in the region {w : 72 < 
Re w < 1} and a point in {u> : — 1 < Re w < —72}.

3.1.2 The same proof can also be applied to other image domains as for 
example Q = U \ [—72,72] or Q = {w : 72 < |w| and |Rew| < 1}.

Open problem 3.1. Find the value for 720(r). Since 7(z) = 
(2 + r2/2)/(l + r2.) is univalent on A(r, 1), it follows that 2r/(l + r)2 < 
72o(r) < 1. On the other hand, it is not likely that the lowest value 
of K which one can find in the above proof gives 72o(r) (see item (ii) 
of the above remark).

3.3 Extensions of Kneser’s Theorem

In this section we extend Kneser’s result, Theorem 2.6 and The­
orem 2.7 for multiply connected domains of C.

Let D be a Jordan domain of finite connectivity N in C whose 
boundary is dD = u£L0Ck where Co is the outer boundary of D. Ap­
plying an appropriate conformal premapping, we may assume with­
out loss of generality, that each component C* is an analytic Jordan 
curve. Let fi be a domain of C of connectivity N such that the outer 
boundary So is a Jordan curve and such that each inner boundary 
component Sjt, 1 < k < N, is either a Jordan curve or a Jordan arc 
or a singleton. Denote by $0 (^0 resp.) the conformal mapping from 
the unit disk U onto the bounded component of C \ Co (C \ So resp.)
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and let (^it resp.) be the conformal mapping from the exterior A 
of U onto the unbounded component of C \ Co (<C \ So, resp.)

Definition 3.2. Let D and ft be as mentioned above. A func­
tion f* from dD into 9ft is called sense—preserving continuous 
weak homeomorphism from dD onto 9ft if f* is continuous on 
dD and f*(Ck) = Sk, 0 < k < N, and if Sjt is not a singleton then
(i) d arg o /* o > 0 and

(ii) (27T)-1 J9D darg't;1 of* o$k = 1.

Modifying the proof of Kneser which we have given for Theorem 
2.7, we get

Theorem 3.3. Let D and ft be as in Definition 3.2 and let f* 
be a sense-preserving continuous weak homeomorphism from dD onto 
9ft. Then the solution f of the Dirichlet problem, f — fdDf*dio is 
univalent in D if and only if f(D} = ft.

The next result is an extension of Theorem 2.6 to multiply con­
nected domains..

Theorem 3.4. Let D be a Jordan domain of finite connectivity
N and suppose that dD = Uj^_0Cjt where Co is the outer boundary of 
D. Let ft be a bounded convex domain of C and suppose that f* is 
a weak homeomorphism from Co onto dD (see Definition 2.3/ Let f 
be a harmonic mapping defined on D which satisfies
(i) f = h+g, he H(D) and g € H(D).
(ii) limz—.( /(z) = /*(£) for all Ç Ç Co and

(iii) the image of each inner boundary component Ck of D is a sin­
gleton {pfc}
Then f is univalent on D.

Remarks 3.2.
3.2.1 There is at least one harmonic mapping which satisfies the con­

ditions of Theorem 3.4.
3.2.2 Theorem 3.4 does not hold neither for unbounded convex do­

mains nor for non-convex domains and there is no analoguous 
result for harmonic mappings in higher dimensions.
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3.2.3 In general, one cannot prescribe the image points f(Ck) = {pk}•
However, if TV = 1 and if D is the annulus A(r, 1) = {w : r < 
|w| < 1}, then pi = ft* f*(elt}dt

3.2.4 There are univalent harmonic mappings which satisfy Theorem
3.4 without having the property (1). For instance, suppose that 
D = A(r, I) and that = e’1. Then /(z) = (z — r2/z)/(l —
r2) + 2Cln |z| is univalent if and only if |C| < r/(l — r2).

3.2.5 It is a natural question to ask whether Theorem 3.4 holds if we 
replace condition (3) for f by the following weaker condition: 
(3’) The image of each inner boundary component Ck of D is a 
horizontal line segment. The answer is negative. Indeed, con­
sider D = A(-^/ll/26,1) and /(z) = 4z — z/3 — l/(6z) — 2/z. 
Then f* = f\c0 is an sense-preserving homeomorphism from 
Co onto <9Q and the inner boundary of D is mapped onto the 
horizontal slit [—16/\/286,16/\/286] but f is not univalent on 
D.

Theorem 3.4 together with Remark 3.2.3 gives the particular
case:

Theorem 3.4'. Let 'F(f) be a non-decreasing function on [0,2%) 
such that
0) /[0,2x) <**(*) = 2%’

(ii) J02ir e'^^dt = 0 and
(iii) the image ^([0,2%)) contains at least three different points. 

Then the solution of the Dirichlet problem

7?2n _ r2n

is univalent on D.

Suppose that / is a harmonic mapping in a neighbourhood of the 
unit circle dU which maps dU onto a single point. In [HS5], necessary 
and sufficient conditions have been given for f to be univalent and 
orientation-preserving in an exterior neighbourhood of dU.
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3.4 Canonical harmonic punctured plane mappings

It is well known that for any domain D of C containing the point 
at infinity there is a conformal mapping jp(z) such that the image 
jff(D') is a parallel slit domain with inclination /? with respect to the 
reed axis and which satisfies jp(z) = z + o(l) as z —► 00. If dD has 
countably many components then jp is uniquely determined and we 
have

(25) >3(2) = e,/J[70(2) cos 0 - t.j%/2(z)sin^].

If dD has uncountably many components then jp may not be unique; 
but there is one representative for each 0 such that (25) holds (see 
e.g. [Al]).

It is a natural question to ask whether there is for each do­
main D containing infinity a univalent harmonic mapping f such 
that f(z) = z'+ o(l) in a neighbourhood of infinity and such that 
each component of df(D) is a singleton. The next theorem gives an 
affirmative answer.

Theorem 3.5. Let D be a domain of C containing the point 
at infinity. Then there exists a univalent harmonic tnapping F from 
D onto C \ which is normalized at infinity by f(z) = z +
o(l). Furthermore, if dD has countably many components, then F is 
unique.

Remarks 3.3.
3.3.1 The mapping F — H + G defined in Theorem 3.5. is called the 

canonical harmonic punctured plane mapping.
3.3.2 Denote by A the second dilatation function of F. Then there is 

no other solution f of (4) with respect to A which is univalent 
on D and satisfies /(z) = z + o(l) as z —♦ 00. Furthermore, if dD 
has N components then A assumes in D every value in the unit 
disk U exactly at 2N points and it does not assume any other 
values at all. In other words, A maps D onto a 2N— sheeted 
disk.
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