UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. XLIX, 14
SECTIO A 1995

Viktor STARKOV (Karelia)

Harmonic Locally Quasiconformal Mappings

Abstract

Analogously with the universal linearly-invariant families \mathcal{U}_{α} (see: [1]) of analytic functions, in this paper we introduce and investigate linearly-invariant families $H(\alpha, K)$ of functions locally K-quasiconformal and harmonic in the unit disc. Not all of properties of U_{α} have their counterparts in $H(\alpha, K)$.

In this paper we consider functions complex-valued and harmonic in the unit disc $\Delta=\{z:|z|<1\}$. In eighties univalent and locally univalent harmonic functions in Δ were extensively studied. Various classes were introduced by an analogy with regular functions and their geometric characterizations such as convexity, close-to-convexity, univalence, symmetry and so on. In this paper we investigate classes of harmonic functions whose definition is based on properties of local quasiconformality and linear invariance.

Ch. Pommerenke [1] defined a linearly-invariant family of functions of the order $\alpha(\alpha \geq 1)$ as a set \mathcal{M} of functions $\phi(z)=z+$ $d_{2}(\phi) z^{2}+\ldots$ regular in Δ which satisfy the following conditions:
a) $\phi^{\prime}(z) \neq 0$ in Δ (local univalence);
b) for every conformal automorphism $b(z)=e^{i \theta \frac{z+a}{1+\bar{a} z}}$ of the unit disc Δ and for every function $\phi \in \mathcal{M}$ the function

[^0]$$
\frac{\phi(b(z))-\phi(b(0))}{\phi^{\prime}(b(0)) b^{\prime}(0)}=z+\ldots \in \mathcal{M}
$$
(invariance with respect to Möbius automorphisms of Δ);
c) the order of the family \mathcal{M} is equal to α, i.e.
$$
\operatorname{ord} \mathcal{M}=\sup _{\phi \in \mathcal{M}}\left|d_{2}(\phi)\right|=\sup _{\phi \in \mathcal{M}} \frac{\left|\phi^{\prime \prime}(0)\right|}{2}=\alpha .
$$

The universal linearly-invariant family \mathcal{U}_{α} of order α is defined by Ch. Pommerenke as the union of all linearly-invariant families of order less than or equal to α. It is clear that $\mathcal{U}_{\alpha}, \alpha \in[1, \infty]$, contains all normalized conformal mappings $\phi(z)$ of the disc Δ.

Most classes of functions regular and univalent or locally univalent are linearly-invariant. Because of this they have several general properties which depend only on their order α. On the other hand, introducing the universal linearly-invariant family \mathcal{U}_{α} allows us to investigate all locally univalent functions of a finite order.

In this paper we extend some ideas connected with \mathcal{U}_{α} to the class of harmonic functions. Such functions can be represented in the following form:

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)} \tag{1}
\end{equation*}
$$

where

$$
h(z)=\sum_{n=0}^{\infty} a_{n}(f) z^{n} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} \overline{a_{-n}(f)} z^{n}
$$

are functions regular in Δ. We consider functions of the form (1) preserving the orientation in Δ, i.e. the Jacobian $J_{f}(z)$ satisfies

$$
\begin{equation*}
J_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}>0 \text { in } \Delta . \tag{2}
\end{equation*}
$$

Thus the functions considered are locally homeomorphic and harmonic in Δ.

In what follows formal derivatives $f_{z}, f_{\bar{z}}$ will be also denoted by ∂f and $\bar{\partial} f$ in order to avoid ambiguity in symbols like $f_{z}(z)$ and so on.

Definition 1. If there exists a number K such that the function $f(z)$ of the form (1) satisfies

$$
\frac{|\partial f|+|\bar{\partial} f|}{|\partial f|-|\bar{\partial} f|}=\frac{\left|h^{\prime}\right|+\left|g^{\prime}\right|}{\left|h^{\prime}\right|-\left|g^{\prime}\right|} \leq K=\frac{1+k}{1-k} \quad \text { in } \quad \Delta,
$$

then $f(z)$ is said to be locally K-quasiconformal in Δ.
Definition 2. Let us denote by $H(\alpha, K)$ the set of all functions $f(z)=h(z)+\overline{g(z)}$ locally K-quasiconformal and harmonic in Δ with the normalization $a_{0}(f)=0, a_{1}(f)+a_{-1}(f)=1$, and such that $h^{\prime}(z) / h^{\prime}(0) \in \mathcal{U}_{\alpha}$.

The classes $H(\alpha, K)$ expand if α and K increase and they include all functions $f(z)$ with the above normalization sense-preserving and harmonic in Δ. We consider the case, when α and K are finite.

Theorem 1. For all $\alpha \in[1, \infty), K \in[1, \infty)$, the classes $H(\alpha, K)$ are compact with respect to the topology of almost uniform convergence in Δ (i.e. uniform convergence on compact subsets of Δ).
Proof. Let a sequence $f_{n}(z)=h_{n}(z)+\overline{g_{n}(z)} \in H(\alpha, K)$. Then $a_{1}\left(f_{n}\right)+a_{-1}\left(f_{n}\right)=1$. Since $\left|\bar{\partial} f_{n}(0) / \partial f_{n}(0)\right| \leq k$, we have $\left|a_{-1}\left(f_{n}\right) /\left(1-a_{-1}\left(f_{n}\right)\right)\right| \leq k$. Thus $\left|a_{-1}\left(f_{n}\right)\right| \leq k /(1-k)$ and consequently

$$
\left|a_{1}\left(f_{n}\right)\right| \leq 1+\left|a_{-1}\left(f_{n}\right)\right| \leq 1 /(1-k) .
$$

By the definition of $H(\alpha, K)$ we have that $h_{n}(z) / a_{1}\left(f_{n}\right) \in \mathcal{U}_{\alpha}$. Thus (see [1]):

$$
\begin{equation*}
\frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}} \leq\left|\frac{h_{n}^{\prime}(z)}{a_{1}\left(f_{n}\right)}\right| \leq \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}} . \tag{3}
\end{equation*}
$$

Thus $h_{n}^{\prime}(z)$ are uniformly bounded on compact subsets of Δ. Moreover, $\left|g_{n}^{\prime}(z)\right| \leq k\left|h_{n}^{\prime}(z)\right|$. Now, our theorem follows from the principle of compactness.

Let us observe that the inequality $\left|a_{-1}(f) / a_{1}(f)\right| \leq k$ and the normalization $a_{1}(f)+a_{-1}(f)=1$ for $f \in H\left(\alpha, K^{\prime}\right)$ imply $1 /(1+k) \leq$ $\left|a_{1}(f)\right|$. Thus we have

$$
\begin{equation*}
\forall_{f \in H(\alpha, K)} \frac{1}{1+k} \leq\left|a_{1}(f)\right| \leq \frac{1}{1-k}, \quad\left|a_{-1}(f)\right| \leq \frac{k}{1-k} . \tag{4}
\end{equation*}
$$

The inequalities (4) are sharp which follows by examples of functions from the class $H(\alpha, K)$ given below.

The derivative of a complex-valued function $f(z)$ in the direction of vector $e^{i \theta}$ at the point z will be denoted by

$$
\partial_{\theta} f(z):=\lim _{\rho \rightarrow+0} \frac{f\left(z+\rho e^{i \theta}\right)-f(z)}{\rho} .
$$

For harmonic functions of the form (1) we have:

$$
\partial_{\theta} f(z)=h^{\prime}(z) e^{i \theta}+\overline{g^{\prime}(z)} e^{-i \theta}=\partial f(z) e^{i \theta}+\bar{\partial} f(z) e^{-i \theta} .
$$

By an analogy to the definition of the linearly-invariant family of regular functions we give the following

Definition 3. A family \mathcal{H} of functions harmonic in Δ is called linearly-invariant, if for all functions $f \in \mathcal{H}$:
(a) the conditions (1) and (2) hold,
(b) $\quad a_{0}(f)=0, \quad a_{1}(f)+a_{-1}(f)=1$,
(c) for all $a \in \Delta$ and $\theta \in[0,2 \pi)$ the function

$$
f_{\theta}(z, a)=\frac{f(b(0))-f(b(0))}{\partial_{\theta} f(b(0))\left(1-|a|^{2}\right)} \in \mathcal{H} .
$$

Let us observe that some classes of harmonic functions considered so far, are linearly-invariant. For example: the class K_{H} - of univalent harmonic functions mapping Δ onto convex domains, the class C_{H} - of close-to-convex harmonic functions, the class S_{H} - of univalent harmonic functions. The above classes were introduced in [2] and later on were dealt with by some other authors. Linear-invariance of the class S_{H} and some of its subclasses was used by T. SheilSmall [3], but he considered the normalization $a_{1}(f)=1$ instead of $a_{1}(f)+a_{-1}(f)=1$. He observed that the behaviour of $f(z)=h(z)+$ $\overline{g(z)} \in S_{H}$ depends of the order (in the sense of Ch. Pommerenke) of the function $h(z) / h^{\prime}(0)$. The same holds in the case of the families $H(\alpha, K)$.

If $f \in H(\alpha, K)$ and $f_{\theta}(z, a)=h_{\theta}(z, a)+\overline{g_{\theta}(z, a)}$, where

$$
h_{\theta}(z, a)=\frac{h\left(\frac{z+a}{1+\bar{a} z} e^{i \theta}\right)-h\left(a e^{i \theta}\right)}{\left(1-|a|^{2}\right) \partial_{\theta} f\left(a e^{i \theta}\right)},
$$

then $h_{\theta}(z, a) / h_{\theta}^{\prime}(0, a) \in \mathcal{U}_{\alpha}$ and

$$
\left|\frac{\bar{\partial} f_{\theta}(z, a)}{\partial f_{\theta}(z, a)}\right|=\left|\frac{g^{\prime}\left(\frac{z+a}{1+\bar{a} z} e^{i \theta}\right)}{h^{\prime}\left(\frac{z+\bar{a}}{1+\bar{a} z} e^{i \theta}\right)}\right| \leq k \quad \text { in } \quad \Delta .
$$

Thus $H(\alpha, K)$ are linearly-invariant families of harmonic functions. Observe that $H(\alpha, 1)=\mathcal{U}_{\alpha}$.

Theorem 2. For every $f(z)=h(z)+\overline{g(z)} \in H(\alpha, K)$ we have the following inequality

$$
\begin{equation*}
\frac{1}{K} \frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}} \leq\left|\partial_{\theta} f(z)\right| \leq K \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}} . \tag{6}
\end{equation*}
$$

The equalities in (6) are attained for $\theta= \pm \frac{\pi}{2}$. Moreover, if $z=r e^{i \phi}$, then the equality on the right is attained for

$$
\begin{equation*}
h(z)=\frac{e^{i \phi}}{2 \alpha(1-k)}\left[\left(\frac{1+z e^{-i \phi}}{1-z e^{-i \phi}}\right)^{\alpha}-1\right] \quad, \quad g(z)=-k h(z) \tag{7}
\end{equation*}
$$

and the equality on the left is attained for

$$
h(z)=\frac{e^{i \phi}}{2 \alpha(1+k)}\left[\left(\frac{1-z e^{-i \phi}}{1+z e^{-i \phi}}\right)^{\alpha}-1\right] \quad, \quad g(z)=k h(z) .
$$

Proof. If $f(z)=h(z)+\overline{g(z)} \in H(\alpha, K)$, then

$$
\left|\frac{\bar{\partial} f(z)}{\partial f(z)}\right|=\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq k
$$

Thus there exists a function ω, regular in Δ such that $|\omega(z)| \leq 1$ and $g^{\prime}(z)=k \omega(z) h^{\prime}(z)$. Moreover, the equality

$$
\partial_{\theta} f(z)=h^{\prime}(z) e^{i \theta}+\overline{g^{\prime}(z) e^{i \theta}}=h^{\prime}(z) e^{i \theta}+k \overline{\omega(z) h^{\prime}(z) e^{i \theta}}
$$

implies

$$
\left|\partial_{\theta} f(z)\right|=\left|h^{\prime}(z)\right| \cdot\left|1+k \frac{\overline{h^{\prime}(z)}}{\frac{h^{\prime}(z)}{\omega(z)}} e^{-2 i \theta}\right| .
$$

This and the inequality (3) imply

$$
\begin{aligned}
& (1-k)\left|h^{\prime}(0)\right| \frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}} \leq\left|h^{\prime}(z)\right|(1-k) \leq\left|\partial_{\theta} f(z)\right| \\
& \quad \leq\left|h^{\prime}(z)\right|(1+k) \leq(1+k)\left|h^{\prime}(0)\right| \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}} .
\end{aligned}
$$

Now, using (4) we obtain

$$
\frac{1-k}{1+k} \frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}} \leq\left|\partial_{\theta} f(z)\right| \leq \frac{1+k}{1-k} \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}}
$$

For $K=1$, we obtain from (6) a known estimate $\left|\phi^{\prime}(z)\right|$ for $\phi \in \mathcal{U}_{\alpha}$, cf. [1]. One can give a more precise estimate $\left|\partial_{\theta} f(z)\right|$ in $H(\alpha, K)$ according to $\left|h^{\prime}(z)\right|$ and $\arg h^{\prime}(z)$.

Corollary 1. Let $f \in H(\alpha, K) ; z_{1}, z_{2} \in \Delta$. Then for any real θ and γ

$$
\begin{gathered}
|\log | \partial_{\gamma} f\left(z_{1}\right)|-\log | \partial_{\theta} f\left(z_{2}\right)\left|+\log \frac{\left|1-z_{1} \overline{z_{2}}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}}{\left(1-\left|z_{2}\right|^{2}\right)^{2}}\right| \leq \\
a \log \frac{1+R}{1-R},
\end{gathered}
$$

where $R=\left|\left(z_{1}-z_{2}\right) /\left(1-z_{1} \overline{z_{2}}\right)\right|$. Moreover, for any $z_{1}, z_{2} \in \Delta$ there exist real θ and γ, and a function $f \in H(\alpha, K)$, such that the equality holds.

Indeed, for fixed $a, z \in \Delta$ choose $\psi \in \mathbf{R}$ such that $e^{i \psi}(1+\bar{a} z)^{-2}>$ 0 . Put $z_{1}=e^{i \theta}(z+a)(1+\bar{a} z)^{-1}, z_{2}=a e^{i \theta}$. For any $\theta, \gamma \in \mathbf{R}$ we have

$$
\begin{gathered}
\partial_{\psi-\theta+\gamma} f_{\theta}(z, a)=\frac{\partial f\left(e^{i \theta} \frac{z+a}{1+\bar{a} z}\right) \frac{e^{i \theta} e^{i(\psi-\theta+\gamma)}}{(1+\bar{a} z)^{2}}+\bar{\partial} f\left(e^{i \theta} \frac{z+a}{1+\bar{a} z}\right) \overline{\left(\frac{e^{i(\psi+\gamma)}}{(1+\bar{a} z)^{2}}\right)}}{\partial_{\theta} f\left(a e^{i \theta}\right)} \\
+\frac{\partial_{\gamma} f\left(z_{1}\right)}{\partial_{\theta} f\left(z_{2}\right)|1+\bar{a} z|^{2}}=\frac{\partial_{\gamma} f\left(z_{1}\right)}{\partial_{\theta} f\left(z_{2}\right)} \frac{\left|1-z_{1} \overline{z_{2}}\right|^{2}}{\left(1-\left|z_{2}\right|^{2}\right)^{2}}
\end{gathered}
$$

Thus we get

$$
\frac{1}{K} \frac{(1-R)^{\alpha-1}}{(1+R)^{\alpha+1}} \leq \frac{\left|\partial_{\gamma} f\left(z_{1}\right)\right|}{\left|\partial_{\theta} f\left(z_{2}\right)\right|} \frac{\left|1-z_{1} \overline{z_{2}}\right|^{2}}{\left(1-\left|z_{2}\right|^{2}\right)^{2}} \leq K \frac{(1+R)^{\alpha-1}}{(1-R)^{\alpha+1}} .
$$

This implies our inequality. The equality statement follows from Theorem 2.

If $\theta=\phi$ we obtain by Theorem 2 the following
Corollary 2. If $f \in H(\alpha, K), r e^{i \phi} \in \Delta$, then for the derivative of $f(z)=f\left(r e^{i \phi}\right)$ with respect to r the following sharp estimates hold

$$
\frac{1}{K} \frac{(1-r)^{\alpha-1}}{(1+r)^{\alpha+1}} \leq\left|f_{r}^{\prime}\left(r e^{i \phi}\right)\right| \leq K \frac{(1+r)^{\alpha-1}}{(1-r)^{\alpha+1}}
$$

with equalities for $\phi= \pm \frac{\pi}{2}$ and functions for the left and right side as in Theorem 2, respectively.

Let us denote by $F=F_{f}=f(\Delta)$ a two-dimensional manifold being the univalent image of the disc Δ under a locally homeomorphic mapping $f \in H(\alpha, K)$. Let $w_{1}, w_{2} \in F, \Gamma$ being a rectifiable curve joining w_{1} and w_{2} in F. Let diam Γ be the diameter of the projection of Γ onto the complex plane and $l(\Gamma)$ the length of the projection of Γ onto the complex plane. Denote

$$
\begin{aligned}
d\left(w_{1}, w_{2}\right) & =d_{F}\left(w_{1}, w_{2}\right)=\inf \operatorname{diam} \Gamma \\
l\left(w_{1}, w_{2}\right) & =l_{F}\left(w_{1}, w_{2}\right)=\inf l(\Gamma)
\end{aligned}
$$

where the infimum is considered for all curves $\Gamma \subset F$ joining w_{1} and w_{2}. It is clear that $\left|w_{1}-w_{2}\right| \leq d\left(w_{1}, w_{2}\right) \leq l\left(w_{1}, w_{2}\right)$.

Theorem 3. Let $f \in H(\alpha, K), r \in(0,1)$. Then the manifold with the boundary $F(r)=\{f(z):|z| \leq r\}$ includes the disc of center 0 and radius $\left[1-\left(\frac{1-r}{1+r}\right)^{\alpha}\right] / 2 \alpha K$.
Proof. Let ρ be the radius of the largest disc of center 0 and contained in $F(r)$. Then for some $z_{0},\left|z_{0}\right|=r$, we have $\left|f\left(z_{0}\right)\right|=\rho$. Moreover, the segment $\left[0, f\left(z_{0}\right)\right] \subset F(r)$. Let Γ be a curve joining 0 and z_{0} in the disc $\{z:|z| \leq r\}$ which is the preimage of $\left[0, f\left(z_{0}\right)\right]$ for the mapping $f ; \Gamma(t), t \in[0,1]$ is a smooth parametrization of Γ,
$\Gamma(0)=0, \Gamma(1)=z_{0}$. Then using the left inequality in (6) we get for $\theta=\arg \Gamma^{\prime}(t)$

$$
\begin{gathered}
\quad \rho=\left|f\left(z_{0}\right)\right|=\left|\int_{0}^{1}(f[\Gamma(t)])_{t}^{\prime} d t\right|=\int_{0}^{1}\left|(f[\Gamma(t)])_{t}^{\prime}\right| d t \\
=\int_{0}^{1}\left|\partial_{\theta} f(\Gamma(t))\right|\left|\Gamma^{\prime}(t)\right| d t \geq \frac{1}{K} \int_{0}^{1} \frac{(1-|\Gamma(t)|)^{\alpha-1}}{(1+|\Gamma(t)|)^{\alpha+1}}|d \Gamma(t)| \\
=\frac{1}{K} \int_{\Gamma} \frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}}|d z| \geq \frac{1}{K} \int_{0}^{r} \frac{(1-|z|)^{\alpha-1}}{(1+|z|)^{\alpha+1}} d|z| \\
=\frac{1}{2 \alpha K}\left[1-\left(\frac{1-r}{1+r}\right)^{\alpha}\right] .
\end{gathered}
$$

Now, let us observe that for the function
(8) $f(z)=h(z)+k \overline{h(z)}, \quad h(z)=\frac{ \pm i}{2 \alpha(1+k)}\left[\left(\frac{1 \pm i z}{1 \mp i z}\right)^{\alpha}-1\right]$
we have by Theorem 2 :

$$
f(\pm r i)=\frac{\mp i}{2 \alpha K}\left[1-\left(\frac{1-r}{1+r}\right)^{\alpha}\right]
$$

Thus, the radius given in Theorem 3 is sharp for the family $H(\alpha, K)$.

The Koebe domain of the family $H(\alpha, K)$ is a maximal univalent domain containing $w=0$ and contained in the set $\bigcap_{f \in H(\alpha, K)} F_{f}$.

Corollary 3. The Koebe domain of the family $h(\alpha, K)$ contains a disc of center 0 and radius $1 /(2 \alpha K)$. The radius is maximal.

Let us observe, that if the function
$f_{\phi}(z)=\frac{e^{i \phi}}{2 \alpha(1+k)}\left[\left(\frac{1-z e^{-i \phi}}{1+z e^{-i \phi}}\right)^{\alpha}-1\right]+\frac{k e^{-i \phi}}{2 \alpha(1+k)}\left[\left(\frac{1-z e^{-i \phi}}{1+z e^{-i \phi}}\right)^{\alpha}-1\right]$
from Theorem 2 belongs to $H(\alpha, K)$ and $\gamma(\phi)=f_{\phi}\left(e^{i \phi}\right)$ then the Koebe domain of the family $H(\alpha, K)$ is contained in a domain bounded by the curve

$$
\gamma(\phi)=-\frac{e^{i \phi}+k e^{-i \phi}}{2 \alpha(1+k)}, \quad \phi \in[0,2 \pi]
$$

Theorem 4. For a function $f \in H(\alpha, K)$ the following sharp inequalities are true:

$$
\begin{equation*}
\frac{1}{2 \alpha K}\left[1-\left(\frac{1-r}{1+r}\right)^{\alpha}\right] \leq d(0, f(z)) \leq l(0, f(z)) \leq \frac{K}{2 \alpha}\left[\left(\frac{1+r}{1-r}\right)^{\alpha}-1\right] \tag{9}
\end{equation*}
$$

On the right hand side the equality for $d(0, f(z))$ and $l(0, f(z))$ is attained for the function (7) with $\phi= \pm \frac{\pi}{2}$ and $z= \pm r i$; whereas on the left hand side for the function (8) with $z= \pm$ ri.

Proof. The left inequalities in (9) for d and l follow from Theorem 3 with equality for the function (8) and $z= \pm r i$.

Let $z=r e^{i \phi}$. From Corollary 2 we have
$l(0, f(z)) \leq \int_{0}^{r}\left|f_{t}^{\prime}\left(t e^{i \phi}\right)\right| d t \leq K \int_{0}^{r} \frac{(1+t)^{\alpha-1}}{(1-t)^{\alpha+1}} d t=\frac{K}{2 \alpha}\left[\left(\frac{1+r}{1-r}\right)^{\alpha}-1\right]$.
Here, on the left part of the inequality we have the sign of equality for the function (7) with $\phi= \pm \frac{\pi}{2}$ and $z= \pm r i$. Indeed, for this function we have

$$
f(\pm r i)=\frac{ \pm i K}{2 \alpha}\left[\left(\frac{1+r}{1-r}\right)^{\alpha}-1\right]
$$

and

$$
l(0, f(\pm r i))=|f(\pm r i)|
$$

From the definition of $d\left(w_{1}, w_{2}\right)$ it follows that for this function, with $z= \pm r i$,

$$
d(0, f(z))=l(0, f(z))
$$

Thus, the upper estimate in (9) is sharp, too.
Corollary 4. $f \in H(\alpha, K) \Rightarrow|f(z)| \leq \frac{K}{2 \alpha}\left[\left(\frac{1+|z|}{1-|z|}\right)^{\alpha}-1\right]$ in Δ. The inequality is sharp and the sign of equality is attained for the function (7) with $\phi= \pm \frac{\pi}{2}$ and $z= \pm i|z|$.

Corollary 5. For every $b, c \in \Delta$ and $\theta \in R$

$$
\begin{gathered}
\frac{1}{2 \alpha K}\left[1-\left(\frac{1-r}{1+r}\right)^{\alpha}\right] \leq \frac{d_{F}(f(b), f(c))}{\left(1-|c|^{2}\right)\left|\partial_{\theta} f(c)\right|} \leq \\
\frac{l_{F}(f(b), f(c))}{\left(1-|c|^{2}\right)\left|\partial_{\theta} f(c)\right|} \leq \frac{K}{2 \alpha}\left[\left(\frac{1+r}{1-r}\right)^{\alpha}-1\right],
\end{gathered}
$$

where $r=|c-b| /|1-\bar{c} b|$. The inequality is sharp in the sense that for every $c \in \Delta$ and $\theta \in R$ for the left and right side there exist $b \in \Delta$ and $f \in H(\alpha, K)$ such that inequalities become equalities for b, f suitably chosen. In this sense the inequality

$$
\frac{|f(b)-f(c)|}{\left(1-|c|^{2}\right)\left|\partial_{\theta} f(c)\right|} \leq \frac{K}{2 \alpha}\left[\left(\frac{|\bar{c} b-1|+|c-b|}{|\bar{c} b-1|-|c-b|}\right)^{\alpha}-1\right]
$$

is sharp, too.

Indeed, let us denote by $F_{1}=f_{\theta}(\Delta, a)$ a manifold corresponding to the function $f_{\theta}(z, a)$, where $f \in H(\alpha, K)$. Next, if $c=a e^{i \theta}$, then

$$
f_{\theta}\left(e^{-i \theta} \frac{c-b}{\bar{c} b-1}, c e^{-i \theta}\right)=\frac{f(b)-f(c)}{\left(1-|c|^{2}\right) \partial_{\theta} f(c)}
$$

and

$$
l_{F_{1}}\left(f_{\theta}\left(e^{-i \theta} \frac{c-b}{\bar{c} b-1}, c e^{-i \theta}\right), 0\right)=\frac{l_{F}(f(b), f(c))}{\left(1-|c|^{2}\right)\left|\partial_{\theta} f(c)\right|}
$$

This is true if l is replaced by d. Thus, applying Theorem 4 to the function $f_{\theta}\left(z, c e^{-i \theta}\right)$ with $z=e^{-i \theta}(c-b)(\bar{c} b-1)^{-1}$ we get our result.

In [1] the following estimate for $\phi \in \mathcal{U}_{\alpha}$ was given

$$
\left|\operatorname{Arg} \phi^{\prime}(z)\right| \leq 2 \alpha \Xi\left(|z|, \frac{1}{\alpha}\right) \leq \sqrt{\alpha^{2}-1} \log \frac{1+|z|}{1-|z|}+2 \arcsin |z|,
$$

where

$$
\Xi\left(|z|, \frac{1}{\alpha}\right)=\frac{1}{\alpha} \arcsin \frac{|z|}{\alpha}+\frac{1}{2} \sqrt{1-\frac{1}{\alpha^{2}}} \log \frac{\sqrt{1-\frac{|z|^{2}}{\alpha^{2}}}+|z| \sqrt{1-\frac{1}{\alpha^{2}}}}{\sqrt{1-\frac{|z|^{2}}{\alpha^{2}}}-|z| \sqrt{1-\frac{1}{\alpha^{2}}}}
$$

$\operatorname{Arg} \phi^{\prime}(0)=0$ and $\operatorname{Arg} \phi^{\prime}(z)$ is continuous function of z. Since, for $f \in H(\alpha, K), \theta \in(-\pi, \pi]$

$$
\partial_{\theta} f(z)=a_{1}(f) \phi^{\prime}(z) e^{i \theta}+k \overline{\omega(z) a_{1}(f) \phi^{\prime}(z) e^{i \theta}}
$$

$\phi \in U_{\alpha},|\omega(z)|<1, \omega(0)=a_{-1}(f) /\left(k a_{1}(f)\right)$ (see the proof of Theorem 2), we get

$$
\begin{gathered}
\left|\operatorname{Arg} \partial_{\theta} f(z)\right| \leq|\theta|+\left|\operatorname{Arg} \phi^{\prime}(z)\right| \\
+\left|\arg a_{1}(f)\right|+\left|\arg \left(1+k \overline{k(z)} \frac{\overline{a_{1}(f) \phi^{\prime}(z) e^{i \theta}}}{a_{1}(f) \phi^{\prime}(z) e^{i \theta}}\right)\right| .
\end{gathered}
$$

From (5) we see that

$$
\left|\frac{1-a_{1}(f)}{a_{1}(f)}\right|=\left|\frac{a_{-1}(f)}{a_{1}(f)}\right|=\left|\frac{g^{\prime}(0)}{h^{\prime}(0)}\right| \leq k .
$$

Hence the set of values of $a_{1}(f)$ is the disc with the center $C=1 /(1-$ k^{2}) and the radius $R=k /\left(1-k^{2}\right)$. Thus $\left|\arg a_{1}(f)\right| \leq \arcsin (R / C)=$ $\arcsin k$ and

$$
\left\lvert\, \arg \left(\left.1+k \overline{\omega(z)} \overline{\left.\frac{a_{1}(f) \phi^{\prime}(z) e^{i \theta}}{a_{1}(f) \phi^{\prime}(z) e^{i \theta}}\right)} \right\rvert\, \leq \arcsin k\right.\right.
$$

In this way we have proved
Theorem 5. If $f \in H(\alpha, K), z \in \Delta, \theta \in(-\pi, \pi]$, then

$$
\begin{gathered}
\left|\operatorname{Arg} \partial_{\theta} f(z)\right| \leq|\theta|+2 \arcsin k+2 \alpha \Xi\left(|z|, \frac{1}{\alpha}\right) \\
\leq|\theta|+2 \arcsin k+\sqrt{\alpha^{2}-1} \log \frac{1+|z|}{1-|z|}+2 \arcsin |z| ;
\end{gathered}
$$

where $\operatorname{Arg} \partial_{0} f(0)=0$ and $\operatorname{Arg} \partial_{\theta} f(z)$ is a continuous function of z and θ.

This theorem, as well as the previous results imply the known results of Ch . Pommerenke ([1]) for $U_{\alpha}(k=0)$.

The definition of the order of a linearly-invariant family given by Ch . Pommerenke suggests the following

Definition 4. The order of a linearly-invariant family \mathcal{H} of harmonic functions is defined as the number

$$
\operatorname{ord} \mathcal{H}=\sup _{f \in \mathcal{H}} \frac{1}{2}(|\partial \partial f(0)+\bar{\partial} \bar{\partial} f(0)|)=\sup _{f \in \mathcal{H}}\left|a_{2}(f)+a_{-2}(f)\right|
$$

Theorem 6. ord $H(\alpha, K)=\alpha K$.
Proof. Let $f \in H(\alpha, K), f(z)=h(z)+\overline{g(z)}, h(z)=a_{1} \phi(z), \phi(z)=$ $z+\sum_{n=2}^{\infty} c_{n} z^{n} \in \mathcal{U}_{\alpha},\left(a_{1}=a_{1}(f)\right) ; g^{\prime}(z)$ can be given in the form (see the proof of Theorem 2) $g^{\prime}(z)=k \omega(z) h^{\prime}(z)$. Thus

$$
\begin{gathered}
a_{2}=a_{2}(f)=\frac{1}{2} h^{\prime \prime}(0)=a_{1} c_{2}, \\
a_{-2}=a_{-2}(f)=\frac{1}{2} \overline{g^{\prime \prime}(0)}=\frac{1}{2} k \cdot\left(\overline{h^{\prime \prime}(0)} \cdot \overline{\omega(0)}+\overline{h^{\prime}(0)} \cdot \overline{\omega^{\prime}(0)}\right) \\
=\frac{k}{2}\left(\overline{a_{1}} \cdot 2 \overline{c_{2}} \cdot \frac{a_{-1}}{k \overline{a_{1}}}+\overline{a_{1}} \overline{\beta_{1}}\left(1-|\omega(0)|^{2}\right)\right),
\end{gathered}
$$

where β_{1} is a complex number and $\left|\beta_{1}\right| \leq 1$. For our function ω there exists a regular function $\omega_{0}(z)=\beta_{1} z+\cdots,\left|\omega_{0}(z)\right| \leq 1$, such that

$$
\omega(z)=\frac{\omega(0)+\omega_{0}(z)}{1+\overline{\omega(0)} \omega_{0}(z)}=\omega(0)+z \beta_{1}\left(1-|\omega(0)|^{2}\right)+\cdots
$$

Thus

$$
\begin{aligned}
\left|a_{2}+a_{-2}\right| & =\left|a_{1} c_{2}+k \cdot\left(\frac{\overline{c_{2}} a_{-1}}{k}+\overline{a_{1}} \cdot \overline{\beta_{1}} \frac{1-|\omega(0)|^{2}}{2}\right)\right| \\
& \leq\left|a_{1} c_{2}+a_{-1} \overline{c_{2}}\right|+\frac{k}{2}\left|a_{1}\right|\left(1-|\omega(0)|^{2}\right) \\
& =\alpha\left(\left|a_{1}\right|+\left|a_{-1}\right|\right)+\frac{k}{2}\left|a_{1}\right|\left(1-|\omega(0)|^{2}\right)
\end{aligned}
$$

because $\phi \in \mathcal{U}_{\alpha}$ and $\left|c_{2}\right| \leq \alpha$. Since $|\omega(0)|=\left|a_{-1}\right| /\left|k a_{1}\right|$, we get

$$
\left|a_{2}+a_{-2}\right| \leq\left|a_{1}\right|\left[\alpha+\alpha \cdot k \cdot|\omega(0)|+\frac{k}{2}(1-|\omega(0)|)^{2}\right] .
$$

Observe that the function $q(x)=\alpha+\alpha k x+\frac{k}{2}\left(1-x^{2}\right)$ is increasing in $[0,1]$. Using (4), we obtain

$$
\left|a_{2}+a_{-2}\right| \leq \frac{1}{1-k} q(1)=\alpha K
$$

Now, let us observe that for the function (7), with $\phi= \pm \frac{\pi}{2}$ we have

$$
\left|a_{2}+a_{-2}\right|=\left|\frac{\mp i \alpha}{1-k}-\frac{k(\pm i \alpha)}{1-k}\right|=\alpha K
$$

Corollary 6. For all $f \in H(\alpha, K)$ and for all real θ :

$$
\left|\frac{\partial_{\theta} \partial_{\theta} f(z)}{\partial_{\theta} f(z)}\right| \leq \frac{2 K(\alpha+|z|)}{1-|z|^{2}}
$$

The inequality is sharp and the equality is attained for the function
(10) $f(z)=h(z)+k \overline{h(z)}, \quad h(z)=\frac{1}{2 \alpha(1+k)}\left[\left(\frac{1+z}{1-z}\right)^{\alpha}-1\right]$,
and $z=r, \theta= \pm \frac{\pi}{2}$.
Proof. Let $f \in H(\alpha, K)$ and let us consider

$$
\psi(z)=f_{\theta}(z, a)=\sum_{n=1}^{\infty} b_{n} z^{n}+\sum_{n=1}^{\infty} b_{-n} \bar{z}^{n} \in H(\alpha, K)
$$

Then

$$
\begin{aligned}
& \partial \psi(z)=\frac{\partial f\left(e^{i \theta} \frac{z+a}{1+\bar{a} z}\right) e^{i \theta}}{\partial_{\theta} f\left(a e^{i \theta}\right)(1+\bar{a} z)^{2}} \\
& \bar{\partial} \psi(z)=\frac{\bar{\partial} f\left(e^{i \theta} \frac{z+a}{1+\bar{a} z}\right) \bar{e}^{i \theta}}{\partial_{\theta} f\left(a e^{i \theta}\right)(1+a \bar{z})^{2}}
\end{aligned}
$$

$2 b_{2}=\partial \partial \psi(0)=\frac{e^{i \theta}}{\partial_{\theta} f\left(a e^{i \theta}\right)}\left[\partial \partial f\left(a e^{i \theta}\right) e^{i \theta}\left(1-|a|^{2}\right)+\partial f\left(a e^{i \theta}\right)(-2 \bar{a})\right]$,
$2 b_{-2}=\bar{\partial} \bar{\partial} \psi(0)=\frac{e^{-i \theta}}{\partial_{\theta} f\left(a e^{i \theta}\right)}\left[\bar{\partial} \bar{\partial} f\left(a e^{i \theta}\right) e^{-i \theta}\left(1-|a|^{2}\right)+\bar{\partial} f\left(a e^{i \theta}\right)(-2 a)\right]$,
$\left|b_{2}+b_{-2}\right|=\left|\frac{\partial_{\theta} \partial_{\theta} f\left(a e^{i \theta}\right)}{\partial_{\theta} f\left(a e^{i \theta}\right)} \frac{1-|a|^{2}}{2}-\frac{\partial f\left(a e^{i \theta}\right) \bar{a} e^{i \theta}+\bar{\partial} f\left(a e^{i \theta}\right) a e^{-i \theta}}{\partial f\left(a e^{i \theta}\right) e^{i \theta}+\bar{\partial} f\left(a e^{i \theta}\right) e^{-i \theta}}\right|$.
Since $f_{\theta}(z, a) \in H(\alpha, K)$, we have $\left|b_{2}+b_{-2}\right| \leq \alpha K$ by Theorem 6 . Thus

$$
\begin{align*}
\left|\frac{\partial_{\theta} \partial_{\theta} f\left(a e^{i \theta}\right)}{\partial_{\theta} f\left(a e^{i \theta}\right)}\right| \frac{1-|a|^{2}}{2} & \leq \alpha K+|a|\left|\frac{1+\frac{\bar{\partial} f\left(a e^{i \theta}\right)}{\partial f\left(a e^{i \theta}\right)} \frac{a}{\bar{a}} e^{-2 i \theta}}{1+\frac{\bar{\partial} f\left(a e^{i \theta}\right)}{\partial f\left(a e^{i \theta}\right)} e^{-2 i \theta}}\right| \tag{11}\\
& \leq \alpha K+|a| K,
\end{align*}
$$

and from the above we get our inequality. For the function (10) we have

$$
\frac{\partial_{ \pm \pi / 2} \partial_{ \pm \pi / 2} f(r)}{\partial_{ \pm \pi / 2} f(r)}=\frac{(\pm i) 2 K(\alpha+r)}{1-r^{2}}
$$

This ends our proof.
Let us observe that for $a=|a|$ (=r) we get from (11) the following sharp inequality

$$
\left|\frac{\partial^{2} f\left(r e^{i \theta}\right) / \partial r^{2}}{\partial f\left(r e^{i \theta}\right) / \partial r}\right| \leq 2 \frac{\alpha K+r}{1-r^{2}}
$$

which is better (in this case $\theta=\arg z$) then the inequality in Corollary 6. The estimates given in this paper are true for K -quasiconformal functions from K_{H} for $\alpha=2$ and from C_{H} for $\alpha=3$ (with the normalization (5) in these classes). But in the case of these classes sharpness of the estimaties is an open problem.

Some known results for \mathcal{U}_{α} have no counterparts for $H(\alpha, K)$. For example for all $\phi \in \mathcal{U}_{\alpha}$ and $\theta \in[0,2 \pi)$ the function

$$
\left|\phi^{\prime}\left(r e^{i \theta}\right)\right| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}
$$

is decreasing with respect to $r \in[0,1)$ (see [4]). But in $H(\alpha, K)$ we have no analogous result for $f_{r}^{\prime}(z)$. The function $f(z)=h(z)+\overline{g(z)}$ with

$$
h(z)=\frac{1}{2 \alpha}\left[\left(\frac{1+z}{1-z}\right)^{\alpha}-1\right], \quad g^{\prime}(z)=k z h^{\prime}(z) e^{i \theta}
$$

belongs to $H(\alpha, K)$, but the function

$$
\left|\frac{\partial f}{\partial r}(r)\right| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}=\left|1+k r e^{-i \theta}\right|
$$

is not monotonic with respect to r on some set of θ. One can show that for almost all θ there exists a limit

$$
\lim _{r \rightarrow 1^{-}}\left|\frac{\partial f}{\partial r}\left(r e^{i \theta}\right)\right| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}=\delta_{\theta} \in[0, K]
$$

if $f \in H(\alpha, K)$. One can show that for all $f \in H(\alpha, K)$ and real θ there exists a sequence $r_{n} \uparrow 1^{-}$such that there exists a limit

$$
\lim _{n \rightarrow \infty}\left|\frac{\partial f}{\partial r}\left(r_{n} e^{i \theta}\right)\right| \frac{\left(1-r_{n}\right)^{\alpha+1}}{\left(1+r_{n}\right)^{\alpha-1}} \in\left[0, K^{\prime}\right] .
$$

References

[1] Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen.I, Math. Ann. 155 (1964), 108-154.
[2] Clunie, J. and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser.A.I.Math. 9 (1984), 3-25.
[3] Sheil-Small, T., Constants for planar harmonic mappings, J. London Math. Soc. 2,42 (1990), 237-248.
[4] Starkov, V. V., Theorems of regularity for universal linearly-invariant families of functions, Serdika (Bulg. Math.Soc.) 11 (1985), 299-318.

Department of Mathematics,
received February 15, 1994
University of Petrozavodsk, Petrozavodsk,Russia;
e-mail:STARKOV@MAINPGU.KARELIA.SU

[^0]: Key words and phrases. Locally univalent functions, harmonic functions, quasiconformal mappings, linearly-invariant family.

