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Harmonic Locally Quasiconformal Mappings

Abstract. Analogously with the universal linearly-invariant fam­
ilies Ua (see: [1]) of analytic functions, in this paper we introduce 
and investigate linearly-invariant families H(a, K) of functions lo­
cally A-quasiconformal and harmonic in the unit disc. Not all of 
properties of Ua have their counterparts in H(a, K).

In this paper we consider functions complex-valued and harmonic 
in the unit disc A = {z : |z| < 1}. In eighties univalent and locally 
univalent harmonic functions in A were extensively studied. Various 
classes were introduced by an analogy with regular functions and their 
geometric characterizations such as convexity, close-to-convexity, uni­
valence, symmetry and so on. In this paper we investigate classes of 
harmonic functions whose definition is based on properties of local 
quasiconformality and linear invariance.

Ch. Pommerenke [1] defined a linearly-invariant family of func­
tions of the order a (a > 1) as a set A4 of functions <^(2) = 2 +

regular in A which satisfy the following conditions:
a) </>'(2) / 0 in A (local univalence);
b) for every conformal automorphism 6(2) = of the unit disc

A and for every function </> € A4 the function

Key words and phrases. Locally univalent functions, harmonic functions, qua­
siconformal mappings, linearly-invariant family.
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¿(X*)) - ¿(6(0)) ,
¿'(6(O))6»(O)

(invariance with respect to Mobius automorphisms of A);
c) the order of the family M. is equal to a, i.e.

ord M. = sup |d2(</’)| = sup = a-
ifieM <t>&M 2

The universal linearly-invariant family Ua of order a is defined 
by Ch. Pommerenke as the union of all linearly-invariant families of 
order less than or equal to a. It is clear that Ma, a 6 [1, oo], contains 
all normalized conformal mappings of the disc A.

Most classes of functions regular and univalent or locally univa­
lent are linearly-invariant. Because of this they have several general 
properties which depend only on their order a. On the other hand, 
introducing the universal linearly-invariant family Ua allows us to 
investigate all locally univalent functions of a finite order.

In this paper we extend some ideas connected with Ua to the class 
of harmonic functions. Such functions can be represented in the fol­
lowing form:

(1) /(*) = h^ + gW,

where
oo oo

h(z) = and 5(2) = a-n(/)2n
n=0 n=l

are functions regular in A. We consider functions of the form (1) 
preserving the orientation in A, i.e. the Jacobian J'f(z) satisfies 

(2) Jf(z) = |h'(z)|2 - |s'(*)|2 >0 in A.

Thus the functions considered are locally homeomorphic and har­
monic in A.

In what follows formal derivatives fz, fz will be also denoted by 
df and df in order to avoid ambiguity in symbols like fz(z) and so
on.
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Definition 1. If there exists a number K such that the function f(z) 
of the form (1) satisfies

19/1 + lg/1 = Ife'l + ls'l <K '+’= 
|9/l - |9/l IM - l»’l “ 1 - ‘

in A,

then f(z) is said to be locally A'-quasiconformal in A.

Definition 2. Let us denote by H(a,K) the set of all functions 
/(z) = b(z) + g(z) locally K-quasiconformal and harmonic in A with 
the normalization ao(/) = 0, ai(/) + a_i(/) = 1, and such that 
b'(z)/h'(0) G Ua.

The classes H(a, A') expand if a and K increase and they include 
all functions /(z) with the above normalization sense-preserving and 
harmonic in A. We consider the case, when a and K are finite.

Theorem 1. For all a € [1, oo), K G [1, oo), the classes H(a, K) are 
compact with respect to the topology of almost uniform convergence 
in A (i.e. uniform convergence on compact subsets of A).

Proof. Let a sequence fni?) — &»(*) + ffn(z) € ff(o, A') . Then 
ai(/n) + a-i(/n) = 1 • Since |d/„(0)/d/„(0)| < k , we have 
|a_1(/n)/(l-a_i(/n))| < k . Thus |a-i(/n)| < b/(l-b) and conse­
quently

< 1 + l«-i(A)| < 1/(1 - *)•
By the definition of H(a,K) we have that bn(^)/ai(/n) € Ma- 

Thus (see [1]):

(3)
(i - nr-1 < 
(i + H)o+1 -

h'M < (l + i^ir-1
ai(/n) -(1-W)“+1’

Thus b'n(z) are uniformly bounded on compact subsets of A. More­
over, |^(2)| < k\h'n(z)|. Now, our theorem follows from the principle 
of compactness. □

Let us observe that the inequality |a_i(/)/ai(/)| < k and the 
normalization ai(/) + a_i(/) = 1 for / G ff(o,A) imply 1/(1+ &) < 
|ai(/)|. Thus we have

(4) V/eH(a,K) Y+k ~ “ fTp - l~^k'
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The inequalities (4) are sharp which follows by examples of functions 
from the class H(a,K) given below.

The derivative of a complex-valued function /(¿) in the direction 
of vector e,e at the point z will be denoted by

def(z) := lim p—►+o
A* + pe'8) - f(z)

For harmonic functions of the form (1) we have:

By an analogy to the definition of the linearly-invariant family of 
regular functions we give the following

Definition 3. A family of functions harmonic in A is called 
linearly-invariant , if for all functions f € H:

(a) the conditions (1) and (2) hold,
(b) ao(/) = O, ai(/)+ a_i(/) = 1, (5)
(c) for all a € A and 9 € [0, 2k) the function

fo(z,a) W)) - /(ft(0))
¿W(6(0))(l - |«|2)

Let us observe that some classes of harmonic functions considered 
so far, are linearly-invariant. For example: the class Kh - of univalent 
harmonic functions mapping A onto convex domains, the class Ch 
- of close-to-convex harmonic functions, the class Sh - of univalent 
harmonic functions. The above classes were introduced in [2] and 
later on were dealt with by some other authors. Linear-invariance 
of the class Sh and some of its subclasses was used by T. Sheil- 
Small [3], but he considered the normalization ai(/) = 1 instead of 
ai(/) + a_i(/) = 1. He observed that the behaviour of f(z) = h(z) + 
g(z) € Sh depends of the order (in the sense of Ch. Pommerenke) of 
the function h(z)//i'(0). The same holds in the case of the families 
H(a,K). ______

If f € H(a,K) and fe(z,a) = hg(z,a) + ge(z,a), where

h( ) — /t(ae*9)
he(z,a) = l + az

(1 - |a|W(aef»)
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then hg(z,a)/h'9(0,a) € UQ and

dfe(z,a)
dfe(z,a) '“'(rS«'’)

< k in A.

Thus H(a, K) are linearly-invariant families of harmonic functions. 
Observe that H(a, 1) = Ua.

Theorem 2. For every /(z) = h(z) + g(z) € H(a,K) we have the 
following inequality

(6)
1 (1 - kl)°-1 < ia f(z}[ < Ui + M)“-1 
K (1 + Izl)^1 - ' ~ (1 - |*|)o+1

The equalities in (6) are attained for 6 = ±y. Moreover, if z = re’^, 
then the equality on the right is attained for

<7’ *>-*£»)[(£££)*-1 

and the equality on the left is attained for

yi + ze-^y

flr(z) = -fch(z);

h(z) =
2a(l + h)

g(z) = kh(z).

Proof. If /(z) = h(z) + g(z} € H(a,K), then

< k.dfW
dM h'W

Thus there exists a function u>, regular in A such that |tv(z)| < 1 and 
ff'(z) = hu;(z)h'(z). Moreover, the equality

5tf/(z) = ti(z)eie + g'^e'9 = h'(z)e,<? + fctv(z)h'(z)e<tf

implies
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This and the inequality (3) imply

(i ■ t)|'!'(o)| (i+¡X-» - l'“,(2)l(i ~k'>-|a,/(2)l
< |fc'«l(l + fc) < (1 + t)|A'(0)| (1 + .

Now, using (4) we obtain

1 - k (1 - Izl)*-1 
1 + h (1 + |2|)0,+1 < \deM\ <

1 + A: (1 + Izl)*-1
1 - k (1 - k|)“+1’

□
For K = 1, we obtain from (6) a known estimate |^>'(2)| for <f> E lda, 

cf. [1]. One can give a more precise estimate |d0/(z)| in H(a,K) 
according to |h'(2)| and arg h'(2).

Corollary 1. Let f E H(a,Ky, 21,22 € A. Then for any real 0 and 
7

log l^/(2i)l ~ loS |d«/(22)| + log
[1 ~ ^1^212 - |zi - z2\2 

(l-k2|2)2
<

1 + R 
°hiT^

where R = |(^i — 22)/(l — 21 ¿i)!- Moreover, for any z\,z2 E A there 
exist real 3 and y, and a function f E H(a, K), such that the equality 
holds.

Indeed, for fixed a, 2 E A choose € R such that e’^(l + az)~2 > 
0. Put 21 = e,0(z + a)(l + az)"1, z2 = ae'e. For any 0,7 E R we 
have

^-«+7/0(2, a) l + az-
ei»ei(V--i>+i)

(l+az)2 + a/(e’ l + az )( e'tV'+T) \ 
(l + az)2 1

def(ae'6)

_ d7/(*i) 11 - ¿1*212 
dfff(z2)\l + azf dfff(z2) (1 - |22|2)2*
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Thus we get

1 (1 - R)°-' < |a,/(*i)l < y(i + fl)-‘
K (1 + B)“+1 - |9»/(z2)| (1 - |z2|2)2 - (1 - -R)“+1'

This implies our inequality. The equality statement follows from 
Theorem 2.

If 3 = </> we obtain by Theorem 2 the following

Corollary 2. If f G 7f(a,7<), re'^ G A, then for the derivative of 
f(z) = with respect to r the following sharp estimates hold

1 (1 -r)""1 
Æ(l + r)«+!

< |£(re*)| < 7< (1 +r)"-1 
(1 _r)«+i ?

with equalities for </> = and functions for the left and right side 
as in Theorem 2, respectively.

Let us denote by F = Ff = /(A) a two-dimensional manifold 
being the univalent image of the disc A under a locally homeomorphic 
mapping f G 7f(a,A'). Let wi,w2 € F, T being a rectifiable curve 
joining u>i and w2 in F. Let diam T be the diameter of the projection 
of T onto the complex plane and the length of the projection of 
T onto the complex plane. Denote

d(wi,w2) = dp(wi,w2) = inf diamr,
/(wi,w2) = lr(wi,w2) = inf l(r),

where the infimum is considered for all curves T C F joining Wj and 
w2. It is clear that |wi — w2\ < d(wi,w2) < l(wi,w2).

Theorem 3. Let f G 77(a,7<), r G (0,1). Then the manifold with 
the boundary F(r) = {/(z) : |z| < r} includes the disc of center 0 
and radius [1 — (|^)“]/2aK.

Proof. Let p be the radius of the largest disc of center 0 and con­
tained in F(r). Then for some z0, |*o| = r, we have |/(z0)| = p- 
Moreover, the segment [0, /(z0)] C F(r). Let T be a curve joining 
0 and z0 in the disc {z : |z| < r} which is the preimage of [O,/(zo)] 
for the mapping /; T(t), t G [0,1] is a smooth parametrization of T,
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r(0) = 0, r(l) = 2o- Then using the left inequality in (6) we get for 
0 = argT'(t)

p = !/(^o), = |p/[r(t)]);*| = |(/[r(i)])',|*

= £ \mm\dt >±£ (i i ¡r(t)ij«-»|dr(<)l

1 1 — r

Now, let us observe that for the function

(8) /(z) = /i(z) + kh(z), h(z) =
±i

2a(l + fc)
I ±iz'

- 1

we have by Theorem 2:

/(±n) =
T — r'

2aK
Thus, the radius given in Theorem 3 is sharp for the family H(a, K).

□

The Koebe domain of the family H(a,K') is a maximal univalent 
domain containing w = 0 and contained in the set A/eH(« A') Ff-

Corollary 3. The Koebe domain of the family h(a,K) contains a 
disc of center 0 and radius l/(2aK). The radius is maximal.

Let us observe, that if the function

Mz) e*
2a(l+fc)

1 - ze-^X 
1 + ze-'^ )

ke /1 — ze~'^ \ “
+ 2o(l + k) \1 + ze~'<t>)

from Theorem 2 belongs to 7d(a,/<) and 7(<^) = /¿(e“A then the 
Koebe domain of the family H(a, K) is contained in a domain bounded 
by the curve

e'4, + ke-'^
2a(l + fc) ’

</> e [o, 27t].iW =

1 -
1 + r
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Theorem 4. For a function f € H(a,K) the following sharp in­
equalities are true;
(9)

1 1 - /W) [(l^) “ -1

On the right hand side the equality for d(0,f(z)) and 1(0, f(z)) is 
attained for the function (7) with <f> = and z = ±ri; whereas on 
the left hand side for the function (8) with z = ±ri.

Proof. The left inequalities in (9) for d and I follow from Theorem 
3 with equality for the function (8) and z = ±ri.

Let z = re'^. From Corollary 2 we have

(1 +1)-1 K
(l-t)«+i 2a

1 + r 
1 — r

Here, on the left part of the inequality we have the sign of equality 
for the function (7) with </> = and z = ±ri. Indeed, for this 
function we have

/(±ri)

J(0,/(±ri)) = |/(±rt)|.

From the definition of d(w1? w2) it follows that for this function, with 
z = ±ri,

a(o,/W) = i(o,/W).
Thus, the upper estimate in (9) is sharp, too. □

Corollary 4. f € H(a,K) => |/(^)| < 2a 1 in
inequality is sharp and the sign of equality is attained for the function 
(7) with <f> = and z = ±i|z|.
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Corollary 5. For every b,c € A and 8 E R

2aK
(£)' < dF(/(l>),/(c)) <

(1 - |c|2)|dj(c)|

(1 - |c|2)|5^/(c)| - 2a
1 + r 
1 — r

- 1

where r = |c — b\/11 — c6|. The inequality is sharp in the sense that 
for every c € A and 8 € R for the left and right side there exist b € A 
and f 6 H^a,K) such that inequalities become equalities for b, f 
suitably chosen. In this sense the inequality

if(b)-f(c)\ <K_
(1 - |C|2)|^/(c)| - 2a 

is sharp, too.

•|3>-l| + |c-6|y 
,|c6-l| - |c- 6| y

-1

Indeed, let us denote by Fi = fe(A,a) a manifold corresponding 
to the function where f € if («,/<). Next, if c = ae'd, then

and

£ r~-i8 c~ b ..-i8\ _ i,(c tb=i'ce >-
/(&) ~ /(c)

(1 - |c|2)atf/(c)

W(&W))
(1-|C|2W(C)|’

This is true if 1 is replaced by d. Thus, applying Theorem 4 to the 
function fo(z, ce~,e) with z — e_,e(c — 6)(c6— I)-1 we get our result.

In [1] the following estimate for </> &Ua was given

|Arg<£'(z)| < 2qS (]z|, —) < x/o2 - 1 log * + + 2 arcsin |z|,
\ a/ 1 — Iz

where

— arcsin — + 
a a

\A - ^ + Hx/1 ~
~ -1z I \A _
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Arg</>'(0) = 0 and Arg^'(z) is continuous function of z. Since, for 
f e H(a,K), 3 e (-%,%] _______________

dgf(z) = al(/ty'(z)e', + ¿w(2)ai(/)<?i>'(z)e^,

(f> € Ua, |cu(z)| < 1, u>(0) = a_i(/)/(fcai(/)) (see the proof of Theo­
rem 2), we get

|Arg def(z)\ < |0| + |Arg</>'(z)|

+ |arga1(/)| + |arg(l +

From (5) we see that
1 - Ol(/) a-i(/) </(0)

®l(/) «!(/) h'(0)
Hence the set of values of ai(/) is the disc with the center C = 1/(1 — 
A:2) and the radius R = fc/(l-P). Thus | arg ai(/)| < arcsin(72/C) = 
arcsin A: and

HtWW,
o,(/W)e«arg(l + kw(z) < arcsin A;.

In this way we have proved

Theorem 5. If f E H(a, K), z € A, 3 € (—7r,7r], then 

| Argde/(■*)! < |0|+ 2arcsinA: + 2aE(|z|,-)

< 131 + 2 arcsin k + y/<*2 ~ 1 loS + 2 arcsin l*H

where Arg5o/(O) = 0 and Arg dgf(z) is a continuous function of z 
and 3.

This theorem, as well as the previous results imply the known 
results of Ch. Pommerenke ([1]) for Ua (A; = 0).

The definition of the order of a linearly-invariant family given by 
Ch. Pommerenke suggests the following

Definition 4. The order of a linearly-invariant family 7f of harmonic 
functions is defined as the number

ordff = sup J(|d d/(0) +d d/(0)|) = sup |a2(/) + a_2(/)|
/€« 2
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Theorem 6. ord-H^a, K) = aK.

Proof. Let f G H(a,K), f(z) = h(z) + g(z), h(z) = ai</>(2), </>(2) = 
z + 1l^=2 c«z" £ Z7a, (ai = 9'(2) can be given in the form
(see the proof of Theorem 2) g'(z') = ku(z)h'(z). Thus

a2 = a2(/) = 2h"W = aic2,

a-2 = a-2(f) = ^"(0) = • (^"(0) • w(0) + ^'(0) * “>'(0))

= | (a?• 2c2 • + a?^i(l - |u>(0)|2)) ,

where /?i is a complex number and |/?i | < 1. For our function o> there 
exists a regular function 0,0(2) = /?i2 + • • •, |o,o(2)| < 1, such that

o,(0) +0,0(2) 
1 + o(0)o?0(2)

— o;(0) + 2/?i(l — |o(0)|2) + • • • .

Thus

|a2 + a-2| — aic2 + k -)

< |aic2 + a_ic2| + —|ai|(1 — |o,(0)|2)

= a(|ai I + la-i|) + 2 l°il(l — lw(0)|2), 
because </, G ¿7« and |c2| < a. Since |o>(0)| = |ct—1 |/|fc<2i|, we get

|°2 + a_2| < |ai | a + a-k- |o,(0)| + -(1 - |o(0)|)2

Observe that the function 9(1) = a + akx + |(1 — x2) is increasing 
in [0,1]. Using (4), we obtain

|«2 + 0-2! < TT*?(1) = aK-

Now, let us observe that for the function (7), with we have

|fl2 + «-2!
+ia k(±ia) 

1 — k 1 — k
= aK.

□
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Corollary 6. For all f G H(a, K) and for all real 0:

dedef(z)
def(z)

2tf(a + |z|) 
i-H2 '

<

The inequality is sharp and the equality is attained for the function 

(10) f^) = h(z) + kv7), h(zi = [(fri) -

and z = r, 0 = ±y.

Proof. Let f G H(a,K) and let us consider

OO OO

V’(z) = fe(z, a) = bnzn + b-nzn € ff(o, K). 
n=l n=l

Then

dip(z)

di/)(z)

df(e' l + az )e’
def(ae'<>)(l+dz)2'

df(e'ef&re'e .
def(ae'9)(l + az)2 ’

2b2 = d ch/>(0) = - f ieAddf(aeie)ei6(l - |a|2) + d/(ae**)(-2a)],

2h_2 = ¿W(0) = a * ‘ ~[W(Qe’*)e-^l--|a|2 W(«e‘* 
¿V(ae )

lt , t , dedef(aeie) 1 - |«|2 df(aei9)aei9 + df(aeie) 
|b2 + 6-2|- de^aei9^ 2 df(aei9)ei9+df(ae'9)

ae-ie
,—i6

)(~2a)],

Since /o(2,a) G H(a,K), we have |fc2 + &-2I < aK by Theorem 6. 
Thus

dedef(ae'9) 1 <aK + |a|
i , 9f(ae'e) a „—2i6
1 r df(ae'6) a

(11) def(ae'9) 2 «A ± |O|
1 | df(ae'e) 2i6
1 + dftaei»)6

< aK + |a|A”,
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and from the above we get our inequality. For the function (10) we 
have

^±7T/2^±7r/2/(r) (±z')2/<(o; + r)
5±w/2/(r)

This ends our proof.
1 — r2

□

Let us observe that for a = |a| (= r) we get from (11) the following 
sharp inequality

a2/(re<tf)/ar2
<2

aK + r 
1 -r2 1<9/(re*e)/dr

which is better (in this case 8 = arg z) then the inequality in Corollary 
6. The estimates given in this paper are true for K-quasiconformal 
functions from Kh for a = 2 and from Ch for a = 3 (with the 
normalization (5) in these classes). But in the case of these classes 
sharpness of the estimaties is an open problem.

Some known results for Ua have no counterparts for H(a, li). For 
example for all </> € ZYa and 8 € [0, 2k) the function

(1+!■)”->
is decreasing with respect to r € [0,1) (see [4]). But in H(o,/<) we 
have no analogous result for f'r(z)- The function f(z) = h.(z) + g(z) 
with

/>(Z) = 2S
(£)•-!■ g'(z) — kzh\z)elk

belongs to H(a, K), but the function

df, 1 (1 _ rW1
- = |l + fcre(l + r)a-i I

-¿0i

is not monotonic with respect to r on some set of 8. One can show 
that for almost all 8 there exists a limit

lim 
1—*1”

aArj0A (1 -r)
—¡- — ¿0 € [0, K],

(1 + r)c
if f € H(a,K). One can show that for all f € 7f(a,/i) and real 8 
there exists a sequence rn f 1“ such that there exists a limit 

df,lim 
n—>oo dr

(rnei9) (1 - rn)"+1 
(l+r„)->6[°’A1-
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