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Support Points of K

ABSTRACT. Let K denote the class of analytic functions f on
the unit disc A in the complex plane for which 0 < |f(z)| < 1 for
all z€ A. Let f(2) =302, faz" . A well-known problem named
after Krzyz is to determine

sup |fnl .
JEK

An extensive survey of this problem is given by Hummel, Scheinberg
and Zalcman [3]. They show among other things that for j =1,2,3

(1) 1fil < 2/e .

In this paper we study support points on K of linear functionals
which are defined on H(A) , the collection of all analytic functions
on the unit disc. We shall show that all support points have the

form
n

14+e'iz\
f(z)=¢ exp( 2’\ 1_ei. )"

Preliminaries. As usual, H(A) is the collection of analytic func-
tions on the unit disc. Endowed with the distance function

B 1 sup|,|51_;l‘. |f(z)_g(z)|
d(f’g) - ’; 2n 14 Sup|z|51—;1‘- |f(z) - g(Z)l ’
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H(A) is a complete metric space. With the topology induced by
this distance function, H(A) is a locally convex linear space (see [7;
p. 3.

A function f € H(A) belongs to K if and only if

(2) f=eTexp(-Ap) ,

where A >0, T € R and p € P, Caratheodory’s class of functions
with positive real part. There is a 1 — 1 correspondence between
functions of P and probability measures p on [0,27]. pe€ P if
and only if

rlm
(3) p=/ kodu(0)
0
with :
, 1+ ez
Ry = : ’
1—e¥2

(see e.g. [7; p. 4]). K U {0} is a compact subset of H(A) .

By a theorem of Toeplitz (see [7; p. 36| or [8]) continuous linear
functionals L on H(A) can be represented by sequences b, with

lim sup {/m <1.
The action of L on H(A) is given by
(4) L(f) = bafn.
n=0

Since limsup {‘/m < 1, there is a number p <1 and a constant
C > 0 such that for all n

|b,,|§C'-p".

Some information about K can be obtained from the study of
the class B of analytic functions ¢ on the unit disc with

sup [g(z)| < 1.
zeA
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Of course K C B . The extreme points of B were determined by
de Leeuw and Rudin (see [4] or [1; p. 125]). A function f € B is an
extreme point of B if and only if

(suplf(z) =1,
z€EA

4
| f2" tog(1 = |f(e))) i = o0 .

An extreme point of B that liesin K is of course an extreme point
of K . In particular all functions f of K which have boundary
values with modulus 1 on an arc are extreme points of K . For
positive values of A;

‘ / 2
e’ exp (\— 2:1 /\j k,g).)
J:

1s an extreme point of K , but also the function

A/ 1+k3 —ky

which maps A onto {z € A: Rez >0} . K has many other
extreme points.

A function f € K is a support point on K of a continuous
linear functional L (which is defined on H(A)) if we have for every
e K

Re L(g) > Re L(f) .

If f is such a support point, and if g € B then it follows from the
relations 3¢+ 3 € K , that

1 1 1 1
= = = —-g— =) < L(f) .
Re L(g) ReL(2g+2>+ReL(gg 2)_2Re (f)
RePIaCing of g by e''g leads to
(5) |L(9)| < 2Re L(f) -

Linear extremum problems. Let f be a support point on K
of a continuous linear functional L . Then the function

by :t— ReL(e'f),teR
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has a maximum at 0. Therefore ¢](0) =0 i.e.
ReL(:f) =0,

hence L(f) € R. Since —f € K we even have
(6) L(f) > 0.
Similarly the function

t > ReL(z > f(e''z)), teR
has a maximum at 0. We deduce that

L(z » 2f'(2) €R,
and because
fy: t - ReL(z — f(tz)), t € [-1,1]

has a maximum at ¢t =1 we have ¢,(1) > 0, thus
(7) L(z — zf'(2)) 2 0.

Choose (¢ € A. The function

t
€y : t—rReL(z—rf(z+ C)) , t€[-1,1]

14tz

has a maximum at 0. Therefore £3(0) =0 i.e.
Re L(z = (¢ = (2*)f'(2)) = 0.

This is for all ( ; we conclude that

(8) L(z = 22 f'(2)) = L(f") -

Application of this technique to the following situation gives an
important information. Denote as before

1+ei192 S ind_n
k,’(z)=m=l+2ze z |,

n=1



Support Points of K 131

and let f be a support point on K of a continuous linear functional
L. The function

ly: t » Re L(fexp(—tky)),t>0
has a maximum at ¢t = 0. Therefore #;(0) <0, thus
(9) Re L(fkg) > 0.

From (2) and (3) we see that there is a probability measure g and
a number A > 0 such that

2
f=eé" exp(—A/(; k,gdp(ﬂ)) :

Choose a Borel measurable set A C [0,27] and consider

ls : t—+ReL(fexp (—,\t/;k,gdu(ﬂ))\) , t>—1.

€s has its maximum at ¢ =0, thus £5(0) =0, i.e.

ReL(-Af/Ak.,duw))=—A/AReL(fk,,)dp(19) =0.

We distinguish two cases.
Case 1) A =0; then f is a constant.
Case 2) ) # 0; then we have

/ Re L(fky)du(d) =0 .
A

Consequently, for the measure y associated to a support point f of
L the non-negative function

9 — Re L(fky)

Vanishes p-almost everywhere. For a more detailed study of this
function we need an explicit representation. Let

f(2) =) faz".
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Then
f(z)k0(2)= +2Z (an Lf'w s

n=1  “k=1
hence by (4)

L(fks) = L() +2Zb an ke

n=1 k=1

= L(f) +2 z (Z f,,_kb,,) 't?

k=1 “n=k

Since |[fn—k| <1 and |b,| < Cp™ for some p <1, we have

f:fn—kbn SCipn Cpk ]
n=k n=k I_P
hence e
6:¢C=L(H)+2Y (T faciba )c
k=1 \n=k

is analyticon A,;, and L(fky)= d(e'?).

The conclusion in case 2 is based on the following elementary re-

sult.

Lemma. Let i be analytic on a connected neighbourhood U
of ro € R and suppose that there is a sequence (z;) of distinct
real numbers with limj.o zj = zo for which 1(z;) € R. Then

Y(z) ER forall e UNR.

Proof. z — 1(2)—(Z) has a zerosat x; and is therefore identically

zero. This proves the assertion.

Application of this lemma to
z— 10 (1 i1 12)
1—-22

9 — Re d(e'?) = Re L(fky)

shows that
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either has finitely many zeros or is identically zero. If there are finitely
many zeros, then they all have even multiplicity for we know from
(9) that ReL(fky) > 0 for all 9. Moreover the support of u is
contained in the zero set of ReL(fky) thus p is a finite sum of
point measures and f has the form

; / .
= e"’exp{ —E-\jkoj) .
N Jj=1 /i

If ReL(fky) =0 for all J then we also have

2m

ReL(f) = ReL (-21? i fk.gdﬂ) =0,

and it follows from (5) that L(g) = 0 for all ¢ € B. Since every
h € H(A) is limit of a sequence of bounded functions we conclude
that L(h) =0 for every h € H(A).

We state the results of this sectrion:

Theorem. Let L be a non-zero continuous linear functional on

H(A). Then the support point of L on K are either constant
functions with modulus 1 or functions f of the form

exp( ZA k,,) with A;>0.

It is convenient to introduce the notation

— {f €EH(A): f= exp(—i/\jkgj) with J; € [0,27), Aj 2 0}.

i=1

We have proved: if f is a support point on K, then

1£(0)1
F(0). feF.



134 R. A. Kortram

We have also seen in the second section that
FCExtK

the set of extreme points of K.

Remark. For all support points constant or not we have |f(e'?| =1
with at most finitely many exceptions. Therefore we have for each

support point f:z — ) foz™

°© 2
Z |fnl® = 31;- / If(e')|?dt =1.

n=0 ¥ o

The first equality follows from F. Riesz’s mean approximation theo-
rem (see [5] or [1; p. 21]).

Remark. Let f be a support point of a continuous linear functional
L

1
/

f= e"exp(—zn:’\jkﬂj\ 5 (/\J > 0) :
j=1

We have already seen that ReL(fky;) =0, j =1,...,n. From
the expansion

oo

Re L(fe™™%) =Y " (-1)™ m—m— Re L(fky))

m=0

and from the fact that the left hand side is maximal for t = 0 it
follows that

ReL(fk,z,j) <0.
The function
g : U — Re L(fexp(Aj(ks; — kg))) , D €R

has a maximum at 9, hence () = 0. After some computations
we obtain

Im L(fk3,) = Im L(fk3,) — Im L(f)

it’j
T [ (z - (—%f(z)) —0
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and therefore we even have that

L(fk3,) < 0.

Remark. We can apply similar arguments to certain non-linear

functionals (e.g. @ : f — Z;‘I;o @j|f;|?). Then we obtain that
maxscx Re ®(f) is attained for a function f for which %f EF.

Examples.
1). Let 7 € R, ( € A. Consider the continuous linear functional

L on H(A) defined by

L(g) = e"g(¢) -
The support point of L on K is the constant function

fizoem.

2). Let ( € A. Consider the continuous linear functional L on

H(A) defined by

L(g)=4'(C) -
If g € K then
h z—;g(z+__<)€h'
1+C=z
and 1(0)
It follows from (1) that
2 1

Re L(g) < |g'({)I £ e 1-IC]7

We have equality for functions

g = €' exp(—Aky)
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if we make the following choice: 9 € [0,27] arbitrary

|1 L. eiﬂc|2
1-|¢)2

and 7 such that ¢'(¢) = |¢'(¢)|.- Note that

\
A

This example shows that a linear functional can have many support
points. This example also shows that every function e'” exp(—Aky)
is support point of some functional

L:g—e*g'(()
with ¢ and ( chosen properly.

3). Let @ € C, |a] < 1/2 and consider the continuous linear
functional

L:g— ag(0)+4'(0).

For constant functions ¢ € K we have Re L(g) < |a|]. Now suppose
that f is a support point of L on K. Because of the necessary
condition (9) we have for all 9

Re L(fks) = Re(af(0) + f'(0) + 2f(0)e'®) > 0 .

Y — Re L(fky) is a trigonometric polynomial of degree 1, thus it has
at most one double zero. Hence f is either a constant function or

f(2) = €T exp(—Akg(2)) = e'Te {1 = 2Ae'Pz + - -}

and

L(f) = e'"e M a — 2)e') .

Re L(f) is maximal if we choose 7 and ¥ such that e"a >0,
e'e'” = —1 and A = 1 — |&|/2. Then we have

2
L(f) =  exp(lel/2)
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and this is larger than |a| the value for constant functions.

Examples 2) and 3) show that different functionals can have sup-
port points in common.

The next examples show how to obtain new support points from
known ones.

4). If f is a support point of L and it t € R, then e* f is a support
point of g — L(e"*g) and z — f(e''z) is a support point of
9 — L(z — g(e™*z)).

5). Let L be a continuous linear functional on H(A) and let

—exp( Z/\ ko,)

be a support point of L on K. Let 0 < pj < Aj, ( =1,...,n). Then
- \
g=exp(—3 njks; )
is a support point of the continuous linear functional

h — L(hexp(— }i(r\j —Pj)ko,-)) .

=1

6). A generalization of example 2). Let L be a continuous linear
functional and let f be a support point of L on K.
Let T:A — A be a Mobius transformation

z—w

T(z) = e’

1-wz

Define
A(g)=L(goT™).
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A is a continuous linear functional on H(A) and A assumes the same
values as L, hence foT is a support point of A on K. By elementary
computations we obtain that

1
ky o T(z) = Ai + B —-2%
1-az
with
I 19 A3 2 ) 38 LMl =
Y ey fanues v, WAL 1 T L' SR g by fge
|ew + w|2 |exs + w|2 e~ + w

By choosing t and w suitably we can obtain in this way support
points with at least one of the A; arbitrary large.

7). Let 0 < r < 1. Consider the continuous linear functional L
on H(A) defined by

L(g) = 9(0) — g(r) .

The function
z—r

ﬁp:z“’_l—r‘z

belongs to B and L(y) =r, thus from (5) we deduce that

1
max Re L(g) > 57

This shows that the support points of L are nonconstant functions.
From the necessary condition (9) we obtain for support points f

(14 r®)Re f(0) — (1 — r*)Re f(r) — 2rRe f(0) cos 9

(10) + 2rIm f(r)sind >0 .

Since a trigonometric polynomial of degree one has at most one dou-
ble zero, we see that f has the form

't exp(—Akg) .
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For the double zero ¥, of the left hand side of (10) we have

Im f(r)
tandg = Ref(O)
From (6) we conclude that Im f(0) = Im f(r), thus
_Im f(0)
= T Re(0)

and therefore we see that
f= e~ 1Yo exp(—Aky,) -
From (7) we conclude that f'(r) < 0, and this together with (8)

implies that
F1O) =1 =r)f'(r).

Since

we deduce from this result that

TC",O \2

f(r) = —rzf(o) :

Therefore

(11) L(f) = f(0) — f(r) = % (1—rcos19 )

Again from f'(r) < 0 and the explicit expression for f'(r) we deduce
that

(1 — re'?°)? exp(Akg, (1)) > 0,
hence )
5 Im{2log(1 - re'%) + Akyg,(r)} € Z .

An elementary computation shows that

1+ r2 — 2rcosdy rsin iy
= - arctan ——— .
rsindy 1 —rcosdo
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Substitution of A in (11) gives a function of ¥y. The maximum of
this function is an upper bound for L(f). This example shows that
the support points of a functional L with real coefficients b, are

not always functions with real coeflicients. Indeed if » = 1/2 then we
have for all A >0

L (e—'% exp(— "‘6/§ k;)) > L(exp(—Mko))

L(e“% exp (_";/5 k_>) SI(~ exp(=Aky)) -

and

The structure of F. We are not able to determine which elements
of F are support points of continuous linear functionals. Instead we
shall present some theorems about the set F. The first shows that F
is not very large, the second shows that F is not very small.

Theorem. Let fy,...,f, be given. Each f; is a quotient of two
elements of F and for each i # j, fi/f; Iis nonconstant. Let
ay,...,a, be meromorphic functions on C which are not identically

zero. Then Z;-;l a;f; is not identically zero.

Proof (by induction). Let n = 2 and consider f; and f; as functions
from F defined on C except for some singularities. f;/f, and there-
fore ajfi/f2 has essential singularities so a;f1/fs + az # 0 i.e.

ay fi + az fa 79 0.

To reduce the case n + 1 to the case n we proceed as follows. Let

g; = fj/fn+l and Bj = aj/an+1.
From a relation

Ollfl 9P ooc +anfn + 0ln+l.fn+1 =0
would follow
Bigi+ -+ Bugn +1=0

and after differentiation

n

(12) ) (Big; + Bigi) =0

1=1
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Note that g; =exp(—)_ Aky) with A € R thus that

g;=-— (Z ,\kﬁ,)g,- = 7;9;

with v; meromorphic on C. Therefore (12) can be written as
Y (B + Bivi)g; =0
j=1
and by the induction hypothesis it follows that
Bi+Bivi=0 (j=1,..,n)
and this implies that 3; = c exp(— ) Aky), but then S; has essen-

tial singularities (since not all X are zero for f;/fn41 is nonconstant)
which is a contradiction.

Theorem. The closed linear span (over C) of F is H(A).

Proof. Since 1 € ¥ and F is closed under multiplication it
suffices to show that for every ¢ > 0 and for every r € (0,1) there are
fiyoy fn € F and Aq,...,An € C such that

et IMfi(z) +-- 4+ Aafa(z) —2| < €.

Choose n € N and let ¢ = e?™/". Take

{ fi = exp(—kanj/n

e s
Aj = —%C i
Note that =
1+2 1 2 k
exp(—l—_;) =—e-——z+kz:=2akz
thus

n o0
€ in+1
p(z) = ; Aifi(z)=2-3 ; jn+12’
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and

(e o]

n+1
E Ayn41 Al

=1

le(2) - 2l = 5

e [o o] [o o]
<83 i 3 e
\ 1=1 =1

and for n large enough we have

—-2|L¢e.
mglso(z) z| <

More or less in the same spirit is the next

Theorem. The closure of F in H(A) satisfies
F={feK:f0)>0}u{o0}.
Proof.
Fc{feK: f(0)>0}
thus
Fc{feK: f(0)>0}u{0}.
In the other direction:
0 = lim exp(—nko) € F .

n—oo

Consider f € K with f(0) > 0. We have f =exp(—Ap) with

A >0, p € P. According to Krein-Milman'’s theorem ([6; p. 70])
there is a sequence p, of convex combinations of extreme points of
P that converge to p. Therefore we have

f = lim exp(—Apn) .
n—oo

Since the set of extreme points of P is {ky : ¥ € [0,27)} ([2] or [7;

p. 3]) we have exp(—Ap,) € F thus f € F.
Finally we mention that F is an arcwise connected subset of K.
For every f € K the map & : [0,1] — K defined by

®(t) = f*

is a curve in K which connects the constant function 1 with f.
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