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Support Points of K

Abstract. Let K denote the class of analytic functions f on 
the unit disc A in the complex plane for which 0 < |/(z)| < 1 for 
all z € A . Let f{z) = fnzn A well-known problem named
after Krzyż is to determine

SUP |/n | .
Z€K

An extensive survey of this problem is given by Hummel, Scheinberg 
and Zalcman [3]. They show among other things that for j = 1,2,3

(1) l/il<2/e .

In this paper we study support points on K of linear functionals 
which are defined on #(A) , the collection of all analytic functions 
on the unit disc. We shall show that all support points have the 
form

/(*)
1 + e^i z \
1 -e^iz) '

Preliminaries. As usual, #(A) is the collection of analytic func­
tions on the unit disc. Endowed with the distance function

d(f,g) = 52
n=l

1

2*

suP|*|<i-£ !/(*) ~g(z)l 

l + sup^^j-i\f(z) - p(z)|
?
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7i(A) is a complete metric space. With the topology induced by 
this distance function, 77(A) is a locally convex linear space (see [7; 
p. 3].

A function f € 77(A) belongs to K if and only if

(2) / = e’r exp(-Ap) ,

where A > 0, t € K. and p 6 P , Caratheodory’s class of functions 
with positive real part. There is a 1 - 1 correspondence between 
functions of P and probability measures p on [0, 2tt] . p 6 P if 
and only if

(3) P= /
Jo

with
, 1 + e*«

1 — e*# z ’

(see e.g. [7; p. 4]). K U {0} is a compact subset of 77(A) .

By a theorem of Toeplitz (see [7; p. 36] or [8]) continuous linear 
functionals L on 77(A) can be represented by sequences bn with

limsup Vl&n| < 1 •

The action of L on 77(A) is given by

oo
(4) £(/) = £ W" ■

n=0

Since limsup ^/|6n| < 1 , there is a number p < 1 and a constant 
C > 0 such that for all n

\bn\<C-Pn .

Some information about K can be obtained from the study of 
the class B of analytic functions g on the unit disc with

sup |ÿ(z)| < 1 •
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Of course K C B . The extreme points of B were determined by 
de Leeuw and Rudin (see [4] or [1; p. 125]). A function f € B is an 
extreme point of B if and only if

f sup |/(z)| = 1 ,

I /(Tm1 - i/(eU’)i)di9 = •

An extreme point of B that lies in K is of course an extreme point 
of K . In particular all functions f of K which have boundary 
values with modulus 1 on an arc are extreme points of K . For 
positive values of Xj

e'T expl-^Xjk^ }
' j=i J

is an extreme point of K , but also the function 

^1 + — k#

which maps A onto {z € A : Re 2 > 0} . K has many other 
extreme points.

A function f € K is a support point on K of a continuous 
linear functional L (which is defined on if (A)) if we have for every 
9£K

ReL(g) > Re£(/) .
If f is such a support point, and if g € B then it follows from the 
relations ± j € JC , that

Re L(9) = Rel(|s + j) + Rei(i» “ " 2Re£(/) .

Replacing of g by eltg leads to

(5) |L(p)|<2ReI(/).

Linear extremum problems. Let f be a support point on K 
°f a continuous linear functional L . Then the function

: i-> ReL(e’7) , t e R
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has a maximum at 0. Therefore ^(0) = 0 i.e.

Re L(if) = 0 ,

hence L(f) E R. Since — f E K we even have

(6) £(/) > o .

Similarly the function

t —> ReL(z —> /(e'!z)) , t E R

has a maximum at 0. We deduce that

I(z -4 z/'(z)) E R ,

and because

(-2 : t —> ReL(2 —> f(tz)) , t E [-1,1] 

has a maximum at t = 1 we have ^(l) — , thus

(7) L(z -> zf'(zy) > 0 .

Choose ( E A . The function

has a maximum at 0. Therefore £3(0) = 0 i.e.

Re£(z^(C-<z2)/'(z)) = 0.

This is for all ( ; we conclude that

(8) I(z ?/'(z)) = £(/<)

Application of this technique to the following situation gives an 
important information. Denote as before

1 9 001^7 = 1 + 21:^" •
n=l
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and let f be a support point on A' of a continuous linear functional 
L. The function

€4 : t —► Re A(/exp(—tk#y) , t > 0 

has a maximum at t = 0. Therefore ¿4(0) < 0, thus

0) ReL(fkt) > 0 .

From (2) and (3) we see that there is a probability measure n and 
a number A > 0 such that

f = etT exp

Choose a Borel measurable set A C [0,2ir] and consider

£5 : t —> Re L ^/exp (—\t j kÿdfi(d)jj , t > —1 

^5 has its maximum at t = 0, thus ¿5(0) = 0, i.e.

Re£(-A/ i kidney) = -A f ReL(fk^d^d) = 0 . 
J A J A

We distinguish two cases.
Case 1) A = 0; then f is a constant.
Case 2) A / 0; then we have

Re L(fkd)dn(d) = 0 .

Consequently, for the measure // associated to a support point f of 
L the non-negative function

d —> ReLy/k#)

vanishes //-almost everywhere. For a more detailed study of this 
function we need an explicit representation. Let

00

/(z) = £/„2". 
n=0
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Then
00 / » \

/(z)M*) = /(*) + 2 52 ,
n=l '■k=l '

hence by (4)

00 n

Hfkt) = L(l) + 2 6„ ln-teM

n=l k=l 
00 ✓ 00 \

= £(/)+2 52 (52/»-a eiM.
Jt=l 'n=k '

Since |/n-k| < 1 and |bn| < C pn for some p < 1, we have

00

£ fn-kbn
n=k

< r V nn cpk

n=k

hence 00/00 \
i:c-£(/>+252 52

k=l \n=fc /

is analytic on Aj/p and L(fk#) = <^(en’).
The conclusion in case 2 is based on the following elementary re­

sult.

Lemma. Let ip be analytic on a connected neighbourhood U 
of xq 6 R and suppose that there is a sequence (xj) of distinct 
real numbers with limj_oo Xj = x0 for which ip(xj) € R. Then 
ip(x') € R for all x € U PR .

Proof, z —> V>(z)—V>(z) has a zeros at Xj and is therefore identically 
zero. This proves the assertion.

Application of this lemma to

ip 1 + iz 
1 — iz

shows that
i9->Re^(ei’,) = Re£(/fctf)
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either has finitely many zeros or is identically zero. If there are finitely 
many zeros, then they all have even multiplicity for we know from 
(9) that ReA(/h^) > 0 for all rf. Moreover the support of p is 
contained in the zero set of Rethus p is a finite sum of 
point measures and f has the form

f = e,rexp( -
' j=l 7

If Re £(/£,?) = 0 for all d then we also have

ReA(/) = Re A = 0,

and it follows from (5) that L(</) = 0 for all g £ B. Since every 
h £ if (A) is limit of a sequence of bounded functions we conclude 
that A(h) = 0 for every h £ -ff(A).

We state the results of this sectrion:

Theorem. Let L be a non-zero continuous linear functional on 
if (A). Then the support point of L on K are either constant 
functions with modulus 1 or functions f of the form

r ir j = e exp with Xj > 0 .

It is convenient to introduce the notation

J-
J—*

We have proved: if f is a support point on A?, then

/(0)
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We have also seen in the second section that 

F C Ext K

the set of extreme points of K.

Remark. For all support points constant or not we have | = 1 
with at most finitely many exceptions. Therefore we have for each 
support point / : z —> fnzn'-

°° i r2*X l/»l2 = 57 / l/(e“)l2* = 1 •
n=0

The first equality follows from F. Riesz’s mean approximation theo­
rem (see [5] or [1; p. 21]).

Remark. Let f be a support point of a continuous linear functional 
L

f = e,T exp f- \]k^j \ , (Aj > 0) .

' >=i '

We have already seen that ReL(/fc^) = 0, j = l,...,n. From 
the expansion

°° j.m
Re =£(-!)”• —R« £(/«:,”•)

L—' m\ 1
m=0

and from the fact that the left hand side is maximal for t = 0 it 
follows that

Re£(/fc^ ) < 0.

The function

ReL(/exp(Aj(fc^. - e R

has a maximum at i9j, hence = 0- After some computations
we obtain

Im£(/^) = Im£(/^.)-ImL(/) 

4e**’> z
— Im L \ z (1 — e,l9i z)2

0 = 0
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and therefore we even have that

) < o ■

Remark. We can apply similar arguments to certain non-linear 
functionals (e.g. $ : / —» Qjl/j'|2)- Then we obtain that
max/€K Re $(/) is attained for a function f for which € T .

Examples.
1). Let t E R, C € A. Consider the continuous linear functional 

L on -H(A) defined by

L(g) = e~irg«) .

The support point of L on K is the constant function 

f : z-+ eir .

2). Let £ € A. Consider the continuous linear functional L on 
-ff(A) defined by

L(g) = /«) •

If g € K then

and
,,,, ^(Q)

^(0 X _ |£|2 •

It follows from (1) that

ReLGz) < |/(C)|

We have equality for functions

g = e,T exp(—
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if we make the following choice: d £ [0,27r] arbitrary

' 11 -
l-ICP ’

and r such that g'(Ç) = |</(C)|. Note that

1 - ICI
i + KI

1 + Kl
i - ICI

< A <

This example shows that a linear functional can have many support 
points. This example also shows that every function e,r exp(—\k#) 
is support point of some functional

L :

with t and ( chosen properly.

3). Let a € C, |o| < 1/2 and consider the continuous linear 
functional

L:g -> ctflr(O) -h j/(0) .

For constant functions g € K we have ReT(g) < |a|. Now suppose 
that f is a support point of L on K. Because of the necessary 
condition (9) we have for all d

ReL(/^) = Re(a/(0) + /'(0) + 2/(0)e’*) > 0 .

d —+ ReL(fktf) is a trigonometric polynomial of degree 1, thus it has 
at most one double zero. Hence f is either a constant function or

/(z) = e,r exp(—Afctf(z)) = e‘Te-A{l — 2Ae"’z + • • • }

and
L(f) = eire~Xa-2\ei^ .

ReZ(/) is maximal if we choose r and $ such that etra > 0, 
e‘re"? = —1 and A = 1 — |o:|/2. Then we have

£(/) = - exp(|a|/2) , 
e
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and this is larger than |or| the value for constant functions.

Examples 2) and 3) show that different functionals can have sup­
port points in common.

The next examples show how to obtain new support points from 
known ones.

4) . If f is a support point of L and it t € R, then elt f is a support 
point of g —> L(e-,t<7) and z —> /(e^z) is a support point of 
g -> L(z -> flr(e-itz)).

5) . Let L be a continuous linear functional on and let

f = exp

be a support point of L on K. Let 0 < [ij < Xj, (j = 1, ...,n). Then

g = expi-J^A, )
V >=i 7

is a support point of the continuous linear functional 

h -> L (h exp ) •

6). A generalization of example 2). Let I be a continuous linear 
functional and let f be a support point of L on K.
Let T : A —» A be a Mobius transformation

T(z) = e“ —- • v ' 1 — wz

Define
A(s) = I(ioT-1).
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A is a continuous linear functional on if (A) and A assumes the same 
values as L, hence f o T is a support point of A on K. By elementary 
computations we obtain that

, X . ■ „ 1 + OLZk# o T(z) = Ai + B --------
1 — OLZ

with

A = _2Im(wq. O = e-<.X± ;̂ J = t +
|e,s + w|2 |els + w|2 e ta + w

By choosing t and w suitably we can obtain in this way support 
points with at least one of the Xj arbitrary large.

7). Let 0 < r < 1. Consider the continuous linear functional L 
on if (A) defined by

Mtf) = ?(0) - i?(r) .

The function
z — r

belongs to B and L(y?) = r , thus from (5) we deduce that

max Re L(g) > -r . 
ÿ€ K 2

This shows that the support points of L are nonconstant functions. 
From the necessary condition (9) we obtain for support points f

(1 + r2)Re/(0) — (1 — r2)Re/(r) — 2rRe /(0) cos d 
) + 2rlm/(r) sini? > 0 .

Since a trigonometric polynomial of degree one has at most one dou 
ble zero, we see that f has the form

elt exp(—.
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For the double zero of the left hand side of (10) we have 

. Im f(r)
tan'’° = -rT«o) '

From (6) we conclude that Im/(0) = Im/(r), thus 

Im/(0)
tani?o =

Re/(0) ’

and therefore we see that

f = e-"’0 exp(—Afct90) .

From (7) we conclude that f'(r) < 0, and this together with (8) 
implies that

/'(0) = (l-r2)/'(r).

Since
x —2Ae*’’° ,

f (2) = 77----(1 — e’^oz)2 

we deduce from this result that

(1 _ re’’’°ï2 
/W = ! _ p2 /(«) •

Therefore

(11)
2re

£(/) = /(0) - /(r) = - ------(1 - rcost9o)
1 — r

Again from f'(r) < 0 and the explicit expression for f'(r) we deduce 
that

(1 - re"’0)2 exp(Afc#0(r)) > 0 ,

hence
^Im{21og(l - re"’0) + Afc,)0(r)} G Z .

An elementary computation shows that

. 1 + r2 — 2r cos i?o r si*1
A =------------- ---------arc tan

1 — r cos $or sin$o
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Substitution of A in (11) gives a function of i?o- The maximum of 
this function is an upper bound for L^f). This example shows that 
the support points of a functional L with real coefficients bn are 
not always functions with real coefficients. Indeed if r = 1/2 then we 
have for all A > 0

L^e~*% exp^^-ki^ > L(exp(-Afc0))

and
L^e"’iexp^-^?fci^ > L(-exp(-Ahw)) .

The structure of F. We are not able to determine which elements 
of F are support points of continuous linear functionals. Instead we 
shall present some theorems about the set F. The first shows that F 
is not very large, the second shows that F is not very small.

Theorem. Let be given. Each fj is a quotient of two
elements of F and for each i j, fi/fj is nonconstant. Let 
«1,..., an be meromorphic functions on C which are not identically 
zero. Then aijfj is not identically zero.

Proof (by induction). Let n = 2 and consider J\ and f2 as functions 
from F defined on C except for some singularities. /1//2 and there­
fore <*1/1//2 has essential singularities so 01/1/f2 + 02 / 0 i.e. 
<*1/1 + <*2/2 / 0.

To reduce the case n + 1 to the case n we proceed as follows. Let 
9j = fjlfn+x and fa = aj/an+i.
From a relation

Oilfl + • • • + cxnfn + «n+i/n+i = 0

would follow
faill + • • • + PnSIn + 1 = 0 

and after differentiation

¿o’,«+M) = 0.

?=i
(12)
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Note that gj = exp(— ^2 ) with A € R thus that

9j = ~(^X^9j = 7j9j

with 7j meromorphic on C. Therefore (12) can be written as

n
£>> + = 0 
J=1

and by the induction hypothesis it follows that 

Pj+Pj7i = Q (> = l,-,n)

and this implies that /3j = c exp(— ^2 AA:^) > but then f3j has essen­
tial singularities (since not all A are zero for fj/fn+i is nonconstant) 
which is a contradiction.

Theorem. The closed linear span (over C) of f is H(A).

Proof. Since 1 6 J- and T is closed under multiplication it 
suffices to show that for every e > 0 and for every r € (0,1) there are 
fi,...,fn£iF and Ai,...,AneC such that

max |Aj/i(z) -t------ H \nfn(z) - z\ < £ .
I*l<r

Choose n 6 N and let £ = e27r,/n . Take

' fj = exp(-fc2ffj/n

<?(*) = è XifAz) = 2 “ ! 52 aJn+i2Jn+1

j=i j=i

Note that

thus
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and oo OO oo
l<^0) _zl = | E ?n+1 < -

- 2\ E|0>n+l|2Ek>"+,|21=1 1=1 1=1
oo eE^-+ii21=1 2 yi-i*!2"

and for n large enough we have

5

max |ç?(2) -z\<£ . 
|z|<»-

More or less in the same spirit is the next

Theorem. The closure of F in H(A) satisfies 
^ = {/e A':/(o)>o)u{o).

Proof.
ZC{/Stf: l(0)>0}

thus
7 C {/ € K : /(0) > 0} U {0} .

In the other direction:
0 = lim exp(—nfco) € F . n—>oo

Consider f 6 K with /(0) > 0 . We have f = exp(—Ap) with 
A > 0, p G P. According to Krein-Milman’s theorem ([6; p. 70]) 
there is a sequence pn of convex combinations of extreme points of 
P that converge to p. Therefore we have

f = lim exp(—Apn) . n—>oo
Since the set of extreme points of P is {k# : $ € [0,27r)} ([2] or [7; 
p. 3]) we have exp(—Apn) € F thus f € F.

Finally we mention that F is an arcwise connected subset of K. 
For every f EK the map $ : [0,1] —> K defined by

*(<) = f
is a curve in K which connects the constant function 1 with f.
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