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Support Points of K

Abstract. Let K denote the class of analytic functions f on 
the unit disc A in the complex plane for which 0 < |/(z)| < 1 for 
all z € A . Let f{z) = fnzn A well-known problem named
after Krzyż is to determine

SUP |/n | .
Z€K

An extensive survey of this problem is given by Hummel, Scheinberg 
and Zalcman [3]. They show among other things that for j = 1,2,3

(1) l/il<2/e .

In this paper we study support points on K of linear functionals 
which are defined on #(A) , the collection of all analytic functions 
on the unit disc. We shall show that all support points have the 
form

/(*)
1 + e^i z \
1 -e^iz) '

Preliminaries. As usual, #(A) is the collection of analytic func
tions on the unit disc. Endowed with the distance function

d(f,g) = 52
n=l

1

2*

suP|*|<i-£ !/(*) ~g(z)l 

l + sup^^j-i\f(z) - p(z)|
?
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7i(A) is a complete metric space. With the topology induced by 
this distance function, 77(A) is a locally convex linear space (see [7; 
p. 3].

A function f € 77(A) belongs to K if and only if

(2) / = e’r exp(-Ap) ,

where A > 0, t € K. and p 6 P , Caratheodory’s class of functions 
with positive real part. There is a 1 - 1 correspondence between 
functions of P and probability measures p on [0, 2tt] . p 6 P if 
and only if

(3) P= /
Jo

with
, 1 + e*«

1 — e*# z ’

(see e.g. [7; p. 4]). K U {0} is a compact subset of 77(A) .

By a theorem of Toeplitz (see [7; p. 36] or [8]) continuous linear 
functionals L on 77(A) can be represented by sequences bn with

limsup Vl&n| < 1 •

The action of L on 77(A) is given by

oo
(4) £(/) = £ W" ■

n=0

Since limsup ^/|6n| < 1 , there is a number p < 1 and a constant 
C > 0 such that for all n

\bn\<C-Pn .

Some information about K can be obtained from the study of 
the class B of analytic functions g on the unit disc with

sup |ÿ(z)| < 1 •



Support Points of K 129

Of course K C B . The extreme points of B were determined by 
de Leeuw and Rudin (see [4] or [1; p. 125]). A function f € B is an 
extreme point of B if and only if

f sup |/(z)| = 1 ,

I /(Tm1 - i/(eU’)i)di9 = •

An extreme point of B that lies in K is of course an extreme point 
of K . In particular all functions f of K which have boundary 
values with modulus 1 on an arc are extreme points of K . For 
positive values of Xj

e'T expl-^Xjk^ }
' j=i J

is an extreme point of K , but also the function 

^1 + — k#

which maps A onto {z € A : Re 2 > 0} . K has many other 
extreme points.

A function f € K is a support point on K of a continuous 
linear functional L (which is defined on if (A)) if we have for every 
9£K

ReL(g) > Re£(/) .
If f is such a support point, and if g € B then it follows from the 
relations ± j € JC , that

Re L(9) = Rel(|s + j) + Rei(i» “ " 2Re£(/) .

Replacing of g by eltg leads to

(5) |L(p)|<2ReI(/).

Linear extremum problems. Let f be a support point on K 
°f a continuous linear functional L . Then the function

: i-> ReL(e’7) , t e R
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has a maximum at 0. Therefore ^(0) = 0 i.e.

Re L(if) = 0 ,

hence L(f) E R. Since — f E K we even have

(6) £(/) > o .

Similarly the function

t —> ReL(z —> /(e'!z)) , t E R

has a maximum at 0. We deduce that

I(z -4 z/'(z)) E R ,

and because

(-2 : t —> ReL(2 —> f(tz)) , t E [-1,1] 

has a maximum at t = 1 we have ^(l) — , thus

(7) L(z -> zf'(zy) > 0 .

Choose ( E A . The function

has a maximum at 0. Therefore £3(0) = 0 i.e.

Re£(z^(C-<z2)/'(z)) = 0.

This is for all ( ; we conclude that

(8) I(z ?/'(z)) = £(/<)

Application of this technique to the following situation gives an 
important information. Denote as before

1 9 001^7 = 1 + 21:^" •
n=l
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and let f be a support point on A' of a continuous linear functional 
L. The function

€4 : t —► Re A(/exp(—tk#y) , t > 0 

has a maximum at t = 0. Therefore ¿4(0) < 0, thus

0) ReL(fkt) > 0 .

From (2) and (3) we see that there is a probability measure n and 
a number A > 0 such that

f = etT exp

Choose a Borel measurable set A C [0,2ir] and consider

£5 : t —> Re L ^/exp (—\t j kÿdfi(d)jj , t > —1 

^5 has its maximum at t = 0, thus ¿5(0) = 0, i.e.

Re£(-A/ i kidney) = -A f ReL(fk^d^d) = 0 . 
J A J A

We distinguish two cases.
Case 1) A = 0; then f is a constant.
Case 2) A / 0; then we have

Re L(fkd)dn(d) = 0 .

Consequently, for the measure // associated to a support point f of 
L the non-negative function

d —> ReLy/k#)

vanishes //-almost everywhere. For a more detailed study of this 
function we need an explicit representation. Let

00

/(z) = £/„2". 
n=0
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Then
00 / » \

/(z)M*) = /(*) + 2 52 ,
n=l '■k=l '

hence by (4)

00 n

Hfkt) = L(l) + 2 6„ ln-teM

n=l k=l 
00 ✓ 00 \

= £(/)+2 52 (52/»-a eiM.
Jt=l 'n=k '

Since |/n-k| < 1 and |bn| < C pn for some p < 1, we have

00

£ fn-kbn
n=k

< r V nn cpk

n=k

hence 00/00 \
i:c-£(/>+252 52

k=l \n=fc /

is analytic on Aj/p and L(fk#) = <^(en’).
The conclusion in case 2 is based on the following elementary re

sult.

Lemma. Let ip be analytic on a connected neighbourhood U 
of xq 6 R and suppose that there is a sequence (xj) of distinct 
real numbers with limj_oo Xj = x0 for which ip(xj) € R. Then 
ip(x') € R for all x € U PR .

Proof, z —> V>(z)—V>(z) has a zeros at Xj and is therefore identically 
zero. This proves the assertion.

Application of this lemma to

ip 1 + iz 
1 — iz

shows that
i9->Re^(ei’,) = Re£(/fctf)
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either has finitely many zeros or is identically zero. If there are finitely 
many zeros, then they all have even multiplicity for we know from 
(9) that ReA(/h^) > 0 for all rf. Moreover the support of p is 
contained in the zero set of Rethus p is a finite sum of 
point measures and f has the form

f = e,rexp( -
' j=l 7

If Re £(/£,?) = 0 for all d then we also have

ReA(/) = Re A = 0,

and it follows from (5) that L(</) = 0 for all g £ B. Since every 
h £ if (A) is limit of a sequence of bounded functions we conclude 
that A(h) = 0 for every h £ -ff(A).

We state the results of this sectrion:

Theorem. Let L be a non-zero continuous linear functional on 
if (A). Then the support point of L on K are either constant 
functions with modulus 1 or functions f of the form

r ir j = e exp with Xj > 0 .

It is convenient to introduce the notation

J-
J—*

We have proved: if f is a support point on A?, then

/(0)
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We have also seen in the second section that 

F C Ext K

the set of extreme points of K.

Remark. For all support points constant or not we have | = 1 
with at most finitely many exceptions. Therefore we have for each 
support point / : z —> fnzn'-

°° i r2*X l/»l2 = 57 / l/(e“)l2* = 1 •
n=0

The first equality follows from F. Riesz’s mean approximation theo
rem (see [5] or [1; p. 21]).

Remark. Let f be a support point of a continuous linear functional 
L

f = e,T exp f- \]k^j \ , (Aj > 0) .

' >=i '

We have already seen that ReL(/fc^) = 0, j = l,...,n. From 
the expansion

°° j.m
Re =£(-!)”• —R« £(/«:,”•)

L—' m\ 1
m=0

and from the fact that the left hand side is maximal for t = 0 it 
follows that

Re£(/fc^ ) < 0.

The function

ReL(/exp(Aj(fc^. - e R

has a maximum at i9j, hence = 0- After some computations
we obtain

Im£(/^) = Im£(/^.)-ImL(/) 

4e**’> z
— Im L \ z (1 — e,l9i z)2

0 = 0
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and therefore we even have that

) < o ■

Remark. We can apply similar arguments to certain non-linear 
functionals (e.g. $ : / —» Qjl/j'|2)- Then we obtain that
max/€K Re $(/) is attained for a function f for which € T .

Examples.
1). Let t E R, C € A. Consider the continuous linear functional 

L on -H(A) defined by

L(g) = e~irg«) .

The support point of L on K is the constant function 

f : z-+ eir .

2). Let £ € A. Consider the continuous linear functional L on 
-ff(A) defined by

L(g) = /«) •

If g € K then

and
,,,, ^(Q)

^(0 X _ |£|2 •

It follows from (1) that

ReLGz) < |/(C)|

We have equality for functions

g = e,T exp(—
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if we make the following choice: d £ [0,27r] arbitrary

' 11 -
l-ICP ’

and r such that g'(Ç) = |</(C)|. Note that

1 - ICI
i + KI

1 + Kl
i - ICI

< A <

This example shows that a linear functional can have many support 
points. This example also shows that every function e,r exp(—\k#) 
is support point of some functional

L :

with t and ( chosen properly.

3). Let a € C, |o| < 1/2 and consider the continuous linear 
functional

L:g -> ctflr(O) -h j/(0) .

For constant functions g € K we have ReT(g) < |a|. Now suppose 
that f is a support point of L on K. Because of the necessary 
condition (9) we have for all d

ReL(/^) = Re(a/(0) + /'(0) + 2/(0)e’*) > 0 .

d —+ ReL(fktf) is a trigonometric polynomial of degree 1, thus it has 
at most one double zero. Hence f is either a constant function or

/(z) = e,r exp(—Afctf(z)) = e‘Te-A{l — 2Ae"’z + • • • }

and
L(f) = eire~Xa-2\ei^ .

ReZ(/) is maximal if we choose r and $ such that etra > 0, 
e‘re"? = —1 and A = 1 — |o:|/2. Then we have

£(/) = - exp(|a|/2) , 
e
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and this is larger than |or| the value for constant functions.

Examples 2) and 3) show that different functionals can have sup
port points in common.

The next examples show how to obtain new support points from 
known ones.

4) . If f is a support point of L and it t € R, then elt f is a support 
point of g —> L(e-,t<7) and z —> /(e^z) is a support point of 
g -> L(z -> flr(e-itz)).

5) . Let L be a continuous linear functional on and let

f = exp

be a support point of L on K. Let 0 < [ij < Xj, (j = 1, ...,n). Then

g = expi-J^A, )
V >=i 7

is a support point of the continuous linear functional 

h -> L (h exp ) •

6). A generalization of example 2). Let I be a continuous linear 
functional and let f be a support point of L on K.
Let T : A —» A be a Mobius transformation

T(z) = e“ —- • v ' 1 — wz

Define
A(s) = I(ioT-1).
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A is a continuous linear functional on if (A) and A assumes the same 
values as L, hence f o T is a support point of A on K. By elementary 
computations we obtain that

, X . ■ „ 1 + OLZk# o T(z) = Ai + B --------
1 — OLZ

with

A = _2Im(wq. O = e-<.X± ;̂ J = t +
|e,s + w|2 |els + w|2 e ta + w

By choosing t and w suitably we can obtain in this way support 
points with at least one of the Xj arbitrary large.

7). Let 0 < r < 1. Consider the continuous linear functional L 
on if (A) defined by

Mtf) = ?(0) - i?(r) .

The function
z — r

belongs to B and L(y?) = r , thus from (5) we deduce that

max Re L(g) > -r . 
ÿ€ K 2

This shows that the support points of L are nonconstant functions. 
From the necessary condition (9) we obtain for support points f

(1 + r2)Re/(0) — (1 — r2)Re/(r) — 2rRe /(0) cos d 
) + 2rlm/(r) sini? > 0 .

Since a trigonometric polynomial of degree one has at most one dou 
ble zero, we see that f has the form

elt exp(—.
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For the double zero of the left hand side of (10) we have 

. Im f(r)
tan'’° = -rT«o) '

From (6) we conclude that Im/(0) = Im/(r), thus 

Im/(0)
tani?o =

Re/(0) ’

and therefore we see that

f = e-"’0 exp(—Afct90) .

From (7) we conclude that f'(r) < 0, and this together with (8) 
implies that

/'(0) = (l-r2)/'(r).

Since
x —2Ae*’’° ,

f (2) = 77----(1 — e’^oz)2 

we deduce from this result that

(1 _ re’’’°ï2 
/W = ! _ p2 /(«) •

Therefore

(11)
2re

£(/) = /(0) - /(r) = - ------(1 - rcost9o)
1 — r

Again from f'(r) < 0 and the explicit expression for f'(r) we deduce 
that

(1 - re"’0)2 exp(Afc#0(r)) > 0 ,

hence
^Im{21og(l - re"’0) + Afc,)0(r)} G Z .

An elementary computation shows that

. 1 + r2 — 2r cos i?o r si*1
A =------------- ---------arc tan

1 — r cos $or sin$o
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Substitution of A in (11) gives a function of i?o- The maximum of 
this function is an upper bound for L^f). This example shows that 
the support points of a functional L with real coefficients bn are 
not always functions with real coefficients. Indeed if r = 1/2 then we 
have for all A > 0

L^e~*% exp^^-ki^ > L(exp(-Afc0))

and
L^e"’iexp^-^?fci^ > L(-exp(-Ahw)) .

The structure of F. We are not able to determine which elements 
of F are support points of continuous linear functionals. Instead we 
shall present some theorems about the set F. The first shows that F 
is not very large, the second shows that F is not very small.

Theorem. Let be given. Each fj is a quotient of two
elements of F and for each i j, fi/fj is nonconstant. Let 
«1,..., an be meromorphic functions on C which are not identically 
zero. Then aijfj is not identically zero.

Proof (by induction). Let n = 2 and consider J\ and f2 as functions 
from F defined on C except for some singularities. /1//2 and there
fore <*1/1//2 has essential singularities so 01/1/f2 + 02 / 0 i.e. 
<*1/1 + <*2/2 / 0.

To reduce the case n + 1 to the case n we proceed as follows. Let 
9j = fjlfn+x and fa = aj/an+i.
From a relation

Oilfl + • • • + cxnfn + «n+i/n+i = 0

would follow
faill + • • • + PnSIn + 1 = 0 

and after differentiation

¿o’,«+M) = 0.

?=i
(12)
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Note that gj = exp(— ^2 ) with A € R thus that

9j = ~(^X^9j = 7j9j

with 7j meromorphic on C. Therefore (12) can be written as

n
£>> + = 0 
J=1

and by the induction hypothesis it follows that 

Pj+Pj7i = Q (> = l,-,n)

and this implies that /3j = c exp(— ^2 AA:^) > but then f3j has essen
tial singularities (since not all A are zero for fj/fn+i is nonconstant) 
which is a contradiction.

Theorem. The closed linear span (over C) of f is H(A).

Proof. Since 1 6 J- and T is closed under multiplication it 
suffices to show that for every e > 0 and for every r € (0,1) there are 
fi,...,fn£iF and Ai,...,AneC such that

max |Aj/i(z) -t------ H \nfn(z) - z\ < £ .
I*l<r

Choose n 6 N and let £ = e27r,/n . Take

' fj = exp(-fc2ffj/n

<?(*) = è XifAz) = 2 “ ! 52 aJn+i2Jn+1

j=i j=i

Note that

thus
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and oo OO oo
l<^0) _zl = | E ?n+1 < -

- 2\ E|0>n+l|2Ek>"+,|21=1 1=1 1=1
oo eE^-+ii21=1 2 yi-i*!2"

and for n large enough we have

5

max |ç?(2) -z\<£ . 
|z|<»-

More or less in the same spirit is the next

Theorem. The closure of F in H(A) satisfies 
^ = {/e A':/(o)>o)u{o).

Proof.
ZC{/Stf: l(0)>0}

thus
7 C {/ € K : /(0) > 0} U {0} .

In the other direction:
0 = lim exp(—nfco) € F . n—>oo

Consider f 6 K with /(0) > 0 . We have f = exp(—Ap) with 
A > 0, p G P. According to Krein-Milman’s theorem ([6; p. 70]) 
there is a sequence pn of convex combinations of extreme points of 
P that converge to p. Therefore we have

f = lim exp(—Apn) . n—>oo
Since the set of extreme points of P is {k# : $ € [0,27r)} ([2] or [7; 
p. 3]) we have exp(—Apn) € F thus f € F.

Finally we mention that F is an arcwise connected subset of K. 
For every f EK the map $ : [0,1] —> K defined by

*(<) = f
is a curve in K which connects the constant function 1 with f.
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