ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLIX, 3

SECTIO A

1995

Leszek J. CIACH (Lódź)

Regularity and Almost Sure Convergence

ABSTRACT. We give a sufficient condition for almost sure convergence in the sense of [1] to be equivalent to almost uniform convergence.

Preliminaries. In the section we collect basic facts on the theory of non-commuta- tive L^p -spaces associated with an arbitrary von Newumann algebra. For details cf. [4].

Let M be a σ -finite von Neumann algebra with a faithful normal state ω_0 . The Hilbert space $H = L^2(M, \omega_0)$ is the completion of M under the norm $x \mapsto \omega_0(x^*x)^{1/2} = ||x||_2$. In the sequel, we assume that M acts in a standard way on the Hilbert space Hwith a cyclic and separating vector ζ_0 such that $\omega_0(x) = (x\zeta_0, \zeta_0)$ for $x \in M$. We identify M with the subset $M\zeta_0 = \{x\zeta_0 : x \in M\}$ of H. We denote by N the crossed product $R(M, \sigma^{\omega_0})$ of M by the modular automorphism group σ^{ω_0} associated with ω_0 (see [2]). Then N admits the dual action $\{\Theta_s\}, s \in \mathbb{R}$, and the faithful normal semifinite trace τ satisfying $\tau \circ \Theta_s = e^{-s} \tau$, $s \in \mathbb{R}$ (see [2]). The topological *- algebra of all closed densely defined (affiliated with N locally measurable operators with respect to N is denoted by \overline{N} (see [6]). The dual actions $\{\Theta_s\}, s \in \mathbb{R}$, are extended to continuous *- automorphisms of \overline{N} . Let $L^p(M)$, 0 ,denote the Haagerup spaces associated with ω_0 and M [4]. It is known that M acts in a standard way in $H = L^2(M) \subset \overline{N}$ and $\omega_0(x) = (xh_0^{1/2}, h_0^{1/2})_H = \operatorname{tr}(h_0 x) = \operatorname{tr}(xh_0) = \operatorname{tr}(h_0^{1/2} xh_0^{1/2}) (M \text{ is identified with its isomorphic image in } N). Note that <math>h_0 \in L^1(M)_+$ (the set of positive self- adjoint operators from $L^1(M)$).

For $1 \le p < \infty$, $L^p(M)$ is a Banach space and its dual space is $L^q(M)$, where 1/p + 1/q = 1. The duality is given by the following bilinear form:

$$(h,g)\mapsto \operatorname{tr}(hg)=\operatorname{tr}(gh)\ ,\ \ h\in L^p(M)\ ,\ \ g\in L^q(M)$$

The (quasi-)norm of $L^{p}(M)$ for $0 is defined by <math>||h||_{p} = \operatorname{tr}(|h|^{p})^{1/p}$, $h \in L^{p}(M)$. The space $L^{p}(M)$ is independent of the choice of a faithful normal state on M up to an isomorphism. Furthermore, if M has a faithful normal semifinite trace τ_{0} , then $L^{p}(M)$ can be identified with the non-commutative $L^{p}(M, \tau_{0})$ -space introduced in [3]. Let $\hat{\omega}_{0} = \tau(h_{0}\cdot)$ stand for the weight dual to ω_{0} (see [2], [4]).

2. Regularity and almost sure convergence.

Definition 2.1 ([5]). Assume that N is a von Neuman algebra, whereas τ is a faithful normal semifinite trace on N. We say that a weight $\varphi = \tau(h \cdot)$ defined on N_+ (the set of positive selfadjoint operators from N) is regular if the operator h^{-1} is locally measurable with respect to N (that is, xh^{-1} is closable for each $x \in N$).

For some $\zeta \in H = L^2(M, \omega_0)$ and an orthogonal projection $p \in M$ we set

$$S_{\zeta,p} = \left\{ (x_k) \subset M : \sum_{k=1}^{\infty} x_k \zeta_0 = \zeta \text{ in } H \right\} ,$$

where $\sum_{k=1}^{\infty} x_k p$ converges in norm in M and

$$||\zeta||_{p} = \inf \left\{ \|\sum_{k=1}^{\infty} x_{k} p\| : (x_{k}) \in S_{\zeta, p} \right\} \text{ (see [1])}.$$

Definition 2.2 ([1]). A sequence (ζ_n) in $H = L^2(M, \omega_0)$ is said to be almost surely (a.s.) convergent to $\zeta \in H$ if, for each $\varepsilon > 0$,

there exists a projection p in M such that $\omega_0(1-p) < \varepsilon$ and $||\zeta_n - \zeta||_p \to 0$ as $n \to \infty$.

Definition 2.3. Let $x_n, x \in M$. A sequence (x_n) tends to x almost uniformly (a.u.) if, for any $\varepsilon > 0$, there is a projection $p \in M$, $\omega_0(1-p) < \varepsilon$, such that $||(x_n - x)p|| \to 0$.

Theorem 2.1. Assume that the dual weight $\hat{\omega}_0 = \tau(h_0 \cdot)$ is regular. Then, for any $h \in L^2(M)$ and a projection $p \in M$, $||h||_p = ||hh_0^{-1/2}p||$, that is $hh_0^{-1/2}p \in M$.

Proof. $h_0^{-1/2}$ is locally measurable with respect to N (see [5]), and

$$\Theta_s(hh_0^{-1/2}) = \Theta_s(h)\Theta_s(h_0^{-1/2}) = e^{-s/2}h\,e^{s/2}h_0^{-1/2} = hh_0^{-1/2}$$

that is, $hh_0^{-1/2}$ is affiliated with M. If $(\sum_{k=1}^n x_k) h_0^{1/2} \to h$ in $L^2(M)$, then $(\sum_{k=1}^n x_k) h_0^{1/2} \to h$ locally in measure in the sense of [6] and $(\sum_{k=1}^n x_k) \to hh_0^{-1/2}$ locally in measure. At the same time, $(\sum_{k=1}^n x_k) p \to x = xp$ in M for some $x \in M$. Hence $(\sum_{k=1}^n x_k) p \to hh_0^{-1/2}p$ locally in measure, which implies $xp = hh_0^{-1/2}p$ and $||h||_p = ||hh_0^{-1/2}p||$. This ends the proof.

Corollary 2.1. Assume that the dual weight $\hat{\omega}_0$ is regular. Then (i) Let $h, h_n \in L^2(M), \varepsilon > 0$. $h_n \to h$ (a.s.) if and only if $h_n h_0^{-1/2} p \to h h_0^{-1/2} p$ in M for a projection $p \in M$ such that $\omega_0(1-p) < \varepsilon$;

(ii)
$$x_n \to x$$
 (a.s.) if and only if $x_n \to x$ (a.u.), $x, x_n \in M$

Proof. (ii) Identifying x_n , x with $x_n h_0^{1/2}$, $x h_0^{1/2} \in L^2(M)$, respectively, we have $||x_n - x||_p = ||(x_n - x)h_0^{1/2}h_0^{-1/2}p|| = ||(x_n - x)p||$.

Remark 2.1. Assume that the dual weight is faithful normal semifinite. Let A be the set of all elements x in M such that the function $s \to \sigma_s^{\omega_0}(x) = h_0^{is} x h_0^{-is}$ is extended to an M - valued entire function. Then A is a σ - weakly dense * - subalgebra of M

and $[ah_0^{1/p}]_p = L^p(M)$, gdzie $[\cdot]_p$ denotes the closure in $L^p(M)$ (see [7]). Suppose that

$$\left(\sum_{k=1}^{n} x_k\right) h_0^{1/2} \to h \in L^2(M) \;, \; (x_k) \subset A \;,$$

and

$$\left(\sum_{k=1}^{n} x_k\right) p \to x = xp \in M \text{ in } M$$

for a projection $p \in M$. Then

$$\left(\sum_{k=1}^{n} x_{k}\right) h_{0}^{1/2} = h_{0}^{1/4} \, \sigma_{i/4}^{\omega_{0}} \left(\sum_{k=1}^{n} x_{k}\right) h_{0}^{1/4} \to h \; .$$

By continuity of the involution in \overline{N}

$$\left(\sum_{k=1}^{n} x_{k}^{*}\right) h_{0}^{1/2} = h_{0}^{1/4} \, \sigma_{i/4}^{\omega_{0}} \left(\sum_{k=1}^{n} x_{k}^{*}\right) h_{0}^{1/4} \to h^{*} \in \overline{N} \; .$$

Because of the continuity of the product in \overline{N} , we have

$$p\left(\sum_{k=1}^{n} x_{k}^{*}\right) h_{0}^{1/2} \to ph^{*} = px^{*}h_{0}^{1/2} = x^{*}h_{0}^{1/2}$$

Thus we have $hp = h_0^{1/2} xp$ and $||xp|| = ||h_0^{-1/2} hp||$ for any sequence (x_k) in A.

In the sequel, we shall interpret $R(M, \sigma^{\omega_0})$ as an implemented continuous crossed product (see [2], Def. 13.2.6). In the case when the algebra M is semifite, while τ_0 is a faithful normal semifinite trace on M, let $\omega_0(x) = \tau_0(a_0 x) = \tau_0(x a_0)$, $x \in M$, for some $a_0 \in L^1(M, \tau_0)$.

Proposition 2.1.

- (i) If the algebra M is semifinite then the dual weight $\hat{\omega}_0$ is regular, if and only if M is finite.
- (ii) If M is an algebra of type III then h_0^{-1} is locally measurable provided that the operator Δ_0^{-1} , where Δ_0^{-1} is the modular operator, is locally measurable with respect to the von Neumann algebra N_1 generated by the operators x, Δ_0^{is} ($x \in M, s \in \mathbb{R}$).

Proof.

(i) In this case, we have $R(M, \sigma^{\omega_0}) \simeq M \otimes L^{\infty}(R)$, $\Theta_s(x \otimes f) \simeq a_0^{is} x a_0^{-is} \otimes l(s)(f)$ where l(s) denotes the translation by s in $L^2(R)$. Finally, $h_0 \simeq a_0 \otimes 1$ where $l(s) = \mathbf{l}^{is}$. Consequently, h_0^{-1} is locally measurable with respect to $R(M, \sigma^{\omega_0})$ if and only if a_0^{-1} is locally measurable with respect to M. Since $1 = \omega_0(1) = \tau_0(a_0)$, M is a finite algebra (see [5]). Conversely, if M is a finite algebra then obviously a_0^{-1} is locally measurable with respect to M (affiliated with M), that is, h_0^{-1} is locally measurable with respect to $R(M, \sigma^{\omega_0})$.

(ii) In this case, $h_0 \simeq \Delta_0 \otimes \mathbf{l}$ and there exists a * - isomorphism from $R(M, \sigma^{\omega_0})$ onto a von Neumann subalgebra of $N_1 \otimes L^{\infty}(R)$.

3. Concluding remarks.

Remark 3.1. It is known that N is a factor of type II_{∞} if and only if M is a factor of type III_1 . Let $h_0 = \int_0^\infty \mu \, de_\mu$ be the spectral decomposition of h_0 . Then $\tau(1 - e_\mu) = 1/\mu\omega_0(1) = 1/\mu$ (see [4]). If $h_0^{-1} = \int_0^\infty \mu \, df_\mu$ then $1 - f_\mu = e_{1/\mu}$. So, $\tau(1 - f_\mu) = \infty$. Consequently, h_0^{-1} is not locally measurable if N is acting on a separable Hilbert space.

Example 3.1. The following example shows that there exist sequences of operators from the algebra M, such that $x_n \to 0$ in H and $||x_n p|| = 1$, n = 1, 2, ..., for some projection $p \in M$.

Assume that M is properly infinite von Neumann algebra, whereas ω_0 a faithful normal state on M. Moreover, let $1 = \bigoplus_{i=1}^{\infty} p_i$, $p_i \sim p_j \sim 1$, $\sum_{i=1}^{\infty} \varepsilon_i^2 = 1$, $\varepsilon_{i+1} < \varepsilon_i$, $\omega_0(p_{i_n})/\varepsilon_n^2 \leq 1/n$, $u_i^* u_i = p_i$,

 $u_i u_i^* = 1$. Put $x_n = 1/\varepsilon_n u_{i_n}$. We have

$$\omega_0(|x_n|^2) = \omega_0(p_{i_n})/\varepsilon_n^2 \le 1/n \to 0$$

, i.e. $x_n \to 0$ in H. Let now $v_n^* v_n = p_{i_1}$, $v_n v_n^* = p_{i_n}$. Put $v = \sum_{n=1}^{\infty} \varepsilon_n v_n$. Then $v^* v = p_{i_1}$, $vv^* = p$ for some projection $p \in M$. For $\xi, \zeta \in H$, $||\xi|| = 1$, $p\xi = \xi$, $\xi = v\zeta$, we have

$$x_j \xi = x_j \sum_{n=1}^{\infty} \varepsilon_n v_n \zeta = 1/\varepsilon_j u_{ij} \sum_{n=1}^{\infty} \varepsilon_n v_n \zeta = u_{ij} v_j \zeta$$

Hence

$$||x_j\xi|| = ||u_{i_j}v_j\zeta|| = ||v_j\zeta|| = ||\zeta|| = 1 ,$$

that is, $||x_j p|| = 1$, j = 1, 2, ...

REFERENCES

- Hensz, E. and R. Jajte, Pointwise convergence theorems in L₂ over a von Neumann algebra, Math. Z. 193 (1986), 413-429.
- [2] Kadison, R. V. and J. R. Ringrose, Fundamentals of the theory of operator algebras, Academic Press Inc., New York, 1986.
- [3] Segal, I., A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457.
- [4] Terp, M., L^p spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.
- [5] Trunov, N. W., On normal weights on von Neumann algebras (in Russian), Izv. Vysh. Uchebn. Zaved. 8 (1982), 61-70.
- Yeadon, F. J., Convergence of measurable operators, Math. Proc. Cambridge Philos. Soc. 74 (1973), 257-268.
- [7] Watanabe, K., Dual of non-commutative L^p -spaces with 0 , Math.Proc. Cambridge Philos. Soc. 103 (1988), 503-509.

Institute of Mathematicsreceived March 7, 1994University of Łódźrevised version90–238 Łódź, Polandreceived March 15, 1995