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On Some Class of Functions Generated 
by Complex Functions of Bounded Variation

Abstract. Let Ta denote the family of functions p given by the 
integral

p(z) = [ ! + <**«(*)> z € /< = {«: H < 1}
Jo 1 - e "z

where p is a complex function of bounded variation satisfying the 
condition | dp(t) — l| + J1 2* |cf^x(t)| < a for a > 1.

In this paper we examine the properties of the class Ta and give 
estimates of coefficients and of the real part in the class Ta.

1. Introduction. Let denote the well-known family of all func­
tions of the form

(1.1) p(z) = 1 + axz + a2z2 + ... ,

holomorphic in the disc K = {z : |.g| < 1} and satisfying the condition 
Rep(z) > 0 for z £ K. Let Sc be the class of functions f holomorphic 
and univalent in the disc A”, with the normalization /(0) = /'(O) —1 = 
0 and such that the image of the disc K is a convex domain. As well 
known (e.g.[6; p. 4]), a function p belongs to T if and only if

(1-2) P(e u,z)d/z(i), z e K,
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where

(1.3) P^=T^

Let /z G M, where M denotes the set of all real functions /lz non de­
creasing on the interval [0, 2%] with = 1. A function f G Sc
if and only if /(0) = 0 and

(1-4) /'(*) = exp log(l — e lZz)cfyz(i)

where /z G M and z G K ([6; p. 8]).
Paatero [3] extended the class Sc to the classes 14 of functions f

for which f can be expressed in the form (1.4) with /z G A4, k > 2, 
where Mk consists of all real functions p, of bounded variation on 
[0, 27t] such that dpJjJ) = 1 and |efyz(t)| — f • Also, the classes 
Pk of functions (1.2) with fj. G Mk, k >2, are well-known, see [4].

V. Starkov [8] introduced the classes U'a, of holomorphic functions 
f for which /(0) = 0 and f has the form (1.4), where ;z G IQ, 
a > 1, and Ia denotes the family of complex functions /z of bounded 
variation on [0,2%] satisfying the condition

(1.5) I [ d/z(t)-l|+ i \dn(t)\<a.
'Jo 'Jo

It is evident that the class Ia reduces itself to the empty set for 
a < 1. Moreover, Ji is the family of nondecreasing real functions 
such that d/j,(t) < 1.

In order to explain the geometrical sense of inequality (1.5), let us 
recall the definition of the universal linearly invariant family (Pom- 
merenke [5]).

Let OT be some class of functions of the form /(z) = z + ..., 
holomorphic and locally univalent in K. We call 971 a linearly invari­
ant family if, for any Moebius self-mapping of the disc K and any 
f G 9J1 also ?!</>[/(•)] G 9JI, where

A*[/(z)]
,/W)) - /(<g(0))

/'(<?(0))<5'(0)
G K.
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The number
If

ord 931 = sup —
/ean 2

is called the order of the linearly invariant family 931. In [5] it was 
proved that

ord 931 = sup sup 
fern zeK

We denote by Ua, 1 < a < oo, the union of all linearly invariant 
families 931 whose order is not greater than a. It is known [5] that the 
universal linearly invariant family Ua is composed of all holomorphic 
and locally univalent functions /(z) = z + ... for which

sup
zeK

n*)
/'(*)

< Q.

It turns out [8] that the above-mentioned class U'a is a linearly 
invariant family of order a, and also U'a C Ua.

2. Definition and basic properties of the class <P'a.

Definition 2.1. Let a > 1, denote the class of functions given 
by formula (1.2), where p are elements of the class IQ defined earlier.

By definition, the following properties hold.

Property 2.1. The inclusion ^3 C takes place.

Property 2.2. If 1 < ai < a2, then gl'Qi C <P'Q2.

We have also

Theorem 2.1. The set of functions of the form (1.2), generated by 
piecewise constant functions p £ Ia, is dense in ^3'o.

Proof. Let Q denote the set of functions described in the above the­
orem, i.e. the set of functions p of the form p = ^k=i ■P(e_,<*, z)ak, 
tk £ [0,2tt], ak e C,

n n
52a* ~ T| + 52 -a’
*=1 fc=l

(2.1) n = 1,2,... .
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Of course, Q C ^3'a.
Take an arbitrary fixed function p € ^3«- Then

p(z) = f P(e lt,z)dp(t), zeK,
Jo

where p € /«. Let /¿(i) = pi(t) + for t € [0, 2tt]. The functions 
as well as P2(,t) can be approximated by step functions on 

the interval [0,2%] ([7; p. 282]). So, there exists a sequence (pn) of 
complex piecewise constant functions, uniformly convergent to the 
function p. Hence, for any e > 0, there exists an N such that, for
each n > N and each t € [0,2%], we have 

- p(t)\ < e.

Let r = {z : z — pit), t G [0,2%]}. For any n, define a piecewise 
constant function vn which has the same points of discontinuity as 
pn and takes the values zi = ... ,zmn = p(^tmn), 0 < ¿i <
¿2 < < tmn < 2%, where ti, i = 1,... ,mn, are points from
different constancy intervals of p. Put, moreover, p„(0) = /z(0) and 
i/n(2%) = /z(2%), which causes no loss of generality. Of course, for 
n > N and t G [0,2%], we have

|Mn(i) ~ ^n(i)l < £- 

Thus, for n > N and t G [0,2%],

|/z(i) - < 2e.

This means that the sequence (i/n) is uniformly convergent to the 
function p on the interval [0,2%]. Besides, the construction of the 
sequence (vn) implies that

and

a2tt /-27T
/ = / dp(t)

Jo Jo

y27r />2jr
/ |<M*)I < /

Jo Jo
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Thus vn G Ia because

/•27T /‘¿IT yZ7r

/ di/n(t) - 1 + / |dz/„(f)| < / dp(f) - 1
Jo 1 Jo Jo

r2n
+ / |c?/x(t)| < a for n = l,2,.

Jo

Put Pn(z') = P(e-,t, z)di/n(<), z G A", n = 1,2,.... The uni­
form convergence of the sequence (p„) to the function p implies the 
almost uniform convergence of the sequence (pn) to the function p in 
the disc K.

Let us observe note that the functions pn constructed above are 
elements of the set Q. Indeed, if we denote by cq,... ,am the jumps 
of i/n at the points of discontinuity Tj,... ,r„,, then we obtain

m
Pn(z) =

fc=l

with ak satisfying (2.1). This ends the proof. □

Corollary 2.1. If p(z) c <#'a, then p(eiez) G Wa for 3 € R.

Corollary 2.2. If p(z) G ^3'a, then p(rz) G ty'a for r G [—1,1].

Corollary 2.3. If p G ^3^, then p o G ^3'a, where w is a Schwarz 
function (i.e. oj is holomorphic in K, to(0) = 0 and |tu(^)| < 1 for 
zZK).

Simple examples of functions of the class are:

1) Pi(z) = — y)’ , z G K, a > 1, maps conformally the disc
K onto {w : Imw > 0};

2) Pz^z) — 1=2 lii, z G AT, a > 1, maps conformally the disc K 
onto {w : Re w < 0};

3) P3(z) = 1^7 + -1 T'* lTI> z eK,a>l, maps
the disc K onto C\{(-oo,-|(a - 1)] U [|(a - 1), +oo)}.
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Theorem 2.2. The class is compact in the topology of almost 
uniform convergence in K.

Proof. Let pn(z) = fo* 'Z)dpn(t), z G A”, pn € IQ for n =
1,2,..., whereas P is defined by formula (1.3). Using the method 
applied in [8], we shall prove that from the sequence (pn) one can 
choose a subsequence almost uniformly convergent in A' to a function 
of the class

Take into consideration the sequence(p„) and denote |pn(t)| = 
on(<), arg pn(t) = <pn(t), * € [0, 2%]. Without loss of generality let 
us assume p„(0) = 2a. Hence by (1.5) it follows that a„(f) and 
<pn(t) are functions of bounded variation on the interval [0, 27t]. By 
of Helly’s selection principle ([1; p. 196]), from the sequences (a;n) 
and (<pn) one can choose subsequences (ank) and (<pnfc) such that 
a„fc(t) —* <*o(f) and <p„fc(f) —> <po(O for t € [0,2%], where do and <po 
are functions of bounded variation. Therefore the sequence (p„fc) is 
convergent to the function po(C = oo(i)e’¥’°^0 for t € [0,2%].

We show that po G. Ia- Since pnk are functions of the class Ia,

By the above (compare the proof of Helly’s theorem in [1])

|dp0(i)| < Hm inf / |dp„t(i)| < lim Lnk,
k—>oo In k—>oo

< lim Lnk,

and, consequently,

|dpo(<)| <a- / dpo(ż) - 11

Let us consider a subsequence (p„fc) of the sequence (p„) such that

Ewidently p0 € By Helly’s theorem,

lim p„*(*) = Po(z>), z € K.
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Since the subsequence (pn)t) is sequence of locally bounded functions 
in /<, we obtain by Vitali’s theorem that the sequence (pnic) is almost 
uniformly convergent to the function po in the disc K. This ends the 
proof. □

Theorem 2.3. The class is convex.

Proof. Take arbitrary fixed functions of the class <P'a.

Pj(z)= P(e~lt,z)dpj(t), PjZlc, zeK, ¿ = 1,2, 
Jo

with P being defined by formula (1.3). Let

P&(z) = 0pi(z) + (1 - 0)p2(z), 0 < 0 < 1, z e K.

Obviously

P©(^) = [ P(e_,<,z)d(0pi(f) + (1 - 0)/z2(f)), z e K,
Jo

and

/ r2lr/ d(0Mi(i) + (1 - 0)M2(<)) - 1 + / \d(0pi(t) + (1 - 0)/z2(i))l
Jo I Jo

-3 * * &\Jo dm(t) - 1 + (1 - 0)|y dp2(f)-l

+ 0 [ |dpi(<)| + (1 - 0) i |d/.i2(t)| < 0a + (1 - 0)a = a. 
Jo Jo

Thus pq E for 0 < 0 < 1 and this ends the proof. □

Corollary 2.4. The class is arcwise connected and, in conse­
quence, connected.

3. Estimates of certain functionals in the class y$'a. Using
elementary methods, we can obtain estimates of some functionals in
the class <P'a.

Let p E <P'a, a > 1, and let {p}t, k = 0,1,..., denote the fc-th 
Taylor coefficient of p at zero.
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Theorem 3.1. If p G a > 1, then

(3.1) |{p}fc| < 2« for A: = 1,2,....

Equality takes place for the function (1.2) generated by

1 + a 1 — a
¿o +p = 'ir/ki

where

(3.2)
for 0 < t < 5,
for s <t < 2ir, 0 < s < 27T.

Proof. Let p(z) = P(e a,z)dp(t), z € K, p € fa, whereas P is 
defined by formula (1.3). It is evident that

y2jr
{p}k=2 e-'ktdp(P), A: = 1,2,.... 

Jo
We have

|{p}fc| = |2jf e~iktdp(t)\<2^ \dp(t)\<2a, A: = 1,2,...,

and thus, the estimates (3.1). □
From Theorem 3.1 and Corollaries 2.1 and 2.2 we get

Corollary 3.1. For a > 1 and k = 1,2,..., the set Vk of values of 
the functional p —> {p}fc on the class <P'a is the disc of radius 2a and 
centre 0.

Theorem 3.2. For a > 1, the set Vo of all coefficient {p}o, P G 
is the ellipse

(3-3)
(ReA-|)2 , 

4 4

In the case a = 1, the set Vo reduces to the interval [0,1].

Proof. It follows from (1.2) that for each function p € ^J'Q, a > 1, 
there is a p 6 Ia such that

d/z(t).
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For a > 1 we have

i{p}o - n+i{p}Oi=| y ^(t)-i|+iy*

7r
d/z(f) — 1 A / |cfyz(f)| < a.

' Jo

Thus {p}0 lies inside or on the boundary of the ellipse with foci at 
the points 0 and 1 and major axis of length a. This means that {p}o 
belongs to the set described by inequality (3.3).

Let Aq be an arbitrary fixed complex number satisfying (3.3). Note 
that

/•27T
Ao — I d(Aof>s')(t>)

Jo
where 6S is given by formula (3.2). Moreover, Ao<Ss € Ia for each 
•s € [0, 2-7t]. So, Ao is the constant term of the Taylor expansion of a 
function from the class generated by p = Aq8s. Thus Ao € Vo-

Let a = 1. The second part of Theorem 3.2 results directly from 
the properties of the class Ii. □

Theorem 3.3. If p e <#'a, a > 1, then

(3-4) < Re[p(z)] < “Y"’ 1*1 = r’ 2 e K-

Equality in (3.4) occurs for the functions (1.2) generated by

1 ± a f 
~ 9 ^arg z i

where 0 < argz < 2tt, is defined by (3.2) and A (resp. —) is taken 
for the upper (resp. lower) bound.

Proof. With respect to Theorem 2.1, we can confine our consider­
ations to the dense subclass Q, i.e. to the class of functions of the 
form (1.2) generated by piecewise constant functions from the set Ia.

Let p e Q. Then p(z) = ZLi n = 1,2,.... Of
course,

n n

| at -1|+5? i°*i ~a-
k=l k=l
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Let us observe that P(e-,tfc,z) = l2l — ri |*?l| — 1 for
k = 1,... , n.

Hence we get

n
Re[p(z)] = Re [ P(e_,i*, z)afc

i=i
= ^^[£at]+T^Re[E

i=i 1=1
2r

l=i 
2 n

1=1

1=1 1=1

Denote

(3-5) ^=|Ea‘_1 + |E
l=i i=i

Then 1 < /? < a, 2| at| — 1 < /? and

Re[p(z)] < y^|iS*| + TE^(a_^ + li2a*l) 

fc=l k=l
n 2r

= -f)1 — r I z—' I 1 — rz 1=1
1 + r 1 + /? 2r QX

1 — r /3 — a 1 + r 1 + a 1 + r 1 + a 
1+r 2 + 1 - r 2 “ 1 - r 2

Analogously, we can obtain an estimate ‘from below’

ReW2)] = 7T7?Re [ Ż °*] + Re [ Ż a^k

l=i 1=1

ajfcf?fc

ai .
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> 1 + r2 
— 1 — r2

> 1 + r2 
1 — r2

- 1 + r2 
1 — r2

Re

Re

Re

[¿°‘]

k=l

[£“]

k=l

[¿“‘]

2r
1 — r2

2r
1 — r2

2r
1 — r2

52 M
fc=i

*:=i

(<*-£+1 ¿a*l)-
k=i

From (3.5) we conclude that ajt is a point of the ellipse with
foci at 0 and 1 and with major axis of length fl.

Then

1 + /3 cos / . \//?2 — 1 sin t
+i- 0 < t < 2tt,

fc=i

and hence

Re

and

1 + f3 cos t

k=l
52°*| =
fc=l

¡3 + cos t

Re[p(z)] > 1 + r2 1 + (3 cos t 
1 - r2 F”

1

2r ( o , /3 + cost\ - —2—1

2(1 -r2) {1 + r2 — 4ar + 2f3r + [/?(1 + r2) — 2r] cost}

> 1 — r a — 1 + r 1 - a > 1 + r 1 — a
1-r 2 _1-r 2

52a* =

[E“‘] =

1 + r 2

4. Concluding remarks. It follows from the considerations car­
ried out that there are substantial differences between the well-known 
family Sp of Caratheodory functions with positive real part and the 
classes *P'Q. Of course, from Property 2.1, Theorem 3.1 and Theo­
rem 3.3 we get classical estimates: |{p}fc| < 2, Rep(z) < 1 + ¡^.
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However, on account of substantial differences between the sets M 
and Ia, the families and y$'a are essentially distinct.

This also implies suitable conclusions concerning applications of 
the classes *P and ^3'a. It is known, for instance, that if the function 
/(z) = z + a2Z2 + • ■ ■ holomorphic in K satisfies the condition f € 
Sp, then f is univalent in K. So, there arises a natural problem of 
investigating the properties of such functions.

This problem, in our case, can be formulated as follows: examine 
the class of functions /(z) = a\Z + a,2Z2 +... holomorphic in K and 
such that f € y$'a, a > 1. Note that the functions fk satisfying the 
conditions (see examples 1-3 from Section 2 of the paper)

/{(*)
(a — l)ż 1 + z 

2 1 - z’
(a — l)zz 
1-z2 ’

1 — a 1 + z 
2 1-z’

z e /<,

are univalent in K in the case k = 1,2, whereas fo is not univalent 
since, /3(G) = 0. Hence, among other things, the further investi­
gations concerning the properties of the class considered in the 
paper and its applications seem interesting. This, however, was not 
the aim of the present studies.

The author wishes to thank the Referee for the remarks that were 
utilized in the revised version of this paper, and, in particular, for 
the suggestions concerning Section 3.
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