ANNALES

UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA

KARL J. WIRTHS (Braunschweig) and JIE XIAO* (Beijing)

Image Areas of Functions in the Dirichlet Type Spaces and their Möbius Invariant Subspaces

Abstract. For $p \in(0,+\infty)$ let D_{p} be the Dirichlet type space of func-

 tions f analytic in the unit disk $U=\{z:|z|<1\}$ for which$$
\|f\|_{D_{p}}^{2}:=\iint_{U}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d x d y<\infty
$$

Furthermore let Q_{p} be the Möbius invariant subspace of D_{p} consisting of those $f \in D_{p}$ with $\sup _{w \in U}\left\|f \circ \varphi_{w}\right\|_{D_{p}}<\infty$, where $\varphi_{w}(z)=(w-z) /(1-\bar{w} z)$. In particular, let $Q_{p, 0}=\left\{f \in Q_{p}: \lim _{|w| \rightarrow 1}\left\|f \circ \varphi_{w}\right\|_{D_{p}}=0\right\}$. In this paper we investigate the image areas of functions in D_{p}, Q_{p} and $Q_{p, 0}$.

1. Introduction. Let $U=\{z:|z|<1\}$ and $\partial U=\{z:|z|=1\}$ denote the unit disk and the unit circle, respectively, and $d m(z)$ the Lebesgue measure on U. For $z, w \in U$, let

$$
g(z, w)=\log \left|\frac{1-\bar{w} z}{w-z}\right|
$$

[^0]be the Green function of U with pole at w. Throughout this paper we shall use A as a symbol for the class of functions analytic on U. We are interested in the Dirichlet-type spaces $D_{p}, p \in(0, \infty)$ and their subspaces Q_{p} invariant under analytic automorphisms of U.

Definition. Let $p \in[0, \infty)$ and $\varphi_{w}(z)=(w-z) /(1-\bar{w} z)$.
a) For $f \in A$ we say that $f \in D_{p}$ if

$$
\|f\|_{D_{p}}^{2}:=\iint_{U}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d m(z)<\infty
$$

b) For $f \in A$ we say that $f \in Q_{p}$ if

$$
\|f\|_{Q_{p}}^{2}=\sup _{w \in U}\left\|f \circ \varphi_{w}\right\|_{D_{p}}^{2}<\infty
$$

c) We say that $f \in Q_{p, 0}$ if $\lim _{|w| \rightarrow 1}\left\|f \circ \varphi_{w}\right\|_{D_{p}}=0$.

Obviously, the spaces D_{p}, Q_{p} and $Q_{p, 0}$ increase with increasing p.
For special values of p these spaces may be identified as follows: D_{0} is the Dirichlet space D, D_{1} is the Hardy space H^{2}, D_{2} is the Bergman space B^{2}, Q_{0} is $D, Q_{0,0}$ is the set of constant functions, Q_{1} is the space of analytic functions with bounded mean oscillation on ∂U, i. e. BMOA, $Q_{1,0}$ is the space of analytic functions of vanishing mean oscillation on ∂U, i. e. VMOA, Q_{2} is the Bloch space B and $Q_{2,0}$ is the little Bloch space B_{0}.

Furthermore

$$
Q_{p}=\left\{f: f \in A \text { and } \sup _{w \in U} \iint_{U}\left|f^{\prime}(z)\right|^{2} g^{p}(z, w) d m(z)<\infty\right\} ;
$$

and

$$
Q_{p, 0}=\left\{f: f \in A \text { and } \lim _{|w| \rightarrow 1} \iint_{V^{\prime}}\left|f^{\prime}(z)\right|^{2} g^{p}(z, w) d m(z)=0\right\} .
$$

As references concerning these identifications, cf. [1], [2], [3], [4], [13], [14] and [15].

In this paper, we mainly study the characterization of functions f belonging to D_{p}, Q_{p} and $Q_{p, 0}$ resp. by the area of the image domains $f(U)$.

Here, we would like to thank Prof. Ch. Pommerenke for his helpful suggestions.
2. Results. For $f \in A, w \in U$ and $r \in(0,1]$ let $U_{r}(w)=\{z \in U$: $\left.\left|\varphi_{w}(z)\right|<r\right\}$, in particular $U_{r}=U_{r}(0)$. If we denote by

$$
A\left(f\left(U_{r}(w)\right)\right)=\iint_{J_{U_{r}(w)}}\left|f^{\prime}(z)\right|^{2} d m(z)
$$

the area of $f\left(U_{r}(w)\right)$ on the Riemann surface $f(U)$, we get immediately that $f \in D=D_{0}$ if and only if $\sup _{0<r \leq 1} A\left(f\left(U_{r}\right)\right)<\infty$. A similar characterization of the functions in D_{p} is delivered by

Theorem 1. Let $p \in(0, \infty)$ and $f \in A$. Then $f \in D_{p}$ if and only if

$$
\begin{equation*}
\int_{0}^{1} A\left(f\left(U_{r}\right)\right)(1-r)^{p-1} d r<\infty \tag{1}
\end{equation*}
$$

Proof. Using the representation $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ we get

$$
\int_{0}^{1} A\left(f\left(U_{r}\right)\right)(1-r)^{p-1} d r=2 \pi \sum_{n=1}^{\infty} \frac{n^{2}}{2 n}\left|a_{n}\right|^{2} \int_{0}^{1} r^{2 n}(1-r)^{p-1} d r
$$

and

$$
\begin{aligned}
& \iint_{U}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{p} d m(z)=2 \pi \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{p} d r \\
& \int_{0}^{1} \frac{r^{2 n}}{2 n}(1-r)^{p-1} d r=\frac{1}{p} \int_{0}^{1} r^{2 n-1}(1-r)^{p} d r
\end{aligned}
$$

The inequalities

$$
\int_{0}^{1} r^{2 n-1}(1-r)^{p} d r \leq \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{p} d r \leq 2^{p} \int_{0}^{1} r^{2 n-1}(1-r)^{p} d r
$$

immediately show that the desired equivalence is valid.

Remarks.

1) The case $p=1$ of Theorem 1 is the case $\lambda=2$ of Theorem 1 in [10].
2) Furthermore, applying Corollary 1 in [11], which says that for

$$
g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}, b_{n} \geq 0, x \in(0,1)
$$

the inequalities

$$
\int_{0}^{1}(1-x)^{p-1} g(x) d x<\infty \text { and } \sum_{n=1}^{\infty} n^{-(p+1)}\left(\sum_{k=1}^{n} b_{k}\right)<\infty
$$

are equivalent, we just find that $f \in D_{p}$ with $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ if and only if

$$
\sum_{n=1}^{\infty} n^{-(p+1)}\left(\sum_{k=1}^{n} k\left|a_{k}\right|^{2}\right)<\infty
$$

Note that the special cases $p=1$ and $p>1$ were given in [10, Corollary 2] and [6 , Proposition 2.21], respectively.

Next, we denote by $a\left(f\left(U_{r}(w)\right)\right)$ the area of the projection of $f\left(U_{r}(w)\right)$ from the Riemann surface into the complex plane, i.e.

$$
a\left(f\left(U_{r}(w)\right)\right)=\iint_{f\left(U_{r}(w)\right)} d m(z)
$$

It is trivial that $a\left(f\left(U_{r}(w)\right)\right) \leq A\left(f\left(U_{r}(w)\right)\right)$ and hence $f \in D_{p}$ implies

$$
\begin{equation*}
\int_{j_{0}}^{1} a\left(f\left(U_{r}\right)\right)(1-r)^{p-1} d r<\infty \tag{2}
\end{equation*}
$$

We will see below that the converse is not valid for any $p \in(0, \infty)$.
Example 2. For $p \in(0,1)$ this is a consequence of the fact that there exist functions $f \in A$, continuous on the closure of U such that

$$
\begin{equation*}
\iint_{U}\left|f^{\prime}(z)\right| d m(z)=\infty \tag{3}
\end{equation*}
$$

as proved by Rudin in [12]. The Schwarz inequality and (3) imply

$$
\begin{aligned}
\infty & =\iint_{U}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{p / 2}\left(1-|z|^{2}\right)^{-p / 2} d m(z) \\
& \leq \iint_{U}\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right)^{p} d m(z) \cdot \iint_{U}\left(1-|z|^{2}\right)^{-p} d m(z)
\end{aligned}
$$

which proves that $f \notin D_{p}$. On the other hand, the continuity of f on the closure of U implies the boundedness of $a(f(U))$ and thus (2).

Example 3. Let $Z=\left\{m+i n:(m, n) \in \mathbb{Z}^{2}\right\}$ and $f \in A$ be such that $f(U)=\mathbb{C} \backslash Z$. Since $f(U)$ is a Bloch domain i. e. $\mathbb{C} \backslash Z$ does not contain arbitrarily large euclidean disks, f is a Bloch function, that is (c. f. [8])

$$
\sup _{z \in U}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

This implies that there exists a constant C such that

$$
|f(z)| \leq C \log \frac{2}{1-|z|}, \quad z \in U .
$$

From this we deduce

$$
\int_{0}^{1} a\left(f\left(U_{r}\right)\right) d r \leq C^{2} \pi \int_{0}^{1}\left(\log \frac{2}{1-r}\right)^{2} d r<\infty .
$$

On the other hand, we see that Z has zero capacity, so $f \notin H^{2}=D_{1}$. So (2) in the case $p=1$ is valid for this function f not in D_{1}.

Example 4. By modifying a bit the proof of Lemma 2 in [11] one may show that for any $\gamma \in(0, \infty)$ there exists a constant K_{1} such that

$$
\sum_{n=0}^{\infty} 2^{n \gamma} r^{2^{n}} \leq K_{1}|\log r|^{-\gamma}, \quad r \in(0,1)
$$

Hence for the functions $f(z)=\sum_{n=0}^{\infty} 2^{n \gamma} z^{2^{n}}$ we get

$$
\sup _{|z| \leq r}|f(z)| \leq \sum_{n=0}^{\infty} 2^{n \gamma} r^{2^{n}} \leq K_{1}|\log r|^{-\gamma} .
$$

If we choose $\gamma<p / 2$ we derive

$$
\int_{0}^{1}(1-r)^{p-1} a\left(f\left(U_{r}\right)\right) d r \leq K_{1}^{2} \pi \int_{0}^{1}(1-r)^{p-1}|\log r|^{-2 \gamma} d r<\infty .
$$

Considering the criterion for f to be a member of D_{p} given in Remark 2 above, we see that there is a constant K_{2} such that in our case

$$
\sum_{n=1}^{\infty} n^{-(p+1)}\left(\sum_{k=1}^{n} k\left|a_{k}\right|^{2}\right) \geq K_{2} \sum_{n=0}^{\infty} 2^{n(2 \gamma+1-p)}
$$

This sum is divergent for $\gamma>(p-1) / 2$. So choosing $\gamma \in((p-1) / 2, p / 2)$, $f \notin D_{p}$, but (2) is valid.

Since we have seen in the proof of Theorem 1 that

$$
p 2^{p} \int_{0}^{1} A\left(f\left(U_{r}\right)\right)(1-r)^{p-1} d r \geq\|f\|_{D_{p}}^{2} \geq p \int_{0}^{1} A\left(f\left(U_{r}\right)\right)(1-r)^{p-1} d r,
$$

using the identities $U_{r}(w)=\varphi_{w}^{-1}\left(U_{R}\right)=\varphi_{w}\left(U_{r}\right)$, we may formulate the following corollary to Theorem 1.

Corollary 5. Let $p \in(0, \infty)$ and $f \in A$.
a) $f \in Q_{p}$ if and only if

$$
\sup _{w \in U} \int_{0}^{1} A\left(f\left(U_{r}(w)\right)\right)(1-r)^{p-1} d r<\infty,
$$

b) $f \in Q_{p, 0}$ if and only if

$$
\lim _{|w| \rightarrow 1} \int_{0}^{1} A\left(f\left(U_{r}(w)\right)\right)(1-r)^{p-1} d r=0
$$

As in the discussion after Theorem 1 we see that for $f \in Q_{p}$

$$
\begin{equation*}
\sup _{w \in U} \int_{0}^{1} a\left(f\left(U_{r}(w)\right)\right)(1-r)^{p-1} d r<\infty \tag{4}
\end{equation*}
$$

and for $f \in Q_{p, 0}$

$$
\begin{equation*}
\lim _{|w| \rightarrow 1} \int_{0}^{1} a\left(f\left(U_{r}(w)\right)\right)(1-r)^{p-1} d r=0 \tag{5}
\end{equation*}
$$

So far as the converse in the case $p \in(0,1)$ is concerned, the function $f(z)=\exp \left(\frac{z+1}{z-1}\right) \in H^{\infty} \backslash Q_{p}$ cf. [7, Corollary 4.2] delivers a counterexample.

For the case $p=1$ the universal covering map (see [9]) f from U onto the universal covering surface of $\mathbb{C} \backslash Z$ (see Example 2) belongs to $B \backslash B M O A=B \backslash Q_{1}$, and as in Example 2 we see that (4) holds.

For $p \in(0,1]$ we don't know whether (5) implies $f \in Q_{p, 0}$.
For $p \in(1, \infty)$ (4) implies $f \in Q_{p}=B$ and (5) implies $f \in Q_{p, 0}=B_{0}$. This is easily seen remarking that for fixed $r \in(0,1)$ (4) implies

$$
\sup _{u \in U} a\left(f\left(U_{r}(w)\right)\right)<\infty
$$

and (5) implies

$$
\lim _{|w| \rightarrow 1} a\left(f\left(U_{r}(w)\right)\right)=0
$$

This according to Theorem 1 and Theorem 2 in [5] implies $f \in Q_{p}$ resp. $f \in Q_{p, 0}$ (compare [16], too).

References

[1] Aulaskari, R. and P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications, Pitman Research Notes in Math. 305, Longman Scientific and Technical, Harlow, 1994.
[2] Aulaskari, P., P. Lappan, J. Xiao and R. Zhao, On α-Bloch spaces and multipliers on Dirichlet spaces, J. Math.Anal. Appl. (to appear).
[3] Aulaskari, R., D. Stegenga and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. (to appear).
[4] Aulaskari, J. Xiao and R. Zhao, On subspaces and subsets of $B M O A$ and $U B C$, Analysis 15 (1995), 101-121.
[5] Axler, S., The Bergman space, the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
[6] Buckley, J. S., P. Kostala and D. Vukotic, Fractional integration, differentation and weighted Bergman spaces, Preprint.
[7] Essén, M. and J. Xiao, Some results on Q_{p} spaces, Submitted to J. Reine Angew. Math.
[8] Hayman, W., S. Patterson and Ch. Pommerenke, On the coefficients of certain automorphic functions, Math. Proc. Cambr. Phil. Soc. 82 (1977), 357-367.
[9] Hejhal, D., Universal covering maps for variable regions, Math. Z. 137 (1974), 7-20.
[10] Holland, F. and J. B. Twomey, On Hardy classes and the area function, J. London Math. Soc. 17(2) (1978), 275-283.
[11] Mateljevic, M. and M. Pavlovic, L^{p}-behavior of power series with positive coefficients and Hardy spaces, Proc. Amer. Math. Soc. 87 (1983), 309-316.
[12] Rudin, W., The radial variation of analytic functions, Duke Math. J. 22 (1955), 235-242.
[13] Stegenga, D., Multipliers of the Dirichlet space,, Ill. J. Math. 24 (1980), 113-139.
[14] Xiao, J., Carleson measure, atomic decomposition and free interpolation from Bloch space, Ann. Acad. Sci. Fenn. Ser. A I. Math. 19 (1994), 35-46.
[15] Xiao, J. and L. Zhong, On little Bloch space, its Carleson measure, atomic decomposition and free interpolation, Complex Variables: Theory Appl. 27 (1995), 175-184.
[16] Yamashita, S., Criteria for functions to be Bloch, Bull. Austral. Math. Soc. 21 (1980), 223-229.

Institut für Analysis
Technische Universität
D-38106 Braunschweig, Germany
Department of Mathematics
Peking University
Beijing 100871, Beijing, China
ANNALES
UNIVERSITATIS MARIAE CURIE-SKlODOWSKA
LUBLIN - POLONIA
VOL. XLIX SECTIO A 1995

1. D. Bartnik: On Some Class of Functions Generated by Complex Functions of Bounded Variation
2. A. Bobrowski: Examples of a Pointwise Convergence of Semigroups
3. L. J. Ciach: Regularity and Almost Sure Convergence
4. J. Godula and V. Starkov: Applications of the Idea of Möbius Invariance to Obtain Equivalent Definitions of Bloch Function
5. A. Grigorian and W. Szapiel: Two - Slit Harmonic Mappings
6. Z. Grodzki and J. Mycka: The Equivalence of Some Classes of Algorithms
7. H. Hebda - Grabowska: On the Rate of Convergence for Distributions of Linear Type Functionals for Sums of Infima of Independent Random Variables
8. V. K. Jain: On Cauchy's Type Bounds for Zeros of a Polynomial
9. J. Klaška: Partitions, Compositions and Divisibility
10. R. A. Kortram: Support Points of K
11. M. Królikowska: Nonlinear Mappings with an Almost Sparse Jacobian Matrix
12. D. Partyka and K. Sakan: Harmonic and Quasiconformal Mappings which Agree on the Boundary
13. H. Renelt: Generalized Powers and Extensions of Analytic Functions
14. V. Starkov: Harmonic Locally Quasiconformal Mappings
15. D. Szynal and J. Teugels: On Moments of a Class of Counting Distributions
16. J. Godula and V. Starkov: Erratum to the paper "Estimates of Constants Connected with Linearly Invariant Families of Functions"

UMCS

WYDAWNICTWO

UNIWERSYTETU MARII CURIE-SKŁODOWSKIEJ
P1. Marii Curie-Skłodowskiej 5, 20-031 Lublin
POLSKA

[^0]: * This work was done during this author's visit at the Technical University Braunschweig Germany. It was supported partially by a grant from the National Science Foundation of China.

 1991 Mathematics Subject Classification. Primary 30D50, secondary 30D45.

