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Holomorphic Non-Equivalence of Balls 
in Banach Spaces lp and I2 

from the Geometrical Point of View

Abstract. Let Bp (p > 1) denotes the open unit ball in Banach space of 
all sequences of complex numbers with the usual Zp-norm. We prove that 
Bi and Bp (p 2) are not holomorphically equivalent, and the same for B2 
and Bi x Bi.

1. Introduction. The Riemann Mapping Theorem states that two open, 
simply connected and bounded subsets of the complex plane C are holomor­
phically equivalent. In other complex Banach spaces the situation is more 
complicated. Methods applied in the study of holomorphic equivalence, or 
non-equivalence of domains usually depend on rather sophisticated tools 
(seee.g. [6]).

K. Goebel and S. Reich proved in [2] that the unit ball in complex Hilbert 
space can be seen as a ’’nice” metric space (so called p-uniformly convex 
space) and holomorphic feature and metric properties are strictly connected.

Using the idea of Goebel and Reich together with the classical theory 
of Schwarz-Pick systems of pseudometrics ([1], [5]) one can present an ele­
mentary proof of holomorphic non-equivalence of unit balls in even spaces. 
’’Elementary” means here: based on concept of isometry between two metric 
spaces.

Key words and phrases. Holomorphic mapping, hyperbolic metric, biholomorphic 
equivalence .
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Let D C X , E Q Y be nonempty, open and bounded subsets of complex 
normed Unear spaces X ,Y and let cE,cE be Caratheodory metrics in 
D and E, respectively, cf. [1], [5]. It is known that every holomorphic 
mapping f : D —* E is nonexpansive in the sense that

(1) ce(/(«),/(!/))< cd(«,!/)
for any x € D, y € E. This implies
(2) cE(f(x),f(y)) = cD(x,y)
for every biholomorphic mapping f : D —> E and any points x 6 D , 
y G E. Consequently, if D and E are holomorphically equivalent then the 
corresponding metric spaces (D,cd) and (E,ce) are isometric.

Now let lp (1 < p < oo) be the space of all sequences x = (xn) of 
complex numbers with the norm

!/P
Z>»l”

\n=l 7

and let Bp be the open unit ball in this space (in case p = 2 we will simply 
write B instead of B2). Take p / 2. We show that B and Bp are not 
holomorphically equivalent, and the same is true for B and B X B .

2. Auxiliary lemmas. Let p be the Caratheodory metric in B, cf.
[2], [3]. Recall that the metric space (B,p) is unbounded and complete, 
and p(0,x) = tanh-1 ||a?|| for every x € B . Any two points x,y £ B 
may be joined by the unique geodesic segment (isometric to the interval 
[0, p(x, 2/)]). Consequently, for any points x,y € B there exists the unique 
metric midpoint u £ B such that

p(x,u) = p(t/,u) = p(x,i/)/2.
We wiU denote this point by u = j (a; © y).

We need the following result from [2] (also see [3]), which, after a Uttle 
reformulation, can be stated in the following form.

Lemma 1. Let a£B,r>0,0<£ <2. Let x,y G B be such that 
p(a,x) < r, p (a, y) < r and p (x, y) > £r. Then

(3)
(a, (x©y)) < tanh

_! /tanh2 r - tanh2 (er/2) 
/ 1 - tanh2(er/2)

Let us denote by the Poincare-Bergman metric in the unit disc A C C 
(which is equal to the Caratheodory metric in A , see [1]). Now we can prove 
the following two lemmas.



Holomorphic Non-Equivalence of Balls ... 215

Lemma 2. Take 1 < p < 2 and let d denote the Caratheodory metric in 
Bp . Let t > 0 be such that

x = (f,1,0,0,...) e Bp and y = (1,-1,0,0,...) € Bp.

Then

(4) d(x,y) < 2tanh’1 •

Proof. We define holomorphic function <p: A —► Bp by the formula 

Y>(*) = (l,z(l-lp)1/p,0,0,...) •

If x' = 1/(1 - <p)x/p, y' = (-1)/(1 - tp)x/p then we have 9?(x') = x 
v(y') = y and

= 2 tank-1 _*y)l/,) ■

Because of (1) the lemma is proved.

Lemma 3. Take p > 2 and let d denote the Caratheodory metric in Bp 
Let t > 0 be such a number that

x = (t, 0,0,0,...) € Bp and y = (0,1,0,0,...) € Bp .

en we have

d(x,y) < 2 tanh 1 ,

To is the unique solution of the equation
V . P1 p t

- + r + - - r2 2
= 1, r > 0 .

Proof. Let us define holomorphic function : A —► Bp by the formula

V»(xr) = Q + roz,|-rO3,0,0,...J •

Let us put x' = l/(2r0), y' = (—Z)/(2r0). We have now = x
V>(y') = yand

w(i',y') = 2tanh-1 .

Inequality (5) follows from (1).
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3. Main results. We now prove the following theorem.

Theorem 1. If p 2 then B and Bp are not holomorphically equivalent.

Proof. Assume the contrary. Then the metric spaces (B,p) and (Bp,d) 
are isometric. We consider two cases.

Case 1, 1 < p < 2. Choose t > 0 such that a,x ,y £ Bp, where

a = (Z,Z,O,...), x = (-f,Z,O,...), y = (Z,-Z,O,...) .

Obviously d(a,x) = d (a, y) and 0 = (0,0,...) = } (x ® j/) . By the defini­
tion of the metric d ([1], [5]) we obtain:

d (x, y) = 2d (0, x) = 2 tanh-1 ||x|| = 2 tanh-1 .

Putting r = d(a,x) , er = d (x, y) and applying (3) we obtain

_1 / tanh" r — tanh" (er/2)
d(0,a) < tanh

1 — tanh"(er/2)

and further, after simple calculations:

(tanh d (0, a)) (2 - tanh2 d (0, a))1^’ < tanhr .

Lemma 2 gives

and

21/pZ ^2 - 22/pi2)1/_ < tanh 2 tanh -1
(l-iP)1/p7

1/2 2(1 —Zp)1/p2i/r _ 22fpt2\ ' < ----
V ) - (l_/P)2/r + i2

If t tends to zero, we obtain 22/p < 2 or p > 2. This contradicts our 
assumption (1 < p < 2).

Case 2, p > 2 . Choose t > 0 such that a , x ,y € Bp , where

a = (0,Z,0,...), x = (Z,0,0,...), 2/= (—t, 0,0,...) .
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It is easy to observe that d (a, x) = d (a, y) and 0 = (0,0,...) = | (x © y) . 
Moreover,

d (x, p) = 2d (0, x) = 2 tanh-11.
Let us put r = d(a, x) , er = d(x,p) . By means of (3) we conclude that

d (0, a) < tanh 1

and equivalently

tanh2 r — tanh2 (er/2) 
1 — tanh2 (er/2)

2 tanh2 d (0, a) — tanh4 d (0, a) < tanh2 r.
Let us denote by ro the unique positive solution of (6). Lemma 3 together 

with the above inequality yields

or equivalently
2 16ro 

2 - r < -------- y •
(4r0 + f2)

If t —* 0, then ro —► 2^~l^p, so we obtain 2 < 22/p, or p < 2. This 
contradicts our assumption (p > 2).

Theorem 2. B and B x B are not holomorphically equivalent.

Proof. The Caratheodory metric d in B x B is defined by 
d ((x, p), (a, 6)) = max {p (x, a), p (p, b)} ,

where p is the Caratheodory metric in , £ cf. [1], [5]. To complete the 
proof it is enough to notice that in (B x B,d) metric segments are not 
unique. Thus metric spaces (B x B,d) and (B,p) are not isometric.

Remark. Theorem 2 was proved by S. Greenfield and N. Wallach [4] by 
using standard methods of complex analysis.
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