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Holomorphic Non—-Equivalence of Balls
in Banach Spaces [, and I,
from the Geometrical Point of View

ABSTRACT. Let B, (p > 1) denotes the open unit ball in Banach space of
all sequences of complex numbers with the usual l,-norm. We prove that
B, and B, (p # 2) are not holomorphically equivalent, and the same for B;
and Bz X Bg.

1. Introduction. The Riemann Mapping Theorem states that two open,
simply connected and bounded subsets of the complex plane C are holomor-
phically equivalent. In other complex Banach spaces the situation is more
complicated. Methods applied in the study of holomorphic equivalence, or
non-equivalence of domains usually depend on rather sophisticated tools
(see e.g. [6]).

K. Goebel and S. Reich proved in [2] that the unit ball in complex Hilbert
space can be seen as a "nice” metric space (so called p-uniformly convex
space) and holomorphic feature and metric properties are strictly connected.

Using the idea of Goebel and Reich together with the classical theory
of Schwarz-Pick systems of pseudometrics ([1], [5]) one can present an ele-
mentary proof of holomorphic non-equivalence of unit balls in even spaces.
"Elementary” means here: based on concept of isometry between two metric
spaces.

Rey words and phrases. Holomorphic mapping, hyperbolic metric, biholomorphic
equivalence .
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Let D C X,E CY be nonempty, open and bounded subsets of complex
normed linear spaces X ,Y and let c¢p,cg be Carathéodory metrics in
D and FE, respectively, cf. [1], [5]. It is known that every holomorphic
mapping f: D — E is nonexpansive in the sense that

(1) ce(f(z),f(y)) < ep(z,y)
for any z € D, y € E. This implies
(2) ce(f(z),f(y)) =cp(z,y)

for every biholomorphic mapping f : D — E and any points z € D,
y € E. Consequently, if D and E are holomorphically equivalent then the
corresponding metric spaces (D,cp) and (E,cg) are isometric.

Now let P (1 < p < o0) be the space of all sequences z = (z,) of
complex numbers with the norm

el = (3 :znﬂw

\n=1 /
and let B, be the open unit ball in this space (in case p = 2 we will simply
write B instead of B;). Take p # 2. We show that B and B, are not
holomorphically equivalent, and the same is true for B and B x B.

2. Auxiliary lemmas. Let p be the Carathéodory metric in B, cf.
(2], [3]. Recall that the metric space (B,p) is unbounded and complete,
and p(0,z) = tanh™' ||z|| for every z € B. Any two points z.y € B
may be joined by the unique geodesic segment (isometric to the interval
[0,p(z,y)]). Consequently, for any points z,y € B there exists the unique
metric midpoint u € B such that

p(z,u)=p(y,u)=p(z,9)/2.
We will denote this point by u = -;—(:z: Dy).
We need the following result from [2] (also see [3]), which, after a little
reformulation, can be stated in the following form.

Lemma 1. Let a € B,r > 0,0 < ¢ < 2. Let z,y € B be such that
pla,z)<r,p(a,y) <t and p(z,y) > er. Then

1 E e [tanh® r — tanh? (er/2)
®  razEew) < el L,

Let us denote by w the Poincaré-Bergman metric in the unit disc A C C
(which is equal to the Carathéodory metricin A, see [1]). Now we can prove
the following two lemmas.
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Lemma 2. Take 1 < p < 2 and let d denote the Carathéodory metric in
B,. Let t >0 be such that

z =(t¢0,0,..)€ B, and y=(t,-1,0,0,..) € B,.
Then

(4) d(za y) S Qtanh_l ((—I-:—;m) 3

Proof. We define holomorphic function ¢ : A — B, by the formula

p(z) = (t,z(l - t”)‘/",o,o,...) :
If z' = t/(1 -tP)V/P, ¢ = (~t)/(1 — t?)}/P then we have ¢p(z') = z,
p(y') =y and

" -1 t
w(z',y") = 2tanh (——{1—11’)‘/7’>'

Because of (1) the lemma is proved.
Lemma 3. Take p> 2 and let d denote the Carathéodory metric in B, .
Let t > 0 be such a number that

z = (t,0,0,0,..)€ B, and y=(0,,0,0,..) € Bp.

Then we have

a (L
(5) d(z,y) < 2tanh (21_0 L
where 1o is the unique solution of the equation
t Pt 3
(6) s+ +|5-r =1 20

2 2

Proof. Let us define holomorphic function % : A — B, by the formula

LY

t t
Y(2)= (5 + 102, 2% roz,0,0,...) .
Let us put z' = t/(2r0), ¥' = (—t)/(2r0). We have now ¥ (a') = z,
¥(y) =y and :
w(z',y') = 2tanh™’ (—) 1

2ro
Inequality (5) follows from (1).
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3. Main results. We now prove the following theorem.

Theorem 1. If p# 2 then B and B, are not holomorphically equivalent.

Proof. Assume the contrary. Then the metric spaces (B,p) and (Bp,d)
are isometric. We consider two cases.

Case 1,1 < p < 2. Choose t > 0 such that a,z,y € By, where
a=(10,..), z=(-tt0,..), y=(t-t0,..).

Obviously d(a,z) = d(a,y) and 0 = (0,0,...) = 3 (z ® y) . By the defini-
tion of the metric d ([1], [5]) we obtain:

d(z,y) = 2d(0,2) = 2tanh ™" ||o]| = 2tanh ™" (2'/71) .

Putting r = d(a,z), er = d(z,y) and applying (3) we obtain

[tanh® r — tanh® (er/2)
V 1 — tanh® (er/2)

and further, after simple calculations:

d(0,a) < tanh™!

(tanhd (0,a)) (2 — tanh’ d(O,a))llg < tanhr.

Lemma 2 gives

1/2
91/7; (2 ke 22/”t2) <'tanh

2 tanh! (__,-\j
: (1-e)P)

1/p fof - lo2ps2 Y 2(1-)'/”
2 2 —120ELS Y - 5 .
\ / (L=tr)/P 4 g2

and

If ¢ tends to zero, we obtain 22/P < 2 or p > 2. This contradicts our
assumption (1 < p < 2).

Case 2, p > 2. Choose t > 0 such that a,z,y € B, , where

a=(0,t0,..), z=(t0,0,...), y=(-t0,0,..).
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It is easy to observe that d(a,z) = d(a,y) and 0=(0,0,...)=1(z D y).
Moreover,

d(z,y) = 2d(0,z) = 2tanh™'¢t.
Let us put r = d(a,z), er = d(z,y) . By means of (3) we conclude that

d(0,a) < tanh~! \/tanh2 r — tanh? (¢7/2)

1 — tanh? (er/2)
and equivalently

2tanh? d (0, a) — tanh® d (0,a) < tanh®r.

Let us denote by rg the unique positive solution of (6). Lemma 3 together
with the above inequality yields

2
4t7‘0
. o L .
‘ (4r8 +t2)

2« _irg_7 .

T (4ro + 82)
If t - 0, then 7o — 2(-1/P o we obtain 2 < 22/?, or p < 2. This
contradicts our assumption ( p > 2).

or equivalently

Theorem 2. B and B x B are not holomorphically equivalent.

Proof. The Carathéodory metric d in B x B is defined by

d((z,9),(a,b)) = max {p(z,a),p (y,0)} ,
where p is the Carathéodory metric in ,B cf. (1], [5]. To complete the
proof it is enough to notice that in (B x B,d) metric segments are not
unique. Thus metric spaces (B x B,d) and (B,p) are not isometric.

Remark. Theorem 2 was proved by S. Greenfield and N. Wallach [4] by
using standard methods of complex analysis.
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