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Mean Value Properties of Solutions 
of Cauchy-Riemann systems

Abstract. It is shown here that certain contour integral formulae for so
lutions of Cauchy-Riemann systems lead to area integral representations. 
These represent generalizations of (area) mean value theorems for analytic 
functions and are valid under essentially weaker conditions on the coeffi
cients of the Cauchy-Riemann systems than the corresponding contour in
tegral formulae.

I. Let a (generalized) Cauchy-Riemann system, i. e. a uniformly elliptic 
system of the form

(1) A = i<*)A + X*)A ,

be given. Uniform ellipticity, in the most general case of (1), means that 
the coefficients v, p, have to satisfy

(2) p, G I«», || |p| + |mI Hl« =: k < 1 •

Here LK := ¿00(C), which of course is no loss of generality in (2).
The solutions of (1) possess certain contour integral representations [/],

[4], [5] which, however, require additional, incisive or lengthy, conditions
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on the coefficients p, p. Therefore we ask for corresponding area integral 
formulae which do not have this disadvantage.

Since we here consider solutions of (1) only in bounded domains, we may 
assume that

(3) J'(z) = p(z) = 0 if |z| > Roo

with any fixed positive .
The conditions (2) in general admit only generalized solutions, i.e. func

tions continuous in a domain Q and possessing weak derivatives from 
L2,ioc(^) which satisfy (1) almost everywhere in Q . Thus, if we want clas
sical derivatives of solutions to exist at prescribed points, further conditions 
on p, p are necessary. Such a condition rather convenient but of course not 
the weakest one possible, is Bojarski’s condition [2]

(4)
I/(z)-2/(z0) p(z)-p(z0) „ T

> t -L/
z - ¿0 Z- Zq

Tp(C), p > 2.

The contour integral formulae in [7], [4], [5] require certain special solu
tions (of adjoint systems), namely certain fundamental solutions and gener
alized powers, respectively. Concerning the existence of global fundamental 
solutions under rather weak conditions on //, p we have by [4, chap. IV],

Proposition 1. Let v,p satisfy (2) and (3). For every fixed zq € C there 
exists a solution H^z,zo,iz,p) °^(1) jn C \ {zo} unique up to the branch 
of the logarithm, with a representation

(I) H(z,z0,r>,p) = log{z - z0) + roo(z,z0), where r^z^o) is single
valued and continuous in C \ {zo} ,

(II) rOQ(z,zo') € Ls(E') for any compact set E C C and any s € [l,oo)
(III) lim ^(z^o) = 0 .

2—*OO

We shall call this H(z,zo,v,p) the fundamental solution of (1).
Further, by [3] we have

Proposition 2. Let v,p satisfy (2), (3) and (4) with a fixed Zo € C. For 
every nonzero integer n and any nonzero complex constant a there exists 
a unique solution w(z) =: [a(z — zo)n]„,M of (1) in C \ {zo} (even in C if 
n > 0, resp.) with the following properties

(I) w(z) = (y(z))n where y(z) is a K -quasiconformal mapping of C 
onto itself with x(zo) = 0, K = ,

(II) w(z) admits the asymptotic expansion

w(z) = a(z- z0 + b(z - z0))n-ba(z - z0 + b(z - z0))n + O(|z - z0|n+or)
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at zq where a is a positive constant and b = b(zo), b = 6(zo) are 
algebraic expressions of i'(zo),p(zo) (e.g. cf. [4, p. 70]/

Because of their topological equivalence with ordinary powers we call 
these functions generalized powers.

The area integral formulae in question require certain weight functions 
P(-). We restrict ourselves here to two kinds of P(-), namely P(r) = rm =: 
Pm(r) where m is a real constant > -2 (which has to satisfy further 
restrictions) and P(r) = Poo(r), where

Poo(r) > 0 Vr€(0,oo), P«,(M) € A«.,
lim Poo(r}rl = 0 for each integer I. r—>0

The modifications to be made for other kinds of weight functions then 
are obvious.

For brevity we call a system (1) also a (i/,/z)-system and a solution of 
(1) also a (p,/x)-solution.

Without loss of generality we put zo = 0 and consider solutions of (1) 
in B(Po) = {z : |z| < Po}, Ro 6 (0,oo). Since for K = 1, i.e. k = 0, there 
is nothing to prove here, we assume that A' > 1. Let

(5) M(z) = P(z,0,i/,/z), 2V(z) = tf(z,0,P,-ji),

further

(6) G^z) = [drz-1]^, G2(z) =

where

di = -(1 - 6b)/( 1 - |6|2), d2 = -(1 + 6b)/(l - |6|2), b = 6(0), b = b(0),

cf. Proposition 2(11) above,

Px(z) = [cz-,’]p,jl, P2(z) = ,

c any constant and j any fixed nonzero integer , and

___  [R
(?) h(z] f) := (1 —-i/(z))f(z) — p(z)f(z), I = I(R;P) = P(r)rdr.

z Jo
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Then we have

Theorem 1. Let l>,h satisfy (2), (3), and let f be a solution of (1) in 
B(Jto). Then

(!) y [Re(M4z)2A(^;/)) + iIm(ArX^)^A(z;/))]P(|2|)doz

B(H)

VR G (0,72o) and for every P(-) = Pm(-) with 
2 1

(II) m >------ K — — , where s is fixed but arbitrary € [l,2/i/(A'-l)).5 /V
Moreover, then
(III) M2(2)zP(|xr|), 1V2(z)zP(|z|) G LlJoc.

Note that the condition (3) does not restrict the generality of u, n and 
f in P(P0) •

Amongst other things, Theorem 1 embodies a (further) possibility for 
estimating the supremum norm of a (//, /resolution f in a domain f) over 
a compact subdomain of ft by the norm of f in Z?(ft) for each q > 
2A’/(A' + 1).

Theorem 2. Let v,p, satisfy (2), (3) and (4), and let f be a solution of 
(1) in B(P0). Then

(I)A(0)=^y y [Re(Gi2(z)2A(^;/)) + tIm(G2Z(2)2A(2;;/))]P(|2|)da2 

B(R)

VP G (0, Po) and for every P(-) = Pm(-) with 
2 1

(II) m >----- h 2 - — , with any fixed s from [1,2A'/(A' - 1).S /V
Moreover, then
(III) Gfc(z)2P(|z|) G A.,,00 1 = 1,2.

This in particular implies the equivalence of certain supremum norms 
of derivatives with certain A,-norms of the function itself, where q is to 
be choosen as with Theorem 1. A further consequence is that a series of 
(i/,/i)-solutions may be differentiated term by term at any point zo from 
the (interior of the) domain of convergence if v, p satisfy a condition (4) at 
zo.

Of course, Theorem 1 and 2 express mean value properties of f and 
fz which reduce to the (area) mean value theorem for analytic functions if
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p = f.i = 0 in C. The concrete upper bounds of s in both theorems are 
consequences of the results in [1].

Let

I(Ri, R2) = I(R\, R2] P) = / T(r)rdr, 0 < Ri < R2 < 00 ,

where P(-) is as above. For generalized powers we then have

Theorem 3. Let 1/, n satisfy (2), (3) and (4), and let f(z) = [azn]vifi,n 
an integer. Then

(I)
ac(l - |4|!)(-j)i„,i = / |Re(fl.(*)*A(z;/))

{Rj <|i|<fi2}
+ iIm(F2z(^)^A(z; /))]P(|z|)derz,

for every P = Pm with
(II) m>—n+ J-1- — (m arbitrary if fti > 0) ,

where b = h(0) is the constant mentioned in Proposition 2, and ¿„j means 
the Kronecker symbol.

II. We now come to the proof of Theorem 1-3, which rests upon certain 
contour integral formulae [4], [5]. These read with the above notations and 
specifications

(8) /(°) = ReJ- y f(z)dM(z) + ilm^, <f> f(z)dN(z)

|x|=r l2l=r

(9) /2(o) = Re^ y + j f(z)dG2(z)

ac(l - |h|2)(-j)£n,j = f [azn]^d[cz J]Pi7r

|z|=r

+ tlm^j [aZ ^•'»”7*
(10)
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Here y, p, have to satisfy additional conditions. Therefore we assume, 
for the time being, that

(11) Holder continuity in C and (2), (3)

are satisfied for p, .
To start with, we observe that every expression on the right-hand side 

of (8)-(10) is of the form

(12) Re-i-; / /(•i)d^i(i') + ¿Im-i-; / f(z)dhAz) =: A
27rt J 2m J

|z|=r |z|=r

where are (i/,/z)—, (y,ji)—, (y, — /Z)-solutions in B(Ro), C \ {0} ,
respectively. Because of (11) these functions are continuously differentiable 
in their respective domain of definition.

A simple calculation yields

2tt

A = ~ J[Re(/il2(z)zA(z;/)) + iIm(/i2z(^A(z;/))]#, 

o

with A(2;/) defined in (7), and z — re,<t>. Multiplication by P(r)r and 
integration give

AI(R-P)

Thus

(13) A/(jR;P) = ^- y [Re(/iuzA) + Hm(/i2z^A)]P(|2|)d<T2

B(R)

if

(14) fii2(^P(|2|)A(z;/) € Ti(B(R)), I = 1,2.

In the cases of (8) and (9), where we have A(z; /) € Lqo^B^R)) , this leads 
to the (sufficient) condition

(15) MZMI2I) € ¿i,i0C (:= ¿Uoc(C) ),
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whereas in case of (10) we are led (in view of Proposition 2(H)) to

(16) /lj2(z)zn+1P(|z|) € Ii.ioc-

For the sake of convenience we now drop the index I in hiz . Because of the 
Bers-Nirenberg representation theorem, every such h2(z) is of the form

(17) Mz)=^c0)

with c(j) = —j if j 0 and c(0) = 1, where x(z) is a K- quasiconformal 
mapping of C onto itself and x(0) = 0 .

By 111

(18) X. 6 Vp e |1,2A/(A' - 1)).

In the case of (10) with j / 0 we obtain

(19) A,zn+1P|z|) = c«)x,^ J^^+,i’(l’l)-

Further, for each x from (17) we have

(20) y-^-7 = O(|z|-1) or = O(|z|_/<) if j /0,j = 0, respectively , 
lx(2)l

by Proposition 2(11) and the Theorem of Mori, respectively.
Thus, in the situation of Theorem 3,

(21) Mn+1p(izi) = xx • p(i^i) • <wi+n) •

By (18) this is G ¿i,joc if

(22) P(|z|)|z|-J+n G Lq<loc

with a q satisfying 1 > 4^- + |, i.e. with a q satisfying

If P(-) = Poo(.) then (22) is satisfied even for every q G [l,oo). If P(-) = 
^rn(-) with m finite, then (22), (23) lead to

2 OA' + 1m_J + n>_->-2-^.
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Hence, there exists a q such that (22) and (23) are satisfied if

m>-n + j- l- —.
A

This proves Theorem 3 for smooth v,n and R\ = 0. The case Ri > 0 is 
obvious.

As to Theorem 1 and 2, we replace the condition (15) by the more general 
condition

(24) hzzP(\z[) e L,,ioc 

with an s to specify. Using (17) and (20) we obtain

(25) ^ = Xz-O(|z|-K(1-j)-2>), j = 0,1. 

Because of (18) and the Holder inequality, (24) holds if

(26) • P(N) e A,,(oc

with a q > 1 satisfying

1 A' - 1 1
s > 2A' + q

Of course, this is possible only for

s € [1,2A'/(A-1)) = [1,1 + |).

For these s, (27) is equivalent to

(28)
s(l + fc) _ 2s A' 

k + 1 — sk 2K — s(A' — 1)

Again, if P( •) = ^oo(-) , then (26) holds for every q > 1, in particular 
for those which satisfy (28). If P — Pm with m finite then (26), (28) hold 
simultaneously if

2 2 1
-A'(l -j)-2j+l + m> — > — + 1 - — ,q 3

i.e. if
m>— + A'(l-j) + 2j - —, J = 0,1. 

s A
This proves Theorem 1 and 2 for i/, /J. satisfying (11).
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Now we want to come to the actual v, p, mentioned in Theorem 1-3. First 
note that the validity of (III) under the condition (II) in Theorem 1 and 2 
does not depend on any additional smoothness conditions on p, /i. Thus we 
only have to show that (I) in Theorem 1-3 holds for the corresponding p,/z 
under the respective condition (II).

Let v,p satisfy (2) and (3). By [6] there exist sequences of C“(C)- 
functions vi,pi such that the following conditions are satisfied simultane
ously:

(a) || |i/,| + l/z/l ||Loo < k, v,(z) -> 1/(2), pi(z) -+ /¿(-J) a.e. in C, vt(z) = 
Pi(z) = 0 for |z| > Roo + 1 ,

(b) for the corresponding fundamental solutions Mi(z), Ni(z) holds 
Af/(2) —* M(z), N[(z) —► N(z) locally uniformly in C \ {0},
Miz -* Mz, Niz -+ Nz in Lr,ioc Vr 6 [1, 2) ,

(c) for any (p, /resolution f in B(7?o) and any fixed positive R < 
Ro, there exits a sequence of (p;,^/)- solutions fi in B(R) such that 
f,(z) —► /(z) uniformly in B(R)

as I —► oo.
As proved already we have

/i(°)=^7 / [Re(^^A/(«;/l)) + iIm(M^Ai(r,//))]JP(l«l)^,

B(fl)

where A;( • ; •) belongs to iq, /q according to (7). Taking limits on both 
sides and observing that in any case m > — 2, we obtain (I) of Theorem 1. 
If we resrict s in Theorem 1, then condition (II) on m can be weakened 
essentially. Namely, using (b) above in place of (18), (20), we obtain by 
considerations analogous to those which led to condition (II) of Theorem 1 
the following completion.

Corollary 1. (I) and (III) of Theorem 1 remain valid if(II) is replaced by 
2

(II') m > — , where s is fixed but arbitrary € [1, 2).

We shall say that a sequence gi satisfies a uniform Bojarski condition at 
Zo = 0 if

g<(*) ~ gt(O) <(j V ; 
z rbp

with a fixed positive constant C and a fixed p > 2. By [6] we have the 
following statements.
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Proposition 3. Let v,p satisfy (2), (3) and (4), let j be any fixed nonzero 
integer, c any fixed constant, f any (v, /.t)-solution in B(Bo) and R he 
fixed € (0, Bo) •

Then there exist sequences tq, pi, satisfying (a) above as well as a 
uniform Bojarski condition at zo = 0, and (vi,/resolutions /¡(z) and 
Di(z) := [c2J]P|)W in B(B), C \ {0} , respectively, such that (simultane
ously) holds

(I) Di(z) —► D(z) := [c2J]piM locally uniformly in C \ {0} ,
(II) Dtz(z)z~j+1 -- Dz(z)z~j+1 weakly in LPit0C for every p € [lj^êï) »

(III) Di(z)z~^ are locally uniformly bounded in C,
(IV) fi(z) —► f(z) uniformly in B(B) and /i2(0) —»• /2(0)
as I —» 00 .

Proposition 3 applied to G\, G% from (6) means that, for corresponding 
Gn, G21,

—*■ G\222 weakly in AP(B(B)), ¿ = 1,2,

for every p € [1,2K/(K — 1)). Since m from Theorem 2 in any case has to 
satisfy

(29) m — 1 > — 1 —77A

(and since K > 1), we find a q > 1 such that

q(m- 1) > -2 > -(1 + -^)q.

For each such q
P(kl) „ r 2K

|z| e q',oc ’ q K + 1 •

The inequality for q means that there exists a p £ (1,2A'/(AZ — 1)) such 
that p~1 + q-1 = 1. Moreover, because of Proposition 3(IV),

P^Z^-Rt(z; fi) P(^A(z;/) (strongly) in A,(B(B)) as I -* 00 .
M 1*1

Thus, using the smooth version of Theorem 2(1) and letting there I tend to 
infinity we obtain Theorem 2 completely. In a quite analogous way Theorem 
3 follows.
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