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Smooth Approximation of Solutions 
of Cauchy-Riemann Systems

Abstract. It is shown here that Cauchy-Riemann systems and their so
lutions can be approximated by sequences of smooth Cauchy-Riemann sys
tems and corresponding solutions such that these sequences satisfy certain 
additional conditions.

1. Introduction. Solutions of (generalized Cauchy-Riemann systems in 
general possess only weak regularity properties. Thus the situation often 
requires to consider an appropriate sequence of such systems and a corre
sponding sequence of solutions tending in an appropriate way to the original 
system and a prescribed solution of it, respectively. Of course, the problem 
also embodies the question of what is meant at the time by appropriate.

Here, Cauchy-Riemann system denotes a linear uniformly elliptic system 
of the form

(1) fz — + fi(z)fz >

where

(2) m,M€Loo, IIM + ImIIIloo :=k<l.

(L^La>loc always means ¿,(C), Ls,/oc(C), respectivly). We consider here 
approximation in bounded subdomains of the complex plane for three kinds
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of solutions of (1), namely (global) fundamental solutions (i.e. presence 
of just two logarithmic singularities, the one of them at oo), generalized 
powers (i.e. exactly one singularity, of an entire order, possibly at oo), and 
(ordinary, of course weak) solutions of (1) in a disk. Additinal to (2) we 
assume that

(3) v(z) = n(z) = 0 for |^| > R*

with a fixed positive R* . At least in the third case this is no loss of gen
erality. In both the other cases, (3) can be weakened essentially which, 
however, requires a certain amount of additional notations. That is why we 
here dispend with it.

As is well-known, every schlicht solution of (1) is a K-quasiconformal 
mapping with

For brevity we call a system (1) also a (z/, p)-system and a solution of (1) 
a (p, p)-solution. Concerning the approximation of a (z/, p)-system by a 
sequence of (z/n,^n)-systems we use the following conditions

(a) z/„(z) —► z/(z), pn(.z) —* m(2) a-e- i“ C, as n —► oo ,
(b) l^n(^)| + |;i„(2)l < k Vz e C,
(c) supp(|z/n| + \HnI) C supp(|z/| + |p|) + {|z| < e} with any fixed e > 0 ,
(d) vn , Un € C00^) for every n e N = {1,2,...} .

(As usual for two sets A, B, A + B = {x + y\x 6 A, y € 5}).
Such sequences can easily be generated by means of convolution with 

mollifiers.
Of course, in the following considerations the complex Hilberttransfor- 

mation T, symbolically

(5)

and the Cauchy transformation

play a crucial role.
The conditions (a)-(d) have to be completed if, e. g., pointwise conver

gence of the derivatives for a sequence of (vn, pn)-solutions at prescribed 
points is required. For such purposes we shall use here the Bojarski condi
tion, cf. [2],

g(*)~g(*o)
z - z0

with a p > 2,(7)
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which is of course not the weakest one possible (the weakest on possible 
might be the condition of the Teichmiiller-Wittich-Belinski distortion the
orem, but this is still to be proved).

2. Smooth approximation of fundamental solutions. In [4] existence 
and uniqueness of a special global fundamental solution has been shown:

Proposition 1. Let satisfy (2), (3). For every fixed 2o € C there 
exists a solution of (1) in C\ {zo} , unique up to the branch
of the logarithm, which admits a representation

(i) H(z,z0,v,p) = log(z - z0) + rtx,(z,z0'), where roo(z,z0) is single
valued and continuous in C \ {zo} ,

(ii) r^z, zo) S LSti0C for every s e [1, oo),
(iii) lim^oo roo(z, zo) = 0.

We call this #(z,zo, iz,p) the fundamental solution of (1). By means of 
the Bers-Nirenberg representation theorem we have almost obviously

Corollary 1. There exists a unique K-quasiconformal mapping y(z) = 
y(z;zo) of C onto itself such that

(i) y(z) is conformal for |z| > R* ,
(ii) x(z) = z + 0(1) as z -»• oo , y(z0) = 0 ,

(iii) ff(z,z0,i/,p) = logy(z).

Proof. Let y be a schlicht solution of

in C. Because of (3) it satisfies (i) and can be normalized to satisfy also 
(ii). Then

ff(z,z0,P,p) - logy(z) := p(z)

is a (single-valued) solution of (8) in C\ {z<j} which is bounded as z —+ oo . 
Moreover, zo must be a removable singularity, cf. the conclusion in [4, p. 
86]. Thus, p(z) = const by Liouville’s theorem for solutions of (1), which 
means (iii) with the branches suitably chosen.

Theorem 1. Let u,p satisfy (2) and (3) and let Zo £ C be fixed. J here 
exists sequences of vn,pn satisfying (a)-(d) above such that for the corre
sponding fundamental solutions

Hn(z) := H(z,z0,^n,pn), H(z) := ff(z,z0,i/,p)
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(under suitable choice of the branches of the logarithm) holds
(i) Hn(z) —* H(z) locally uniformly in C \ {zo} ,

(ii) Hnz(z) —> Hz(z) (strongly) in Ls<ioc for each s € [1,2), as n —* oo . 
Moreover,
(iii) each Hn 6 C°°(D) for each simply-connected domain D with 

£>CC\{z0}.

Proof. We may put zq = 0 . By [4, p. 86], Hn,H admit the representation

(9) Hn(z) = log z - PFn(-)(z), Jf(z) = log z - PF(-)(z), 

where F(-) is the unique solution of

(10) r(i) = - (^ + ^) + -(orrt-xi) + /■(<)TW)

in Lq for every q € (2 — £o>2) with a positive depending only on k, 
and Fn is the solution of (10) with v,p replaced by i/n,^n, respectively. 
Hence Fn -» F in such an Lq , because of (a)-(c) and (3). This means that

(11) Hnz(z) = - - TFn(-)(z) -+ Hz(z) = - - TF(-)(z)
z z

in Lqjoc with any q 6 [1,2), which proves (ii). Assertion (i) is clear because 
of Corollary 1 and well-known compactness criteria for mappings yn . The 
remaining assertion (iii) holds because of the well-known hypoellipticity of 
(1) in case of v, p 6 C°° . Note that (i), (ii) hold even without (d).

3. Smooth approximation of generalized powers. Generalized pow
ers which are to be normalized by asymptotic expansions, require certain 
additional conditions on v,p. We restrict ourselves here to the Bojarski 
condition (7). Without loss of generality we now put zo = 0 until further 
notice.

We shall say that a sequence of functions gn satisfies a uniform Bojarski 
condition at 0 , if there exist constants C,p where C is positive and p > 2 
such that

fl(*) ~ ff(0) <C Vn.(12)
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Lemma 1. Let satisfy (2) and (7) (with Zo = 0). There exist se
quences VniP'n satisfying the conditions (a)-(d) as well as uniform Bojarski 
conditions at 0.

Proof. Choose a monotone null sequence of positive numbers rn and put 
i/(0) for |z| < rn
/(¿) for |z| > rn

(note that i/(0) is well-defined by (7)). Next choose a mollifier m(z) and 
put, e. g.,

. . 4/2 {2lz\ , „
mnti(z) = — ml — I, n,/€N.

rn \rn /

Then let
"n,l = «n * ,

where * means convolution. Then
^n,/(0) = z/(0) Vn,leN.

Now let first ln € N satisfy

Then we have
^n,in(g)-^(0)

z

2ln< r" r"+1

Lp({|z|>r„+i})

^n,ln(^)~ ^(0)

M.fc) ~ *n(z)
+

^'I>({lz|-rn })

+

For each fixed n, ln can be chosen in such a way that, additionally, each of 
the first two terms on the right-hand side of the last inequality is less than, 
e.g., 1. Then

M2) := M,(2)
satisfies .. / ~\ .. t(\\ _ «mi

+ 2 V n.- "n(0) S' i/(z) - 1/(0)
Z z

The same procedure can be applied to n(z). The remaining assertions of 
the lemma are obvious.

Remark. The same procedure can be applied also in case of the condition 
of the Teichmiiller—Wittich-Belinski distortion theorem.
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Theorem 2. Let v,p satisfy (2), (3) and (7) , let j be a nonzero integer 
and c be any nonzero constant. Then there exist sequences un,/in such 
that for the generalized powers

Fn(z) := [c2J](PniMn), F(z) := [c*j](p>m)

holds
(i) Fn(z) —> -F’(z) uniformly in compact subsets of C \ {0} (of C if 

J > V,
(ii) Fn2(z)z~j+1 —> Fz(z)z~j weakly in LPtioc for each pe ,

and
(iii) the functions Fn(z)z~:’ are uniformly bounded in C as n —> oo.

Proof. We may assume that ^(0) = /r(0) = 0, which can be achived by 
two affine mappings (cf. e.g. [4, p. 51]) not affecting the assertions of 
the theorem and preserving condition (7) (however the new v,p, which are 
in any case constant in a neighborhood of oo, do not necessarily possess 
compact supports). Let vn,/in be corresponding sequences according to 
Lemma 1. For each corresponding Fn(z) we may assume a representation

^n(^) = c(xn(«))J 

where yn is a schlicht solution of

in C, normalized by

(13) Xn(*) = 2 + 0(M1+“)

where, by [4, Theorem II.5.2] and [3, p. 231],

(14) |O(|z|1+“)| < M|2|1+" , |z| < R'

for any fixed positive R' with the same positive constants M, a for every 
n (a more detailed consideration shows that this holds here even with R' — 
oo). In particular, the \n must be locally uniformly bounded. Hence, 
there is a subsequence of \n (which we then take as the whole sequence) 
converging locally uniformly to a quasiconformal mapping y(z) of C with 
an asymptotic expansion (13) at z = 0 . Then, of course, the corresponding 
Fn(z) tend to an F""(z) := c(x(z))J. Since F* is the locally uniform limit 
of (i/n,/z„)-solutions Fn in C \ {0} (of course, even in C if j > 1), then
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F* is a (t/, p)-solution there, hence F*(^) = , which proves (i) of
Theorem 2.

Further,
Fnz(*) = cjXnz ^44 •

Xn\z)
By (13), (14),

(15) -j+1 -j+l
Xn(*) X(*)

locally uniformly in C. By [1], \nz belongs to Lpjoc for every p G p, 77Z7) , 
and ||xnz||£p({|z|</?}) is uniformly bounded by a constant depending only 
on R,p,K (because of the local uniform boundedness of the Xn)- Since the 
Xn converge locally uniformly to \, the Xnz then tend weakly to Xz in 
Lp({\z| < R}) for each such p and each finite R . This, together with (15), 
proves (ii). Concerning the remaining part (iii) of Theorem 2 we only have 
to remove ’’locally” in the statement with (15). This can be done simply by 
returning to the original n, p and corresponding vnPn and observing the 
analyticity of the expressions in (iii) at 00 .

4. Smooth approximation of (p, p)-solutions in a disk. We want to 
prove

Theorem 3. Let v,p satisfy (2), (3), and let f be a (n,p)-solution in 
{|z| < Rq} . Then, for any fixed R G (0,f?o) there exist sequences vn,pn 
satisfying the conditions (a)-(d) above and a sequence of (nn, pn)-solutions 
fn in {|z| < R} such that

fn(z)-> f(z) uniformly in {|xr| < R} .

If, additionally, (7) is satisfied at zo = 0 then, additionally,

/nz(0)-/z(0).

Proof. We fix an R' G (R,Ro), put

J i/(z) for |z| < R'
' ° 1 0 for |z| > R',

and define po(z) in the same way. Obviously there are two sequences VmPn 
satisfying (a)-(d) with respect to and two sequences von,llOn satisfying 
(a)-(d) with respect to vo,po such that, moreover,

POn(^) = ^n(^), POn(^) = Mn(*) Vn G N
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in B := {|z| < R}. If (7) holds for z/,n, then we may additionally suppose 
that these sequences each satisfy a uniform Bojarski condition at zq = 0. 
Then

:= f(z) + P(i/0A + MoA)(*) =■ V/(*)

is analytic in B' := {|^| < R'} and continuously in Bq = {|z| < Ro} and 
€ f°r certa*n P > 2. Futher let

Vn/(*) := /(*) + P^Onfz + Mo„ A)(^).

Each transformation Vn has an inverse Un in spaces which, in any case, 
contain the images of f under Vn,V, in particular the above mentioned g. 
Moreover, cf. [4, chap. IV. 1]

/n(*) := Ung{z) € C(B0) n PC [2,2 + £l),

whith a positive £i depending only on k, and fn is a (t/n)Mn)( = (^0n,+0n) )- 
solution in B. For such Ung we have

Ung(z) = g(z) + y [$ln(M)0t(O + dcrt

Bo

where

2$ln(Z, z) = Fn(t, z) + G„(f, z), 2$2n(<, z) - Fn(t, z) - Gn(t, z),

f„(M) = - + T=7 ) +

+ M0n(f)rPn(-, ■*)(*),

and where Gn(t, z) is defined by an equation of the same shape, cf. [4, p.83]. 
Since

^0n(<) ^o(Q M0n(<) Mo(O
t - z t — z ' t — z t — z

as n —► oo in Lq for the same q as with (10) above, and that uniformly 
for all z from any fixed bounded subset of C, we obtain convergence of 
4>;n(-,z) —* 4>;(-,z), I = 1,2, in each such Lq, uniformly for all z from an 
arbitrarily fixed bounded subset of C. Here 4>( corresponds to vo,Po in the 
same way as $/„ to z/On,Mon> and

Ug(z) := g(z) + | y z)5t(0 + *)</«(*)] dat = V~1g(z) = f(z).

Bo
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Because of (c) above with e chosen less than (Ro - R')l% we have 

supp $/„(•, 2) C {|2| < (Ro + R')/2)

Hence,
Ung(z) - Ug(z) -> 0

uniformly even in Bo (even in every compact subset of C if we consider the 
difference to be defined everywhere in C ). This proves the first part of 
Theorem 3.

Let now, additionally, (7) be satisfied for v, /t at zo = 0- Then each fn(z) 
admits an expansion

(16) /n(z) = /„(0) + fn,(0) • z + /nI(0) • z + O(|z|1+“)

at 0. Because of the uniform Bojarski conditions at 0 for pn,/z„ and the 
uniform boundedness of the /„ in B we have

(17) |O(M1+")| < W|1+“

with the same positive constants M, a for each /„ , cf. [4, Theorem II.5.2] 
(with D = {0} there). (16), (17) imply, of course, the remaining assertion 
of Theorem 3.
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