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Some Extremal Problems Concerning 
the Operator

Abstract. Following [P2] we assign to each quasisymmetric automorphism 
7 of the unit circle T a linear homeomorphic self-mapping S7 of a Hilbert 
space (H, || • ||H). A complete solution to the following extremal problem 
is found: For which quasisymmetric automorphisms 7 of T, ||B7(/)||h = 
^'(7) for some f € H with ||/||h = 1 ? Here A'(7) stands for the maximal 
dilatation of an extremal quasiconformal extension of 7 to the unit disk. As 
an application a relation between the Schober constant A(T) of a quasicircle 
r C C and an extremal quasiconformal reflection in T is established.

0. Introduction. Given a domain fi in the extended complex plain C 
Cu{oo} we denote by tf(Q) (A(fi)) the class of all complex-valued harmonic 
(analytic) functions on fi. If a function F : D —* C has partial derivatives 
for almost every (a.e. for short) z — x -I- iy € D then the Dirichlet integral 
^n[F] of F is defined by

(0.1) Vq[F] := / (|dxF|2 + PyF|2)d5 = 2 i (|9F|2 + |dF|2)dS ,
Jn
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where dS := dxdy and

(0-2) dy ’
dF := - idyF), dF := X-{dxF + idyF).

The class A2(fi) := {F G A(Q) : Pn[A] < 00} is a closed subspace of the 
space 772(ft) := {F G 7f(fi) : Dn[.F] < 00} in the pseudo-norm ||A||x := 
7|Pn[F], A G X := A2(Q).

Suppose Q is bounded by a Jordan curve T = dSl. Given a function 
F : fi —+ C we define for every 2 £ T, dF(z') := limn9u_2 A(u) provided 
the limit exists, while dF(z) := 0 otherwise. Write A := {z G C : |z| < 1} 
and T := {2 EC: = l}for the unit disk and its boundary, respectively.

In case Q — A we will use the symbol drF for the radial limiting values 
function of F, i.e. for every z G T, dFr{z} := lim^!- A(Zz) if the limit 
exists, while drF{z') := 0 otherwise.

Given K > 1 we denote by Qa(A') the class of all A'-quasiconformal 
(A'-qc. for brevity) self-mappings of A, and let Qa U/01 Qa(A’). It is 
well known that every ip G Qa has a continuous extension to T and dip is 
a sense-preserving homeomorphic self-mapping of T; cf. [LV, p. 42]. Due to 
Krzyz the class Qt := {dip : ip € Qa} has a very simple characterization 
by means of quasisymmetric automorphisms of T; cf. [Kl] and [K2].

Another interesting characterization of the class Qt by quasihomogra- 
phies was introduced by Zajqc; cf. [Z], see also [K3]. For K > 1, define 
Qt(A’) := {dip : ip G Qa(A’)}. Thus Qt(A') is the class of all quasisym­
metric automorphisms of T which admit a A'-qc. extension to A. The 
functional A'[y>] := inf{A' > 1 : ip G Qa(A')} is the maximal dilatation of 
V-

Analogously, for 7 G Qt we set A'(7) := inf{A' > 1 : 7 G Qt(A')}. In 
both definitions inf may be replaced by min because of the compactness 
of the class {ip G Qa(A') : dip = 7} in the uniform convergence topology 
on A; cf. [LV, p. 73]. Thus A'(7) is the maximal dilatation of an extremal 
qc. extension ip of 7 G Qt to A; extremal means that ip G Qa(X[7]). For 
p > 1, we adopt the usual notation AP(T) for the class of all functions 
f : T —+ C, p-integrable on T with respect to the Lebesgue arc-length 
measure, i.e. ||/||p := (/r |/0)|p|d2r|)1/p < 00.

The notation f = g, f,g G A*(T), means that f — g equals a constant 
almost everywhere (a.e. for brevity) on T. It is clear that = is an equivalence 
relation in A1(T), and let A^T) := {[// =] : f g A1(T)} stand for the 
quotient space LX(T)/ =. Recall that for every f G A^T) and z G A the
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Schwarz and Poisson formulas read as

(0.3)

(0.4)

where

(0.5)

1 /* -L _/a(^):=2~ / f^y^—^\du\ = a0(f) + ^2an(f>)zn,
J T „_ in= 1

F[/](^):=y- [ /(w)Re^t-l|dn| ,
z7T J'p ll — Z

<*(/) ' = /T^U^dU^'

an(/) : = - I unf(u)\du\, n = l,2,.... 
n Jt

Obviously, for every f E /^(T), /a 6 A(A) and P[f] € //(zX). According 
to the Poisson integral properties, for each f E ¿'(T) we have 5rP[/] = f 
a.e. on T; cf. [Du, p. 5], [R, Sect. 11.12]. Therefore, the operator Sq :
¿/(t^pct),

50([// =]) := dTP[f] - P[/](0),

is a selector on the quotient space L^T). We call it the Poisson selector. 
Consider the class //2(ôA) := {/ E -^(T) : P[f] E //"(A)} , and define

the quotient space

H := Retf2(dA)/ == {f E l/(T) : 50(/) E Re tf2(ÖA)} .

Here and subsequently, Re X := {Re / : f E A"} for any space X of complex­
valued functions. If f E Re//2(<9A) then, by (0.3) and (0.5), we get

oo oo

II/II2 = 27TI /a (0)I2 + tt £ l«„(/)|2 < 27T|«o(/) I2 + * £ n|an(/)|2
n=l n=l

= 27r|a0(/)|2 + i K/a)'!2^ < 00 »
J A

so that / E A2(T). Therefore, (Jf, || • ||j/) is a real Hilbert space, where 

(0.6) 2II/H5, := P(P[A>(/)]) = J |(5o(/)i)f ¿5 .

For brevity we shall write P[A] for the Dirichlet integral Pa[F]- We denote 
by P the set of all complex polynomials. For a non-empty set A C C, 
let P(A') := {P|7< : P E P}. From (0.3), (0.5) and (0.6) it follows, in the 
standard way, that

(0.7) 50(H)C Re£2(T);
(0.8) ||5o(/)|!2<^||/||w,/eH;
(0.9) {/ : So(/) € ReP(T)} is a dense subspace of H;
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cf. [P6, Thm. 2.4.8] and [P5, Thm. 1.2]. Moreover, we can show that for 
every F G A2 (A), F belongs to the Hardy class H2, and so 
(0.10) F = (liedrF)^ + ilmF(O) and RedrF G Re//2(t)A);
(0.11) 2||[Re0rF/ =]||2h = P[P[RedrF]] = /A |((Re0F)A)'|2dS; 

cf. [P6, Thm. 2.4.4]. We adopt the usual notation C'(A') for the class of 
all complex-valued continuous functions on a set K / 0. From Lemma 
1.1 and (0.9) it follows that there exists a unique linear bounded operator 
By : H -* H satisfying

(0.12) B^[fl =]) = [f o 7/ =] , / e ReC(T) n H\d&) .

Let ||T|| stand for the supremum norm of a linear operator T : H —> H, 
i.e. ||T|| := sup{||T(/)||H : f G H and ||/||jr < 1}. Following [BS] we will 
use the notation p for the inverse mapping to a complex-valued mapping p 
if it exists. By definition and by Theorem 1.2 we easily find that for any 
7,<r G Qt

(o.i3) ||s7|| < vW);
(0.14) B7o<t = BaB-p,
(0.15) = B-1-
(0.16) SidT = I,
where idT : T —» T and I : H -+ H are identity mappings; cf. [P6, Corollary 
2.5.4] and [P2, Lemma 1.1]. The properties (0.13) and (0.15) say that the 
operator By is a linear homeomorphism of H onto itself. Moreover, it turns 
out that

B7(/) = [50(/)o7/=], /GR,7GQt;
cf. [P6, formula (2.5.8)]. However, we will not use this fact in the sequel. In 
what follows we list four natural questions involving the supremum norm of 
the operator By.

Question 0.1. For which 7 G Qt, ||B7|| = (?) ?

Question 0.2. For which 7 G Qt, does there exist f £ H with ||/||h = 1 
such that ||B7(/)|| = ||By || ? This question may be formulated equivalently: 
When ||BJ = max{||B7(/)||H : / G H and ||/||„ < 1} ?

Question 0.3. For which 7 G Qt, ||B7(/)|]j/ = f°r some f G H
with H/IIh = 1 ?

Question 0.4. Does there exist a constant c > 0 such that for every 
7€Qt, HBJ-I^VW)-!)?

In the next section we give a complete answer to the Question 0.3. In 
Section 2 we show that for some 7 € Qt, ||B-J| may be expressed by
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the smallest positive eigenvalue A»(7) of 7. The results obtained there 
are helpful in the next section. It turns out that the supremum norms 
||B^|| and HB“11| are related to the Schober constant A(T) of a certain 
quasicircle T C C whose welding homeomorphism is 7 € Qt! cf. Lemma 
3.1. Thus the study of the Schober constant A(T) can be reduced to the 
study of norms ||B7|| and HB“1!!, which seems to be easier in some cases. 
As applications we present a few results in Section 3. The norm || B7|| is 
also closely related to the Grunsky-Kiihnau constant n (cf. [Kul, p. 383]) 
for a respective Grunsky matrix associated with 7. However, this topic will 
be studied in a forthcoming publication. This justifies studying the norm 
||B71|. In the last section we give some comments to our subject.

The author is very grateful to Ken-ichi Sakan for his helpful remarks.

1. The main result. It is easily verified that

|aj6i + 0262!“ + |^1^2 + «2^11“ — (l°i|” + la2|“)(|^iI + I&2I)“

for any «¡1, <12,61, ¿2 € C. The change of variables formula now shows that 
for all F € B2(A), K > 1 and p € Q/<(A)

(1.1) o 9?] = 2 i (|d(Fo</>)|2 + |a(Fo<p)|2)£/S
7 A

< 2 i (|dB o <^|2 + |d.F o <£>|2)(|<fy?| + |d</5|)2dS
7 a

<2A'M I (|5Fo¥5|2 + pBo¥j|2)(p¥>|2-|^|2)dS
7a

= 2A’H y (|ar|2 + |0f|2)<ls = k[v]Pa[f] .

This means that the Dirichlet integral is quasi-invariant; cf. e.g. [Al, p. 18].

Lemma 1.1. Given K > 1 assume that € Q/<(A). Then for all functions 
F e ReP and P e Retf2(A), G := P[d(F o 95)] € ReB2(A) and

(1.2) ■D[Fo<f-G + P] = D[FoV>-G] + 'D[P] .

In particular,

(1.3) 2>[G] = T>[F 0 <p] - V[F o 95 - G] < KV[F] .

Proof. Suppose A’, F and P satisfy the assumptions of our lemma and 
set 7 := d<p. The proof will be divided into two parts.
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Part I. We first prove the lemma under the assumption that G G 772(A). 
Since the class ReP(A) is dense in ReP2(A), there exists a sequence 
Pn G ReP, n G N, such that

(1-4) P[Pn - P] -> 0 , n -* oo .

For z G C define <£(2) := p(z) if 2 G A, <¿>(2) := 7(2) if 2 G T and 
<¿5(2) := l/ip^ll'z) if 2 G <C \ A. By the reflection principle for qc. mappings 
(see for instance [LV, p. 47]), p is a qc. self-mapping of the extended complex 
plane C. For every t G R the set

is the straight line passing through the point t£ and orthogonal to the 
straight line {s£ : s G K}. Since ip has the ACL-property (for the defi­
nition cf. e.g. [LV, p. 127 and 162]), it is absolutely continuous on almost 
every chord parallel to either of the coordinate axes, i.e. p is absolutely con­
tinuous on f$(t)n A for a.e. / G [-1,1], £ = l,t. By definition, dG = F 07, 
and so d(F 0 p - G) = 0 on T. Moreover, by our assumption, PfG] < 00, 
so that for almost every y G [—1,1] and x G [-1,1]

i |dx(P o — G)| < 00 and i \dy(F o p - <?)| < 00 . 
Mrv,(y)

Fix n G N. We may now integrate by parts to conclude that for a. e.
ye [-1,1]

i dx(Fop-G)dxPndx = - [ (F o p - G)d2xxPndx

and for a.e. [-1,1]

i dy(F o p - G)dyPndx = - i (F o p - G)d2yyPndx ,
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where d2x := dxdx and d2y := dydy. Fubini’s theorem then implies

i (dx(F o * - G)dxPn + dy(F o ? - G)dyPn)dS 
J

-h!J-i 7a
dx(F o ip - G)dxPndx)dy

'Ani,(y)

+ / ( [ dy(F °V~ G)dyPndy)dx 
J-i J^ne^x)

= ~ f\ I {F o ip - G)d2xxPndx}dy 
J-l JAne,(y)

- I ( I (F°V> - G)d2yyPndy)dx

= - [ (FOV>- G)(dxxPn + d2yyPn)dS = 0 ,

7a

because Pn is a harmonic function on A. Hence

T>[Fo<p-G+Pn] = V[F°v-G} + P[Pn]

+ 2 y (dx(F o ip - G)dxPn + dy(F o <p - G)dyPn)dS 

= T>[F O - G] + V[Pn] •

A passage to the limit now implies, by (1.4), that 

V[Fop-G + P} = lim T>[F o p - G + Pn]
n—*oo

= V[F o tp - G] + lim V[Pn\ = P[F o - G] + V[P] ,
n—>oo

and this is precisely the equality (1.2). Setting P G in (1-2) we obtain 
the equality in (1.3). The inequality in (1.3) follows from (1.1).

Part II. We complete the proof by showing the first part of our assertion, 
i.e. we prove that G always belongs to 7/2(A). Let At be the class of all 
homeomorphisms a : T —* T which have a conformal extension to some 
°pen annulus containing T. It is easy to check that each a € At is a 
quasisymmetric automorphism of T, so that At C Qt- The inclusion 
follows immediately also from the Fehlmann characterization of the class 
Qt; cf. [FI, Thin. 3.1] and [F2]. It turns out that there exist a constant 
A * > 1 and a sequence q„ € At fl Qt( A *), n 6 N, satisfying

(1-5) lim 7„(z) = 7(2) , *€T;
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cf. [P6, Lemma 3.1.3] and [P5, Thm. 2.1], For n € N define Gn := P[Fo7n], 
Fix n 6 N. It is easily seen from the Douglas formula that P[Gn] < oo; 
cf. [D] and [A2, Thm. 2-5, p. 32]. However, this can be obtained in a more 
direct way as below. Integrating by parts we have for each k € N

ak : = - i F o 7n(u)u*:|du| = - i Foq/n(elt)e ‘ 

TT 7t Jo
dt

Hence

r °°
V[Gn] = |((^0 7n)A)'|2dS = 7rY>M

< 4tt I max 
\0<i<2%

2 oo .

fc=l

and we can use Part I to obtain

(1.6) P[Gn] < K*T>[F] .

From (1.5) it follows that 7„ is uniformly convergent to 7, and consequently 
for every z 6 A, limn_oo &Gn(z) = dG(z) and lim^oo dGn(z) = dG(z). 
Then (1.6) shows, by Fatou’s lemma, that !>[(?] < lim infP[Gn] < 
K*D[.F] < 00, which is our claim. Combining Parts I and II yields the 
assertion of the lemma. □

Theorem 1.2. Given 7 € Qt assume that is its qc. extension to A. 
Then for every f £ H

(1.7) 2||£7(/)||2h = V[F o <p] - V[F o <p - <?] ,

where F := P[<So(/)] and G := P[5oB7(/)]. in particular,

(1-8) I|B,(/)IIh < a/WI/IIh .

Proof. Suppose 7 and ip are as in the assumption and fix f 6 H. By (0.9) 
there exists a sequence fn := [/„/ =], fn € ReP(T), n € N, such that

(1-9) 11/ - /n||w -► 0 as n -> 00 .
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Then, by continuity,

(1.10) ||fl7(/)-B7(/n)||„ -0 as n —> oo .

For n € N set Fn := P[/n] and Gn '•= V[fn 0 ?]• From (1.10) and (0.12) it 
follows that

(1.11) 2\\B^f)\\2„ = 2 Urn ||B7(/n)||2„ = lim P[Gn] .
n—*oo n—*oo

By (1.1), (1.9), (0.6) and the Minkowski inequality we have

\T>[F o ip}1'2 - V[Fn o y?]1/21 < V[F o - Fn o v>]1/2 = P[(F - Fn) o p]1'2

< y/KMV[(F - F„)]1/2 = V/2W]||/ - fn\\n - 0 as n -+ oo , 

and consequently

(1.12) lim T>[Fn o <^] = V[F o y>] . 
n—*oo

In the similar way we show that

\V[F o - G]1/2 - T>[Fn o <p - Gn]1/21 < P[F o * - Fn o ip + Gn - <7]1/2 

< P[(F - Fn) o v?]1/2 + V[G - Gn]l/2

< ^/2Will/ - fn\\n + V2\\B^f) - S7(/n)||K - 0 as n —► oo , 

and so

(1.13) lim T>[Fn o - G'„] = T>[F o - G] . 
n—*oo

From Lemma 1.1 we conclude that for every n 6 N, P[G„] = T>[Fn oy>] - 
T>[Fncnp—G„]. Combining this with (1.11), (1-12) and (1.13) we obtain (1.7). 
It is a well known fact that for any K > 1 the class {92 € Qa(A') : dtp = 7} 
is compact in the uniform convergence topology on A; cf. e.g. [LV, p. 73]. 
Therefore there exists an extremal A'(7)-qc. extension 4> of 7 to A. Setting

:= in (1-7) yields (1.8). □
We recall that a qc. self-mapping of A is said to be a regular Te- 

ichmiiller mapping if there exists a non-zero function F € A(A) and a 
constant k,0 < k < I, such that the complex dilatation of ip is of the form

(lM> ^ = kW\ M °"A •

We are now in a position to answer the Question 0.3.
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Theorem 1.3. Let 7 £ Qt and let 0 < k < 1. If f £ H satisfies ||/||// > 0 
and if7 admits a regular qc. Teichmiiller extension 0 toA with the complex 
dilatation

(1.15)
di/>
dih (So(fW

a.e. on A ,

then there exists g £ H such that ||g||j/ = 1 and

(1-16) l|B,(9)lli, = HM = '

In particular, ||-B7|| = 1/^(7).
Conversely, if g £ H and k satisfy ||<71| // = 1 and (1.16), then 7 admits 

a regular qc. Teichmiiller extension if> to A with the complex dilatation
(1.15), where f := B-y(g). Moreover, 0 is uniquely extremal.

Proof. Assume 7 £ Qt admits a qc. extension to A with the complex 
dilatation (1.15). Let F := So(/)a and G : A -* C be a function satisfying 
the equation

(1.17) (l-fc)Go0 = JfcF + F .

Differentiating both sides of this equality we get

($C) o i/idih + (dG) o i/jdih = (1 — fc)-1 F' ,

(ac) o vw + (ac) o = (1 - k)-'k~p.

Since dip d i/> - dip d tp = dip dip - dih dip = PV’I2 - PV’I2 > 0 a.e. on A,
(1.15) shows that dG = 0 a.e. on A. In this way the function G is analytic 
on A; cf. [Al, p. 33]. Moreover, by (1.1) we have

2(1 - fc)2 y \G'\2dS = P[(l - k)G] = T>[(kF + F) o j>]

< K[j>]V[kF + F] = 2A'[^](1 + fc2) I \F'\2dS < 00 .

7a

Thus G £ A2(A) and, by the definition of H, there exists g £ H such that 
G — G(0) = <So(<7)a- By (0.9) there exists a sequence gn £ H, n £ N, such 
that gn := S0(gn) € ReP(T) and

(1-18) g - ffnllw 0 as n -> 00 .
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From (1.17) we see that G o £ H2( A), so that

(1.19) ReGo^ = P[50(h)] + c

for some h 6 H and c 6 R. Moreover, from Lemma 1.1, (1.1), (0.6) and 
(1.18) it follows that
(1.20)

2||/i- H7(gn)||7f = P[ReG o ip - o 7]] < P[Re G 0 - P[$n] °

< K[ip]V[R,eG - = 2/f[V»]||g - </n||jr -*■ o as n -> 00.

On the other hand, by the definition of the operator By and by (1.18), we 
obtain

||B7(<7„) - B7(g)||tf0 as n -» 00 .

Combining this with (1.20) we conclude that

(1.21) By(g) = h .

Theorem 1.2 now shows, by (1.19), (1.21), (0.6) and (1.17), that

2||S7(s)||h = P[ReG 0 V’] - P[ReG 0 - V[S0By(g)}\
(1 22) =P[ReGoV’]-P[ReGoV’-P[5o(h)]] = P[ReGoV’]

= (^)p|R,efl = 2(^)W,,.

Since G is analytic, we see that

G' o 1/) dip = (1 — &)-1 F' and G'o ip dip = (1 — k)~lkF' ,

dS

and hence, by (0.6), that

d.23) = A|FT''5'

= i (\G'o ipdip\2 - \G'o ipdip\2)dS
J A

= J |G' oV>|2(R|2 -\diP\2)dS = JjG'\2dS = 2\\g\\2H 

Combining this with (1.8) and (1.22) we obtain 

(1-24) ||B,(s)||j, < tf(7)||9ll5, < (ITT)'«/«), = l|B,(9)«H ■
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From (1.23) and (1.24) it follows that

I|b;(!7)II2h = A-(7)l|g|lh = (1 + *)(1 - fc)-1||g||2H.

Replacing now g by g/||<j||h we obtain (1.16). That ||B~,|| = ^/A'(7) follows 
from Theorem 1.2 and (1.16), which proves the first part of Theorem 1.3.

Suppose now that g G H and k satisfy ||sf||« = 1 and (1.16). Since for 
any K > 1 the class {9? € Qa(7Q : d</> = 7} is compact in the uniform 
convergence topology on A (cf. e.g. [LV, p. 73]), there exists an extremal 
7t’(7)-qc. extension of 7 to A. Set F := (5oB7(^))a and G := (<So(s))a- 
Then Theorem 1.2 shows, by (1.1) and (0.6), that

D[Re G o iP - Re A] = Z>[ReGoi/)]- 21| By(g)||2H <

AW[ReG] - 2A'(7) = 2A'(7)(llfflltf - 1) = 0.

Hence the equality Re G 0 ip = Re F + c holds a.e. on A for some constant 
c G R. Differentiating both sides of this equality we get

(1.25) G'o tpdip + G'o ipdip = F' .

Hence,

(1.26)
|A'|2 = |G' o V>|2|dV’|2 + |G' o V’|2|^V’|2 + (G1 0 ip)2dtpdip + (G' 0 ip)2dipdtp 

= ¡G' 0 y.|2( |avi +1W - <? = |G' o " Wl2) -

a.e. on A, where Q := 2\G'oip\2\dip\\dip\-(G'oip)2dipd'ip — (G'oip)2dipdip 
a.e. on A. Since ip is A'(7)-qc., (|5^| + |50|)(|5V>| - |^V’I)-1 < ^(7) a-e- 011 
A. Combining this with (1-16) and (1.26) we obtain by (0.6)

2A’(l) = 2||B,(s)||2„ = y IFfdS

<A’b) i |G'oV,|2(|9V>I2-|9V’I2)</5- [ QdS 
J A. J &

= A'(7) I \G'\2dS - I QdS = 2A'(7)||g||2H " I QdS 
J J A J A

= 2A'(7) - I QdS < 2tf(7) .

The inequality is possible iff the equalities

|G' o V’|2|dV’IPV’| = (G1 o ip)2dipdip and pyyy = k
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hold a.e. on A. Therefore,

(1-27)
dip G' o ipdip
d^p = kG'oipdip a'e'on A

Let f := By(g). Then F = (<So(/))a- We conclude from (1.27) and (1.25) 
that G' o ipdip = (1 + k)~lF', hence that

(1.28)
dip _ £ 
dip ~ kF' a.e. on A ,

and finally that (1.15) holds. This ends the proof of the converse statement.
We now prove the uniqueness of the extremal extension ip. Suppose ip is 

another extremal K(7)-qc. extension of 7 to A. Then the Beltrami equation
(1.28) holds with ip replaced by ip. Hence d(ip o ip) = 0 a.e. on A, and so 
ip o ip € Qa(1)- Since dip — dip = 7, we see that ip = ip on A. □

Corollary 1.4. If K > 1 and if g € H satisfies ||si||h = 1, then there 
exists 7 € Qt such that

(1.29) HB.II2 = ||B7(g)||5, = A-(7) = if .

Moreover, 7 admits a unique regular K(y)-qc. Teichmiiller extension ip to 
A with the complex dilatation given by (1.15), where k := (K — 1)/(A' + 1) 
and f := B7(g).

Proof. Given K > 1 and g € H, let ||q||// = 1 and let k and f be as 
above. By the Mapping Theorem [LV, p. 194] (also cf. [B] and [LK, p. 45]), 
there exists a solution ip of the Beltrami equation (1.15) being a A’-qc. self- 
mapping of A. Hence y := dip £ Qt(A'). Theorem 1.3 now shows that 
(1.29) holds and 7 admits a unique regular A'(7)-qc. Teichmiiller extension 
'P to A with the complex dilatation given by (1.15). □

2. The smallest eigenvalue of a quasisymmetric automorphism of 
the unit circle. If f G ReA^T) then, by (0.3), Im /a is a real-valued 
harmonic function on A. A classical result states that the function Ijii/a 
Las a finite non-tangential limit a.e. on T and

¿rIm/A(^)= lim Im f&(rz) = — Re PV i -- ---du 
r-*l~ IT JT Z — U

for a.e. z e T; cf. e.g. [G, p. 103]. For every f := [f/ =] € H, define

(2.1) A(/):=[drIm/A/=] .
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Since 2?[ReF] = P[ImF] for F E A2(A), we conclude from (2.1) and the 
definition of the space H that

(2.2) A(H)=H , A2 = -I and ||A|| = 1 ,

and so the operator A maps isometrically H onto itself. Therefore, the 
operator

(2.3) := B^AB-1 ,

called the generalized harmonic conjugation operator, is a linear homeomor- 
phism of H onto itself; cf. [P2]. We recall that a real number A is said to 
be an eigenvalue of 7 € Qt if there exists f 6 H with ||/||j/ = 1 such that 

(2-4) (A+1)A(/) = (A-1)A7(/);

cf. [P3, Definition 1.1], For every 7 € Qt write A* for the set of all eigen­
values of 7 and define

A»(7) = min{A > 0 : A € A*}

whenever A* / 0 and the minimum exists, while A«(7) = 00 otherwise. 
From [P3, Thm. 1.4] it follows that A«(7) = 00 for 7 € Qt(1), and

(2.5) A,(7) >(/<(?)+1)/(A"(7)~ 1) for 7 € Qt\Qt(1) •

A sufficient condition on 7 for the equality in (2.5) to hold, was obtained in 
[P4, Thm. 2.2]. We use this result to show the following 

Theorem 2.1. Let y € Qt \ Qt(1)- Then

(2.6) A.(7) = (A’(7)+1)/(A'(7)-1)

iff there exists g E H such that ||g||n = 1 and that

(2.7) ||B7(S)||2h = A'(7) •

Proof. Assume first that (2.7) holds. Then Theorem 1.3 shows that 7 ad­
mits a regular qc. Teichmuller extension ip to A with the complex dilatation
(1.15), where / := By(g) and k := (A'(7)- 1)/(A'(7)-F 1). Therefore (2.6) 
follows from [P4, Thm. 2.2].

Conversely, assume that (2.6) holds. Then there exists f E H such that 
II/Hh — 1 and that (2.4) holds with A replaced by A»(7). Hence, by (2.2) 
and (2.5) we have

(A,(7) + 1)||/||W =(A.(7)-1)||A7(/)||„
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and consequently, by (2.3) and (2.6),

A'(7) = ||s,as;1(/)||h .

Set g := (^//i'(7))-1 Theorem 1.2, (0.15) and (2.2) now imply
that

toll« < (v/*«)-,MII|b;1IIII/IIk =

< (x/A'M)"1 v^tt) = 1 i

moreover,

a-(7) = ||b,ab;'(/)||„ = 7aT7)I|b,(9)||h 

<v<Kh)||B,||||s||H<A'(7)-

Combining the above inequalities we see, by (0.13), that ||g||j/ = 1 and the 
equality (2.7) holds. □

Corollary 2.2. If 7 € Qt and if (2.7) holds for some g £ H such that 
IIsIIh = 1, then there exists f G H satisfying
(2.8) 11/11« = 1 , ||fl;1(/)||2„ = 7T(7) .

in particular, ||B7|| = ||B-X || =

Proof. Given 7 € Qt \ Qt(1) assume (2.7) holds for some g G H such 
that ||g||h = 1- Therefore (2.6) holds by Theorem 2.1. From [P3, Thm. 1.4 
(v)] it follows that A* = AL and hence

A«(7) = min{A > 0 : A G A*} = min{A > 0 : A G A^} = A»(7) • 

Combining this with (2.6) we obtain

A.(7) = A,(7) = (A'(7) + 1)/(A(7) - 1) = (A’(7) + l)/(A'(i) - 1) • 

Applying Theorem 2.1 again, with 7 replaced by 7, we see, by (0.15), that 
there exists f € H satisfying (2.8). Moreover, combining (2.7) and (2.8) 
with (0.13) we have

/Mr) = I|B,(9)IIh < IUM < x/Mt). 

x/A«j = ||B,(nlltf < l|B,|| < Aifl.
and hence ||B7|| = i/aTt) = \/A'(7) = ||B7|| = ||B~X || as claimed.

If 7 € Qt(1) then, by (0.13) and (0.15), we obtain ||B7|) < y/K^) = 1 
and HB“11| = ||B7|| < y/K(i) = 1. Hence the operators B7 and B“1 are 
isometries of H onto itself, and the corollary follows. □
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3. The Schober constant AS(T). Given a Jordan curve T C C write 
H(F) for the family of all real-valued functions F continuous on C and 
harmonic onilUil, = C\T which satisfy 0 < Pq[F] + Pp.[F] < oo, where 
Q and Q„ 3 oo are complementary domains to T. Define

1
MT)

:= sup
|Pn[F]-Pn.[F]l 
Ffi[F] + Pn.[F] Fe #(r)

provided the supremum is a positive number, while Aa(r) = oo otherwise. 
For a short survey of basic properties of the curve functional As(r) we refer 
the reader to the Schober article [S]; also see the references given there. Let 
A and <£* denote conformal mappings of A and <C \ A onto the domains 
Q and Q», respectively. Such mappings exist by the Riemann mapping 
theorem; cf. for instance [R, Thm. 14.8]. Moreover, by the Taylor-Osgood- 
Caratheodory theorem both the mappings and have homeomorphic 
extensions to the closures Q and fi„, respectively; cf. for instance [R, Thm. 
14.19]. Then 7 := dF.odJ» is a sense-preserving homeomorphic self-mapping 
of T. We recall that every homeomorphism 7 assigned to T in this way is 
said to be a welding homeomorphism of F C C. The class of all welding 
homeomorphisms of T will be denoted by Weld(T). For z € C \ {0} set 
h(F) := l/z, and let h(0) := 00, fi(oo) := 0. If a Jordan curve T C C 
admits a A’-qc. reflection !? then ip := h 0 0o <h is a A’-qc. extension of
7 := d<f>, o dJ> to A. Conversely, if ip is a A’-qc. extension of 7 to A then

(3-1) !?(z) :=
0 h. 0 ip o $(2) 

\ *(*)
,26il, 
,2 e D,,

is a A’-qc. reflection in T. Thus for every A > 1,
(3-2)
a Jordan curve fcC admits a K-qc. reflection iff Weld(r) C Qt(F') .

Lemma 3.1. For every quasicircle T C C the following equality holds

1 (maxdlBJI, HB;1!!})2 - 1 
1 ' ' Aa(r) (max{||B7||,||B-1||})2 + l ’

where 7 € Weld(T).

Proof. Given a quasicircle T C C let F € //(T). Define G := F o i> and 
G, := Foif, o h. By the conformal invariance of the Dirichlet integral we 
have

(3-4) P[G] = Pn[F] and P[G„] = Pn.[F] ,
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and consequently, by (0.10), g := [g/ ==],</• := [g*/ =] G H, where g := dG 
and g* dG*. Since both the functions g and g* are continuous on T and 
g = g, o 7, we conclude from (0.12) that

(3.5) g = By(g,) and g. = B'^g) .

From (3.4), (3.5) and (0.6) it follows that

P[C]-P[G.] «9«5, — «9.«!,
Pnlf'l + Pn.M »[<?] +P[G.] «9115, + «9.115,

l|B^(9-)«5, - 119-115, < llg-rll* - 1 
I|B,(9.)II5, + «9.115, “ «B,«2 + 1 ’

and similarly

Pn.lfl - Pn|fl = ll^Vg)«,, ~ «9115, < «B;1«2-!
« + Bn.lf] + «9«5, “ l|B,-'«2 + l '

Combining the above inequalities we obtain

|Pn[F] -Bn.[F]| < (max{||Bj|, HB"11|})2 - 1
W] + 2>n.[F] - (maxfllBjJIBvW + l ’

and consequently

. ' 1 (max{||B,||,||B;1||})2 - 1
' 1 A,(D " (n.ax{||B,||,||Bi'||))J + l '

It remains to show the inverse inequality of (3.6). Fix g* 6 ReP(T) and 
let g := g* o y. For z 6 C define F{z} := P[g] 0 #(2) if z € ft, F’(z) := 

oho $»(z) if z G ft» and F(z') := 9(P[</] 0 #(z)) if z G T. Since both
the functions g and g* are continuous on T, we see that for every z G I

9(P[</]o<?)(.z) = god<P(z') = g.o^odQiz) = g*od$*(z) = d(P[g*]oho$,,')(z) .

Therefore the function F is continuous on C.
We can assume that ||g»||i/ = 1, where g* := [g*/ ==] G H. By (0.12),

g = SoBy(g*). The conformal invariance of the Dirichlet integral now 
shows, by (0.6), that

Pn[F] = D[P[sH = 2||B7(s,)||2h < oo 

and
Vn.[F} = V[P[g,]] = 2\\g*\\2H =2.
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Hence F £ and

n n ll^(g»)ll2W - 1 < \Fg[F} - V^[F}\ 1
1 ’ ll^(g.)ll2/f + 1 - 2>q[F] + Pq.[A] - A,(r) •

By (0.9), ||B7|| = sup{||B7(/)||„ : 50(/) G ReP(T) and \\f\\H = 1}. Then 
(3.7) leads to

llfryll2 ~ 1 < 1
||B7|p +1 - As(r) •

The same conclusion can be drawn for the inverse operator B~l, and so

(max{||B7||, HB"1!!})2 - 1 1
(max{||B,||, HBç'll})2 + 1 " A,(r) '

Combining this with (3.6) we obtain (3.3). □
Assume T C C is a quasicircle. By (3.2) we see that 9 is an extremal

A'-qc. reflection in T iff ip := ho o 9 o 9 is an extremal A'-qc. extension of 
7 to A, K > 1. Moreover, the complex dilatations of and •f’ are related 
by the equality

(3.8)
dip [(d# o <?)$'' 
dip ~ [(di- o i>)<F a.e. on A .

This observation is the key for the proof of the following

Theorem 3.2. Given K > 1 suppose that F C C admits a regular K-qc. 
reflection 9 with the complex dilatation

(3-9)
99 A + 1 G' 
99 ~ A - 1 G7 a.e. on Q ,

where G G Â2(Q) is a non-constant function. Then for each 7 £ Weld(T)

(3.10)
A + l _ HBJI2 + 1 
A - 1 ||B7|P - 1 ’

and i' is a unique extremal K-qc. reflection in T.

Proof. Given anon-constant function G G A2(Q),let F := Go$-Go$(0). 
Then F G A(A), P[A] > 0 and F' = (G' o <£)<£'. By (3.8) and (3.9) we have

(3-11)
dip _ (99 o «?) _ A - 1 (G' o <P) _ K - 1 F' 
dip (99 0 0) 9' A' + 1 G' 0 $ 9' K + 1 F'

a.e. on A .
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By (0.10), f := [drReF/ =] G H and F = S0(f)A.
By (0.11), 411/Hjj = Z)[F] > 0. Theorem 1.3 now yields (1.29) for some 
g E H satisfying ||g||// = 1. Therefore ||B7|| = 1| by Corollary 2.2.
Hence (3.10) follows from (1.29) and Lemma 3.1. Moreover, from Theorem 
1.3 and (3.11) we conclude that ip is a unique extremal A'-qc. extension of 
7 to A, and hence that F is a unique extremal A'-qc. reflection in T. □

Corollary 3.3. For every A' > 1 and every non-constant function G G 
A2(fi) there exists a quasicircle T C C which admits a unique extremal 
K-qc. reflection F with the complex dilatation given by (3.9), and for each 
7 G Weld(T) the equality (3.10) holds.

Proof. Fix a non-constant function G G /i2(Q). Then the function F 
Go<P—Go<I>(0) £ <4( A) is also non-constant. Following the proof of Corollary 
1.4 we see that there exists 7 G Qt which admits a unique regular A'(7)-qc. 
Teichmiiller extension ip to A with the complex dilatation given by (3.11), 
where A' := A'(7). It can be shown that 7 is a welding homeomorphism 
of some quasicircle T C C; cf. e.g. [Pl] or [V]. Then the mapping F, given 
by (3.1), is a unique extremal A'-qc. reflection and, by (3.8), its complex 
dilatation satisfies the equation (3.9). Then Theorem 3.2 shows that (3.10) 
holds for each 7 G Weld(T). □

Theorem 3.4. Given K > 1 suppose that T C C admits a regular K-qc. 
reflection F. If

(3-12) A,(D =

and if there exists a sequence Gn G H(r), Pn[G„] = 1, n G N, such that

(3.13)

and that

(3.14)

1 _ ,. |Pn[Gn]-Pn.[Gn]|
As(r) -00 Dn[Gn] + Pn,[Gn] ’

% [<?„ - Gm] -> 0 as n, m -> 00 ,

then the equation (3.9) holds for some non-constant function G G 42(Q) 
and the equation (3.10) holds. In particular, F is a unique extremal K-qc. 
reflection in T.

Proof. Let 7 := ÔF, o dF G Weld(T) 
Cn,„ := G„ oi, ofi and fn := dFn. 
Dirichlet integral we have

For every n G N, set F„ := Gn o F, 
By the conformal invariance of the

(3.15) T>[Fn] = Fn[G„] = 1 < 00 and n G N .V[Fn,.} = Pn.[Gn] < 00 ,
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Then for each n G N, Fn G //2( A), and consequently, by (0.10) and (0.11), 
we see that fn := [/„/ =] £ H and 211/nHj, = 2?[Fn] = 1. Since each 
fn G C(T) and dFn = dFni„ o 7, we conclude from (0.12) and (0.6) that

(3.16) 2||B“1(/n)|||r = P[A„,.] , neN.

Applying the conformal invariance of the Dirichlet integral once again we 
see, by (3.14) and (0.6), that

2||/n - /mil// = T>[Fn - Am] = ZW<5n - -> 0 as n, m -> oo .

Therefore there exists f G H such that \\f - /„||// -* 0 as n —* oo, and 
hence ||/||// > 0. By this, (3.13), (3.15), (3.16) and by the continuity of the 
operator B“1 we obtain

1 = |Pn[Gn]-PQ.[G„]| _ .. |P[fnl - P[F,..1|
A,(r) 7>n[G„] + Pn.|G„] 2>[F„] +

.. IIIB71 (A)IIh - ll/nllkl ll|B,-1(/)IIS, - ll/llkl
l|B,-,(/»)ll’H + IIZn|l5, l|B,-1(/)fe + ||/H5I '

Hence by (3.12) we have

II*;1(/)II2h = A’H/Hk or ||b;1(/)||2h = a-1||/||2h , 

and consequently

(3.17) ||£;\/)||2„ = WII2// or ||B7(ff)||2K = K\\g\\2H,

where g := B~1(/). Set k := (A' — l)(7i' + l)_1. Suppose the second equality 
in (3.17) holds. Then A’(7) = A' by Theorem 1.2 and (3.2). Theorem 
1.3 now shows that 7 admits a regular qc. Teichmiiller extension ip to A 
with the complex dilatation (1.15) and V’ is uniquely extremal. Then the 
mapping </z, as given by (3.1), is a unique extremal A'-qc. reflection and, 
by (3.8), its complex dilatation satisfies (3.9) with a non-constant function 
G := 5o(/)a o g A2(Q). If the first equality in (3.17) holds, then by 
Corollary 2.2, the second equality in (3.17) holds for some g G B, ||p|| > 0, 
and the rest of the proof runs as before. □

4. Complementary remarks.

Remark 4.1. Theorem 1.3 states additionally that if 7 G Qt admits a 
regular qc. Teichmiiller extension of to A with the complex dilatation 
(1.14), then ip *s uniquely extremal, provided A is a square of an analytic
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function which is square integrable on A. In this way we have proved, by 
the way, a special case of Strebel’s theorem; cf. [Stl], [St2] and [LK, p. 
153-154].

From Theorems 1.3 and 2.1 we obtain

Remark 4.2. Under the assumptions in the first part of Theorem 1.3 the 
following equality holds

(4.1) A.(7)
IIB-rll2 + 1 
||2M2-1 '

From Remark 4.2 we get

Remark 4.3. Theorem 3.2 and Corollary 3.3 hold with the equality (3.10) 
replaced by

(4-2) Aa(r) = A,(7) = •

Every analytic Jordan curve F C C is a quasicircle, which is clear e.g. 
from [LV, p. 97].

This can be also deduced from the inclusion Weld(T) C At C Qt and
(3.2).

Combining Kiihnau’s result [Kiil, Satz 5] with Theorem 3.2 yields

Remark 4.4. In case T is an analytic Jordan curve Theorem 3.2 is reduced 
to Kiihnau’s result [KÜ2, p. 302].

The idea of using welding homeomorphisms in the study of topics covered 
by Section 3 appears in [Kii3], too.

References

[Al] Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand, Prince­
ton, 1966.

[A2] ______, Conformal Invariants, Topics in Geometric Function Theory, McGraw-
Hill Book Company, New York, 1973.

[BS] Behnke, H. and F. Sommer, Theorie der analytischen Funktionen, Springer, Berlin, 
1976.

[B] Bojarski, B., Generalized solutions of a system of differential equations of the first 
order and elliptic type with discontinuous coefficients, Mat. Sb. N. S. 43 (1957), 
451-503. (Russian)

[D] Douglas, J., Solution of the Problem of Plateau, Trans. Am. Math. Soc. 33 (1931), 
263-321.

[Du] Duren, P., Theory of Hp-spaces, Academic Press, New York and London, 1970. 
[Fl] Fehlmann, R., Ueber extremóle quasikonforme Abbildungen, Comment. Math.

Helv. 56 (1981), 558-580.
[F2] ______, Quasiconformal mappings with free boundary components, Ann. Acad.

Sci. Fenn. Ser. A. I. Math. 7 (1982), 337-347.
[G] Garnett, J. B., Bounded Analytic Functions, Academic Press, New York, 1981.



184 D. Partyka

[KI] Krzyż, J. G., Quasicircles and harmonie measure, Ann. Acad. Sei. Fenn. Ser. A. 
I. Math. 12 (1987), 19-24.

[K2] ______, Harmonie analysis and boundary correspondence under quasiconformal
mappings, ibid. 14 (1989), 225-242.

[K3] ______, Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae
Curie-Skiodowska Sect. A 47 (1993), 90-95.

[Kül] Kühnau , R., Quastkonforme Fortsetzbarkeit, Fredholmsche Eigenwerte und Grun- 
skysche Koeffizientenbedingungen, Ann. Acad. Sei. Fenn. Ser. A. I. Math. 7 (1982), 
383-391.

[KÜ2] ______, Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für
Q-quasikonforme Fortsetzbarkeit ?, Comment. Math. Helv. 61 (1986), 290-307.

[KÜ3] ______, Möglichst konforme Spiegelung an einer Jordankurve, Jahresber. Deutsch.
Math.-Verein. 90 (1988), no. 2, 90-109.

[LV] Lehto, O. and K. I. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren 
126, 2nd. edition, Springer, Berlin, 1973.

[ŁK] Ławrynowicz, J. and J. G. Krzyż, Quasiconformal Mappings in the Plane: Para­
metrical Methods, Lecture Notes in Math. 978, Springer, Berlin, 1983.

[PI] Partyka, D., A sewing theorem for complementary Jordan domains, Ann. Univ. 
Mariae Curie-Skiodowska Sect. A 41 (1987), 99-103.

[P2] ______ , Generalized harmonic conjugation operator, Ber. Univ. Jyväskylä Math.
Inst. 55 (1993), 143-155, Proc, of the Fourth Finnish-Polish Summer School in 
Complex Analysis at Jyväskylä.

[P3] ______ , Spectral values and eigenvalues of a quasicircle, Ann. Univ. Mariae Curie-
Skiodowska Sect. A 46 (1993), 81-98.

[P4] ______, The smallest positive eigenvalue of a quasisymmetric automorphism of
the unit circle, Banach Center Publications, Institute of Mathematics Polish Acad­
emy of Sciences, Warszawa, Topics in Complex Analysis 31 (1995), 303-310.

[P5] _____ , Spectral values of a quasicircle, Complex Variables (to appear).
[P6] _____ , The generalized Neumann-Poincare operator and its spectrum, Disser-

tationes Math. No. 484, Institute of Mathematics, Polish Academy of Sciences, 
Warszawa (to appear).

[R] Rudin, W., Real and Complex Analysis, McGraw-Hill series in higher mathemat­
ics, McGraw-Hill Book Company, New York, St. Louis, San Francisco, Toronto, 
London and Sydney, 1966.

[S] Schober, G., Estimates for Fredholm eigenvalues based on quasiconformal map­
ping, Numerische, insbesondere approximationstheoretische Behandlung von Funk­
tionalgleichungen, Lecture Notes in Math. 333, Springer, Berlin, 1973, pp. 211-217.

[Stl] Strebel, K., Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen 
des Einheitskreises I, Comment. Math. Helv. 36 (1962), 306-323.

[St2] ______, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des
Einheitskreises II, Comment. Math. Helv. 39 (1964), 77-89.

[V] Vainio, J. V., Conditions for the Possibility of Conformal Sewing, Ann. Acad. Sei. 
Fenn. Ser. A. I. Math. Dissertationes No. 53, 1985, 43 pp..

[Z] Zaj^c, J., Quasihomographies in the theory of Teichmüller spaces, Dissertationes 
Math. No. 357, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 
1996.

Wydział Filozofii KUL 
Katedra Funkcji Analitycznych 
Al. Racławickie 14
20-950 Lublin, Poland

received December 12, 1996


