ANNALES
UNIVERSITATIS MARIAE CURIE -SKLODOWSKA
LUBLIN-POLONIA

VOL. L, 16 SECTIO A 1996

MARIA NOWAK (Lublin)

Integral Means of Univalent Harmonic Maps

ABSTRACT. The main results obtained in this paper are the following.

If f=h+g is a univalent harmonic map, then g,h € H? and f € h?
for p € (0, A~2), where A is given in (3). This is an improvement of
a result presented in [AL]. Moreover, a further improvement of the range:
p € (0,1/3) is established for close-to-convex harmonic maps.

1. Introduction. Statement of results. Let A denote the open unit
disc in the complex plane and Sy denote the class of all complex valued,
harmonic, sense-preserving univalent functions f in A normalized by

(1) f(0)=0, f3 (O)=21".
Each f € Sy can be expressed as
(2) f=h+g,

where h(z) = z + .00, a,2" and g(2) = 1.2 ba2" are analytic in A.
It is known ([BH]) that

(3) 3< A= sup |az] <50.
f€ESH

Let H?(h?),0 < p < oo, denote the standard Hardy space of analytic
(harmonic) functions on A. It is well-known that, if f is analytic and
univalent in A, then f € HP for 0 < p < 3 ( see e.g. [D1, p. 50]).
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In 1990 Y. Abu-Muhanna and A. Lyzzaik [AL] proved the following

Theorem A. If f=h+ g€ Sy, then h, g € H? and f € hP for every
p, p€(0,(2A +2)72%), where A is given by (3).

In [BH] the authors proposed to find the exact set of all p > 0 such that
f€hP,if f€ Sy. Here we extend the above cited range for p, namely we
prove

Theorem 1. Under the assumptions of Theorem A, h, g € HP and f € hP
for0<p< A%,

Let Ky, Cy denote the subclasses of Sy consisting of harmonic map-
pings onto convex and close-to-convex regions, respectively. It has been
shown in [CS] that if f = h+ g € Ky, then h is close-to-convex and
lg(z)| < |h(2)| for z € A\ {0}. These facts imply

Theorem 2. If f = h+ g € Ky, then g,h € HP and f € h*? for
0<p<i.

In section 4 we show that the convex harmonic function [CS]

1 " _n l,—,}
-z 1 =2)"° = =25(1 - z)—*

f(2)=(- 3 .

(4) =Re<1iz)+”m(ﬁ>’ z€A,

isin h% (although g, h ¢ H?) but it is not in h? for p > % . Therefore
the exact range of p > 0 such that, f € h? if f is a convex harmonic
function, can be at most the interval (0, }].

For close-to-convex harmonic mappings we get

Theorem 3. If f = h+ g € Cy, then h,g € HP and f € hP for
0<p<i.

Because
sup |az| =2, sup |ap| =3,
feKn feCy

it seems natural to conjecture that, if f = g+ h € Sy, then g, h € H?
and f € h? for 0 < p < 1/A, where A is given by (3).
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2. Proof of Theorem 1. The proof of Theorem 1 is based on the following,
below stated results.

For p € R and f harmonic on A let us set

9

(9) My(r, f) = L /— |f(re')|Pdt, 0<r<1.
27 Jo

Now, let A denote the class of analytic, locally univalent functions h on
A, normalized by
h(0)=0, A'(0)=1,

and satisfying the condition

zh'"'(2) 2|2|? y 2A|z|

(©) h(z) 1-22| = 1=z

for some constant A > 1. As in [P3, p.176; P2] we define

L log M,(r,h")

Theorem B. If he€ A, then for p€e R

(8) ﬂh(p)s—%+p+\/j—p+z42p2-

To prove this theorem it is enough to proceed analogously as in the proof
of Theorem 1 of [P1] (see also [P3, pp.176-182])

The next result we will need is due to T.Flett [F1], [F2] (see also [MP]
for its simple proof).

Theorem C. Let 0 < p <1 and h be an analytic function on A. If

(9) /01(1 - )P IM,(r, h')dr < ,

then h € HP.

Proof of Theorem 1. Let f=h+g € Sy . For fixed ( € A consider the

function
1 (&) - 10

FEY = aowo
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Then F € Sp . This fact implies that the analytic and locally univalent
function h satisfies (6) with A given by (3). Now it follows from Theorem
B that for each € > 0 there exists C(¢) such that

C(e)
(1 - r)-d+ptVi-pratsie’

;'lff,,(r,g'} < Mp(ra h,) S
Hence for 0 < p < 1 and for arbitrarily fixed ¢ > 0

1 |
/ (1= )P~ My(r,g')dr < / (1 — )P ' My(r,h')dr
0 0

</' Ce)
~ Jo ( r)'l-+vl-P+A° pi+e

The last integral is finite if

1 1
- - - A? 1- 0%
2+‘/1 p+ Ap? < €<

and this inequality holds if
p< A2,

So, in view of Theorem C, h and g € H? for p< A72.

3. Proof of Theorem 3. Let k be the function defined by the formula

(1+2)?

(10) K(z) = Tyt

2€A.
We start with the following

Lemma. If f = g+ h € Cy is a close-to-convex harmonic map, then for
0<p<oo

(11) Mp(r,h') < Mp(r,k).

Proof. It was shown in [CS] that 2h'(2) = F(2)G(2) if f=g+h € Cq

and G(z) =e 2+ a2+ ..., -7 < a < 7, is a starlike function and
F(z)y=e"“"+b1z+... satisﬁes |argF(z)| < 7. Hence
G(Z)

log |A(2)] = log |F(2)| + lo g‘

Now notice that to prove our lemma it is enough to apply the reasoning
similar to that in the proof of Theorem 7.2 of [D2, p. 229].



Integral Means of Univalent Harmonic Maps 159

Lemma 1 implies immediately

Corollary. If f=h+ g€ Cy, then g', h' € HP for 0 < p <

-
.

Proof of Theorem 3. Assume that f = h+ ¢ € Cy and % <p<l.

Then Lemma 1 and the Lemma in [D1, p.65] imply that there is a positive
constant C such that
C

!
My(r,h') < D

From this . .
/ (1- r)p'lM,,(r,h')dr < / (1—7)"%Pdr,
0 0

The last integral is finite if p < ; and the assertion follows from Theorem

(CH

Remark. Notice that Theorem 3 implies the result of J.A. Cima and J.E.
Livingston [CL): f f = h+ g € Sy and f(A) is a starlike domain (with
respect to zero), then h, g € H? and f € h? for 0 < p< 1/3.

4. Examples.
1. Let f=h+g be given by formula (4). We claim that f ¢ h? if p> 1,
whereas f € h!/2,

First assume that % < p< 1. We have

™ |sin@|?
|1 — reif]tr

[ iswetypanz [ psteetypan = o1ty |

> (sin 0)P

L gnP( ' 2P
=20 (l r ) 3 (1-{-1‘2—27'(:050)2”

Making the substitution ¢t = cosf gives

I — g (sin 0)? 0> 1 /1 dt
"7 Jo (1472 —2rcosf)?r (14 72)2° Jy (1—12)0-P)/2(1 — ct)?P

1
dt 1 \(=3p+1)/2
5—-(3p+1)/2 - [ 1 — ¢)(-3p+1)/2 _ 1],
>2 /0 (1 — ct)Bp+1)/2 c2B3r=1)/2(3p - 1) ( 7 '

where ¢ = 2r/(1 + 7?).
Thus

|f(re'®)[Pd8 = 2rP(1 — 1?)PI, > 00 as T — 17

-
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and the first assertion made about the function f is proved.
Now we show that f € h!'/?. Because

2r
df < sup /
0<r<1 Jo

1/2
df <

; 1/2
2x . l{ retd /
Sup e R DT )
ogr<1Jo | \1-—re?

re'

1 - ret?

it is enough to show that Imf € h'/?. Similarly as above we get

27 NS 2“}{1 e )/
/ﬂ [Im f(re'™)|2d8 = 1\/1—t2 (1—a)

4\/1‘(1—1'2) dt

4 0 "i—_t?(l—(ct)ﬁ)
44/r(1=12)

1+ 2 / \/l—tl—ct)

(12) -

<

Expanding the function t — 1/(1 — ct) into a power series and integrating
term by term we obtain

‘ : t - n o_
(13) /OC/I——_t(l—ct Zg- ) (§+n)c‘5(")'

n,:

Using the fact that the gamma function can be expressed as

a

n'n
L= rlan;o a(a+1)---(a+n)

one can easily check that the coefficients in the series in formula (13) are
of order n=3/4 = n(1/4=1) a5 n — oo. This means that the function S(c)
"behaves” like the function F(c) = (1 —¢)7!/4, i.e. the ratio S(c)/F(c)
has a positive limit as ¢ — 17 . Hence there is a constant C > 0 such that

V1 + r2
Vi-r~

S(c)< C1-e)yYi=¢

Hence
r2m

/ [Im f(re'®)|/2d6 < 8C.
0

2. Consider the close-to-convex function ! = h + g where

z2-2%/2+2%/6 2224 2%/6
mz) = (1_2)3 ’ g(Z)— (1_2)3
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It can be easily checked that neither ¢, nor h isin H'/3. However, ! is in
h¥ . It has been shown in [CS] that I can be expressed as

3 2
1 1+ =z | 142\"
1(z)=6Re((lJ_’z) —1)+351m(11’3)

Because Im(l/) € h¥ it is enough to prove that the integral

f“ s (1+ ref:)“
0 ]l — ref
is bounded as r — 1. We have

(1+r€rﬂ\3|1/3dog(1_rz)/21r L
0

/o ‘ reid | |1 — ret|?

- e inf g
(14) + V12(1 - 1'2)1/3/ salei
0

i+7r2—-2rcosf

) A it
: 3 o a2y1/3 ¢
< 2r +4V12(1 - 1?) /0 TNk

1/3
dé

where ¢ = 2r/(1 + r?) as above. Integrating term by term gives

.f1 dt T" n! ot
Jo =00 —ct) & 5E+1) - (E+n)

Now it is enough to notice that the coefficients in the last series are of order
n!/6=1 a5 n — oo . Thus there is a constant C > 0 such that

1 dt _\-1/6 “1/3(] 4 21/
| i = 5 =97 S0 S iRt )

This together with (14) proves that Re(l) isin h'/3 .

Open problem. Is f in h'/? (h'/3) if f is a convex (close-to-convex)
harmonic mapping ?
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