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ABSTRACT. Let H" be the class of complex—valued harmonic functions f
given by the formula (1).

If M is a subclass of H°® then a neighbourhood of f € M may be
defined by following an idea of Ruscheweyh. For given subclasses M, N, P
of H° the stability of the convolution M = A with respect to P means
that fs g € P whenever f € M,g € N, rangle over sufficiently small
neighbouhoods. Stability conditions in some special cases (N = {id} , M, P
starlike, or convex) are established.

It is a well-known fact that any function f(z), harmonic in the unit disk

D = {z:|z| < 1} can be written as f(z) = fi(z) + f2(z), both fi(z) and
f2(2) being regular functions in D . Consider the class H° of normalized
harmonic functions

(1) f(z)=z+ ) a(f)de(z), z€D,

|k|=2

where ¢i(z) = zF for k > 2 and ¢i(2) = 7kl for k < —2. We retain the
notation introduced by Clunie and Sheil-Small [2], according to which the
superscript ”0” means that there is no term a;(f)Z in the expansion (1).

Denote by S, St9, and K9, subclasses of H® , consisting of univalent,
starlike and convex univalent functions, respectively.
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Given any f, g € H°, define, as in [1], their Hadamard convolution

(2) (f*9)(2) =2+ Y awlf)ar(g)gn(z),

|k|=2

as well as their integral convolution

(3) (f®9)2)=2+ D ax(far(g)k™" dx(z).

|kl=2

We also introduce T-é6-neighborhoods of f € H°,

(4) TN(f) = {geu": 3 Tklak(g)—auf)lsa},

|k|=2

generalizing those studied both in [2] and [3]. Here {T4+x}32, are sequences
of positive real numbers.

By a T — 6 —neighborhoods TNs(M) of a class M C H®° we mean the
union of all T N4(f), where f ranges over the whole class M.

In accordance with [3] let us give the basic

Definition. Assume that M, N and P are subclasses of H® with
MIN={frg: feM,geN}CP.

Then (2) is said to be T — P - stable on the pair (M, N) if there exists a
6 > 0 such that TNg(M)*TNs(N)C P.

Avci and Ziotkiewicz [1] used a quite elementary approach to prove some
relations of the form M *TNy(e) C P, where e(z) = z. Here we extend to
the harmonic case the duality technique developed by Ruscheweyh (4] for
analytic functions and apply it to deduce necessary and sufficient conditions
for (2) and (3) to be stable on the pairs (M,{e}), M being any of the
classes St9,, K'Y, or {e}.Furthermore, we shall present explicit expressions
or equations for the stability constants

S7(M* N, P)=sup{é > 0: TNy(M)*TNy(N)C P}.

In the sequel P will denote either of two classes S%, and St9.
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Theorem 1. The convolution (2) is:
a) T — K9 -stable on ({e},{e}) <= T;' = O(k~!), k — +oo; more-
over,

61 ({e} * {e}, KF) = inf {T|k|™" : k] > 2} ;
b) T —P-stable on ({e},{e}) <= T ' = O(|k|~!/?), k — +o0; besides,
67 ({e} + {e}, P) = inf {Tulk|™"/2: |K| > 2} ;
¢) T - K9 -stable on (KY,{e}) < T;' = O(k™3), k — +oo, where
6 = 67(KY; «{e}, KY;) is the unique positive root of the equation
6 = inf {2T2k~2(Jk + 1|Tx + 26) 71 : |k| > 2} ;

d) T-P-stableon (KY%,{e}) <= T;' = O(k7%), k — +o0, in addition
6 = 67(KY +{e},P) can be found from

6 = inf {2T2|k|7 (K + 1T + 26)7" : |k| > 2} ;

e) T — K% -stable on (51%,{e}) <= T;' = O(k™*), k - *oo, fur-
thermore, § = §7(S1%, * {e}, KY;) satisfies the equation

6 = inf {6TZk~2[(k + 1)(2k + 1)Tx + 66]7" : k| > 2} ;

f) T — P-stable on (S5t%,{e}) <= T;' = O(k™3), k — oo, where
the constant § = 67(StY, * {e},P) is the unique positive solution of
the equation

6 = inf {6TZ|k|™ ((k + 1)(2k + 1)Tx + 66] " : [k > 2} .

First, let us state and prove sufficient conditions for f € H° to be
univalent, starlike or convex in terms of the convolution (2). Set
X = {h € H° : ar(h) = k(k + ia)/(1 + ia) with o € R for all |k] > 2},
Y' = {h € H® : ax(h) = (k + ia)/(1 + ia) with o € R for all |k| > 2},
Z = {h € H° : ax(h) = (¢x(z) — ¢k(y))/(z — y) with |z],[y| < 1,z # v,
for all |k| > 2},
and Y=Y'uzZ.

Observe that for any |k| > 2 we have |ax(h)] < k* if h € X and
lax(h)| < |k| if h €Y (or Z).
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Lemma 1. If f € H® and for all h € X (Y or Z) there holds

(6) (f+h)(2)#0, z€ D' =D\ {0},
then f € K§, (St} or %), respectively.

Proof. Given h € Z , we have

(f*h)(z):zﬁ-zw ()¢()_ (zz)_f(yz).
k=2 -y y

Show that the condition (6) (holding for all h € Z) implies the univalence
of f. Assume the contrary, i. e., there are 21,29 € D such that z; # 2z,
whereas f(27) = f(z2). Without loss of generality, let |z| < |z;|. Put
2! = 2y and z; = 2’ , where |z| <1,y =1,z # y. Hence for certain h € Z
we obtain (f *h)(2') = (f(21) — f(22))/(z — y), and, by the contradiction,
f is univalent in D.

Now, if (6) holds for any h € Y, the above reasoning yields at once
f€SY . For heY' we have

Hord

(f*h)(z Z - rw ¢k(2) £ 0,

or, equivalently, zf. — ZfZ + iaf # 0, for 2 € D',a € R. Therefore,
by the normalization, darg f(re'®)/d8 = Re[(zf. — ZfL)/f] > 0, where
z=re%,0< < 1.Hencefor D, = {z:|z] <r},0<r<1,its image
f(D;) is a domain starlike with respect to the origin, and sois f(D). Thus,
f € St(}, . The case when h € X is considered in a similar way, however,
by the Choquet Theorem [1], we may discard an additional condition for
univalence.

The following assertion appears to be useful in constructing examples
which prove the sharpness of constants.

Lemma 2 (see [2]). Let m be an integer, |m| > 2. Then we have
24 com(2) € K <= |c| <m™2,
24 cpm(z) €EP <= |c| < |m|7L.

Proof of Theorem 1.
Case (a). Let (2) be T — K;-stable on ({e},{e}), that is, for some 6 > 0
the inclusion T'Ns(e) * TNs(e) C K% holds. Put

f(2) = g(2) = 2+ 6T ¢u(2) € TNs(e).



Stability of Geometric Properties of Convolutions ... 151

Then
(f*9)(2) = 2+ 6T 2 ¢u(2) € Ky,

and, by Lemma 2, 6*T;? for any k,|k| > 2. Thus, T, = O(k7!) as
k — too.

Conversely, from the latter relation it follows that a M > 0 exists such
that T,-' < M|k|™! (or Tklk|-y > M_;) for all |k| > 2. Therefore,

= inf {Tx|k|™" : |k| > 2} > 0.
Choose any f,g € TNs(e),0< 6 < é",and he X. Then we have
|k] < 67Tk, |ak(h)| < k* and |27'¢x(2)| < |2| for any ||k| > 2,z€ D'.

Since g € T Ng(e), there also holds |ak(g)| < éiTk'1 ,|k| > 2. By using all
the inequalities, we can estimate

fxgxh
z

14 Z ﬂk(f)“kig)ﬂk(h)ék(z)

&

|k|=2

o ) [ ]
> 1=z Y 6T au(S) 2 1= 121671 ) Tilaw(f)I 2 12| > 0.

Jkl=2 |k|=2

Thus, the condition (6) is valid for all h € X, so f+g € K} . On the
other hand, if § > &', then an integer m,|m| > 2, can be found such
that T, |m|™' < 6. The above example shows that for f(2) = g(z)

2+ 8T ¢m(z) their convolution f*g & K9, whence 6r({e} *{e}, K3;)6".

Case (c). Let (2) be T — K'%-stable on (I\'H ,{€}). Then there exists a
positive 6 such that T Ns( IxH) * T Ns(e) C K9, . Choose the functions

f(z) = Lo(z) + 6T o(z) € TNs(K
where
Lo(z)=z+ > (i +1)¢5(2)/2 € K}y, i =sen k,

lil=2
and g¢g(2)=z2+ 6nkT;'¢k(z) € TNg(e).

By the above assumption we have

(f*rg)2)=2+ (' : d 4T >6T;‘ = ¢r(z) € KY
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and from Lemma 2 it follows that

|k+1|1" [k + 1]
2 2

+ 6T )57‘;1 AT

hence T;7' = O(k™®) as k — oo. Now assume that § > é',6’ being the
unique positive root of § = inf{2TZk~2(|k + 1|Tx + 26)~" : |k| > 2} . Since
both parts of the equation are monotonous relative to é, we have

6 > inf {2T2k~2(|k + 1|T% + 26)7" : |k| > 2}

and, by the above, functions f € T'Ns(KY,),g9 € TNs(e) can be chosen
such that f+g¢g KY .

On the other hand, let T,:1 = O(k™3) as k —» +oo, i.e., there is a
M > 0 such that Tk'1 < M|k|™3, or, equivalenty, Ty > M~!|k|* for all
|k| > 2. Obviously, Tx > (2M)~'k%|k + 1| and hence

T2 k™2(|k + 1Tk + 26)~" > M~k + U|Tw(|k + 1|Tx + 26)~"
Since
|k + 1Tk > (M) K2k + 1> > 2M ™1 forall |k| > 2,

we have

2T2k~2(Jk + 1 T + 26)' > M~Y(1 4+ 6M)7".
Therefore, the equation (5) yields

6 =inf{2T2k~2(|k 4+ 1 T +26)" : |k| > 2} > M~ (1 4+ 6M)7!

so that its root 6’ > (v/5 — 1)/2M and is positive.
Suppose now that 0 < § < 4'. Both parts of (5) being monotonous, with
respect to 4, it follows that

(7) 6 < 2T2k™%(|k + 1|Tx + 26)™! forall k,|k| <2.

Assuming that f € TNs(fo) with fp € !\'?, ,9 € TNs(e) and h € X, we
get

(fo * e* h)(2)

z

_t((f—fo)*(g—e)*f)(z)

_|(fo* (g —e)+h)(z)

r4

‘(f*g*h)(Z) >

> 1= Y [lan(fo)l + lax(f) - ai(fo)] lax(9)ar(h)s " 9u(2)] .

|k|=2
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By the sharp estimate |ax(fo)| < |k + 1|/2 (found in [2] for fo € K), we
use the inequalities |ax(f) — ax(fo)|l < 877" and ar(h) < k2, |k| > 2, to
obtain

(8) ’(f* .q: h)(2)

— (|k+1 i
>1-12 Y ('-—é—l +6Tk1> k*lax(g)l,

|k|=2
where z € D'. Hence (7) and (8) yield

+g*h)z < =
,M—z')(—)’ZI—b 1z z Tilar(g)l 21— 2| >0,

|k|=2
and, by Lemma 1, f*g € K9 .

Case (e) is studied in a similar way by applying the sharp estimate |ax(fo))| <
(k + 1)(2k + 1)/6, valid for all fy € St3, (see [6]). To prove the remaining
cases it suffices to replace the class X by Y (or by Z) and to repeat the
previous reasoning.

The conclude with, let us state a counterpart of Theorem 1 for the integral
convolution (3).

Theorem 2. The convolution (3) is:
a) T — K%-stable on ({e},{e}) < T;' = O(|k|"'/?), k — +oo;
moreover,
b7({e} @ {e}, K¥) = inf {Tk|k|'1/2 skl > 2} ;
b) T — P-stable on ({e},{e}) <= Ty ' = O(1), k — too; besides,
67({e} ® {e} , P) = inf {Ty : [k] 2 2} ;
¢) T — KY-stable on (K9, {e}) <= T:' = 0(k™%), k — oo, where
ST(KY @ {e}, k%) <= br(K} * {e},P);
d) T-P-stableon (K%, {e}) <= T;' = O(k™"), k — £oo, in addition
6 = 67(KY; ® {€},P) can be found from
§ = inf {2T2(|k + 1|Ti +26)7" = |k| > 2} ;
e) T — KY-stable on (S5t%,{e}) < T;' = O(k=3), k — oo, fur-
thermore, _
sr(5t% ® {e}, K%y) = 6r(Sty+.P);
f) T — P-stable on (St%,{e}) <= T;' = O(k7?), k — +oo, where
6 = 67(St% ® {e}, P) is the unique positive solution of the equation

6 = inf {6T2 [((k + 1)(2k + 1)Te +68] ™"« K| > 2} .
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