ANNALES

UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. L, 15
SECTIO A

ISCANDER R. NEZHMETDINOV (Kazan)

Stability of Geometric Properties of Convolutions of Univalent Harmonic Functions

Abstract

Let \mathcal{H}^{0} be the class of complex-valued harmonic functions f given by the formula (1).

If \mathcal{M} is a subclass of \mathcal{H}^{0} then a neighbourhood of $f \in \mathcal{M}$ may be defined by following an idea of Ruscheweyh. For given subclasses $\mathcal{M}, \mathcal{N}, \mathcal{P}$ of \mathcal{H}^{0} the stability of the convolution $\mathcal{M} * \mathcal{N}$ with respect to \mathcal{P} means that $f * g \in \mathcal{P}$ whenever $f \in \mathcal{M}, g \in \mathcal{N}$, rangle over sufficiently small neighbouhoods. Stability conditions in some special cases $(\mathcal{N}=\{i d\}, \mathcal{M}, \mathcal{P}$ starlike, or convex) are established.

It is a well-known fact that any function $f(z)$, harmonic in the unit disk $D=\{z:|z|<1\}$ can be written as $f(z)=f_{1}(z)+\overline{f_{2}(z)}$, both $f_{1}(z)$ and $f_{2}(z)$ being regular functions in D. Consider the class \mathcal{H}^{0} of normalized harmonic functions

$$
\begin{equation*}
f(z)=z+\sum_{|k|=2}^{\infty} a_{k}(f) \phi_{k}(z), \quad z \in D \tag{1}
\end{equation*}
$$

where $\phi_{k}(z)=z^{k}$ for $k \geq 2$ and $\phi_{k}(z)=\bar{z}^{|k|}$ for $k \leq-2$. We retain the notation introduced by Clunie and Sheil-Small [2], according to which the superscript " 0 " means that there is no term $a_{1}(f) \bar{z}$ in the expansion (1).

Denote by $S_{H}^{0}, S t_{H}^{0}$ and K_{H}^{0} subclasses of \mathcal{H}^{0}, consisting of univalent, starlike and convex univalent functions, respectively.

Given any $f, g \in \mathcal{H}^{0}$, define, as in [1], their Hadamard convolution

$$
\begin{equation*}
(f * g)(z)=z+\sum_{|k|=2}^{\infty} a_{k}(f) a_{k}(g) \phi_{k}(z) \tag{2}
\end{equation*}
$$

as well as their integral convolution

$$
\begin{equation*}
(f \otimes g)(z)=z+\sum_{|k|=2}^{\infty} a_{k}(f) a_{k}(g) k^{-1} \phi_{k}(z) . \tag{3}
\end{equation*}
$$

We also introduce $T-\delta$-neighborhoods of $f \in \mathcal{H}^{0}$,

$$
\begin{equation*}
T N_{\delta}(f)=\left\{g \in \mathcal{H}^{0}: \sum_{|k|=2}^{\infty} T_{k}\left|a_{k}(g)-a_{k}(f)\right| \leq \delta\right\} \tag{4}
\end{equation*}
$$

generalizing those studied both in [2] and [3]. Here $\left\{T_{ \pm k}\right\}_{k=2}^{\infty}$ are sequences of positive real numbers.

By a $T-\delta$-neighborhoods $T N_{\delta}(\mathcal{M})$ of a class $\mathcal{M} \subset \mathcal{H}^{0}$ we mean the union of all $T N_{\delta}(f)$, where f ranges over the whole class \mathcal{M}.

In accordance with [3] let us give the basic
Definition. Assume that \mathcal{M}, \mathcal{N} and \mathcal{P} are subclasses of \mathcal{H}^{0} with

$$
\mathcal{M} * \mathcal{N}=\{f * g: f \in \mathcal{M}, g \in \mathcal{N}\} \subset \mathcal{P} .
$$

Then (2) is said to be $T-\mathcal{P}$ - stable on the pair $(\mathcal{M}, \mathcal{N})$ if there exists a $\delta>0$ such that $T N_{\delta}(\mathcal{M}) * T N_{\delta}(\mathcal{N}) \subset \mathcal{P}$.

Avci and Złotkiewicz [1] used a quite elementary approach to prove some relations of the form $\mathcal{M} * T N_{b}(e) \subset \mathcal{P}$, where $e(z)=z$. Here we extend to the harmonic case the duality technique developed by Ruscheweyh [4] for analytic functions and apply it to deduce necessary and sufficient conditions for (2) and (3) to be stable on the pairs ($\mathcal{M},\{e\}$), \mathcal{M} being any of the classes $S t_{H}^{0}, K_{H}^{0}$ or $\{e\}$. Furthermore, we shall present explicit expressions or equations for the stability constants

$$
\delta_{T}(\mathcal{M} * \mathcal{N}, \mathcal{P})=\sup \left\{\delta \geq 0: T N_{b}(\mathcal{M}) * T N_{b}(\mathcal{N}) \subset \mathcal{P}\right\}
$$

In the sequel \mathcal{P} will denote either of two classes S_{H}^{0} and $S t_{H}^{0}$.

Theorem 1. The convolution (2) is:
a) $T-K_{H}^{0}$-stable on $(\{e\},\{e\}) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-1}\right), k \rightarrow \pm \infty$; moreover,

$$
\delta_{T}\left(\{e\} *\{e\}, K_{H}^{0}\right)=\inf \left\{T_{k}|k|^{-1}:|k| \geq 2\right\} ;
$$

b) T - \mathcal{P}-stable on $(\{e\},\{e\}) \Longleftrightarrow T_{k}^{-1}=O\left(|k|^{-1 / 2}\right), k \rightarrow \pm \infty$; besides,

$$
\delta_{T}(\{e\} *\{e\}, \mathcal{P})=\inf \left\{T_{k}|k|^{-1 / 2}:|k| \geq 2\right\} ;
$$

c) $T-K_{H}^{0}$-stable on $\left(K_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-3}\right), k \rightarrow \pm \infty$, where $\delta=\delta_{T}\left(K_{H}^{0} *\{e\}, K_{H}^{0}\right)$ is the unique positive root of the equation

$$
\delta=\inf \left\{2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1}:|k| \geq 2\right\} ;
$$

d) T - \mathcal{P}-stable on $\left(K_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-2}\right), k \rightarrow \pm \infty$, in addition $\delta=\delta_{T}\left(K_{H}^{0} *\{e\}, \mathcal{P}\right)$ can be found from

$$
\delta=\inf \left\{2 T_{k}^{2}|k|^{-1}\left(|k+1| T_{k}+2 \delta\right)^{-1}:|k| \geq 2\right\} ;
$$

e) $T-K_{H}^{0}$-stable on $\left(S t_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-4}\right), k \rightarrow \pm \infty$, furthermore, $\delta=\delta_{T}\left(S t_{H}^{0} *\{e\}, K_{H}^{0}\right)$ satisfies the equation

$$
\delta=\inf \left\{6 T_{k}^{2} k^{-2}\left[(k+1)(2 k+1) T_{k}+6 \delta\right]^{-1}:|k| \geq 2\right\} ;
$$

f) T - \mathcal{P}-stable on $\left(S t_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-3}\right), k \rightarrow \pm \infty$, where the constant $\delta=\delta_{T}\left(S t_{H}^{0} *\{e\}, \mathcal{P}\right)$ is the unique positive solution of the equation

$$
\delta=\inf \left\{6 T_{k}^{2}|k|^{-1}\left[\left((k+1)(2 k+1) T_{k}+6 \delta\right]^{-1}:|k| \geq 2\right\}\right.
$$

First, let us state and prove sufficient conditions for $f \in \mathcal{H}^{0}$ to be univalent, starlike or convex in terms of the convolution (2). Set

$$
\begin{aligned}
X & =\left\{h \in \mathcal{H}^{0}: a_{k}(h)=k(k+i \alpha) /(1+i \alpha) \text { with } \alpha \in \mathbb{R} \text { for all }|k| \geq 2\right\}, \\
Y^{\prime} & =\left\{h \in \mathcal{H}^{0}: a_{k}(h)=(k+i \alpha) /(1+i \alpha) \text { with } \alpha \in \mathbb{R} \text { for all }|k| \geq 2\right\}, \\
Z & =\left\{h \in \mathcal{H}^{0}: a_{k}(h)=\left(\phi_{k}(x)-\phi_{k}(y)\right) /(x-y) \text { with }|x|,|y| \leq 1, x \neq y,\right. \\
& \text { for all }|k| \geq 2\},
\end{aligned}
$$

and $Y=Y^{\prime} \cup Z$.

Observe that for any $|k| \geq 2$ we have $\left|a_{k}(h)\right| \leq k^{2}$ if $h \in X$ and $\left|a_{k}(h)\right| \leq|k|$ if $h \in Y$ (or $\left.Z\right)$.

Lemma 1. If $f \in \mathcal{H}^{0}$ and for all $h \in X(Y$ or $Z)$ there holds

$$
\begin{equation*}
(f * h)(z) \neq 0, \quad z \in D^{\prime}=D \backslash\{0\} \tag{6}
\end{equation*}
$$

then $f \in K_{H}^{0}\left(S t_{H}^{0}\right.$ or $\left.S_{H}^{0}\right)$, respectively.

Proof. Given $h \in Z$, we have

$$
(f * h)(z)=z+\sum_{|k|=2}^{\infty} \frac{\phi_{k}(x)-\phi_{k}(y)}{x-y} a_{k}(f) \phi_{k}(z)=\frac{f(x z)-f(y z)}{x-y} .
$$

Show that the condition (6) (holding for all $h \in Z$) implies the univalence of f. Assume the contrary, i. e., there are $z_{1}, z_{2} \in D$ such that $z_{1} \neq z_{2}$, whereas $f\left(z_{1}\right)=f\left(z_{2}\right)$. Without loss of generality, let $\left|z_{1}\right| \leq\left|z_{2}\right|$. Put $z^{\prime}=z_{2}$ and $z_{1}=x z^{\prime}$, where $|x| \leq 1, y=1, x \neq y$. Hence for certain $h \in Z$ we obtain $(f * h)\left(z^{\prime}\right)=\left(f\left(z_{1}\right)-f\left(z_{2}\right)\right) /(x-y)$, and, by the contradiction, f is univalent in D.

Now, if (6) holds for any $h \in Y$, the above reasoning yields at once $f \in S_{H}^{0}$. For $h \in Y^{\prime}$ we have

$$
(f * h)(z)=z+\sum_{|k|=2}^{\infty} \frac{k+i \alpha}{1+i \alpha} a_{k}(f) \phi_{k}(z) \neq 0
$$

or, equivalently, $z f_{z}^{\prime}-\bar{z} f_{\bar{z}}^{\prime}+i \alpha f \neq 0$, for $z \in D^{\prime}, a \in \mathbb{R}$. Therefore, by the normalization, $d \arg f\left(r e^{i \theta}\right) / d \theta=\operatorname{Re}\left[\left(z f_{z}^{\prime}-\bar{z} f_{\bar{z}}^{\prime}\right) / f\right]>0$, where $z=r e^{i \theta}, 0<r<1$. Hence for $D_{r}=\{z:|z|<r\}, 0<r<1$, its image $f\left(D_{r}\right)$ is a domain starlike with respect to the origin, and so is $f(D)$. Thus, $f \in S t_{H}^{0}$. The case when $h \in X$ is considered in a similar way, however, by the Choquet Theorem [1], we may discard an additional condition for univalence.

The following assertion appears to be useful in constructing examples which prove the sharpness of constants.

Lemma 2 (see [2]). Let m be an integer, $|m| \geq 2$. Then we have

$$
\begin{aligned}
& z+c \phi_{m}(z) \in K_{H}^{0} \Longleftrightarrow|c| \leq m^{-2} \\
& z+c \phi_{m}(z) \in \mathcal{P} \Longleftrightarrow|c| \leq|m|^{-1}
\end{aligned}
$$

Proof of Theorem 1.

Case (a). Let (2) be $T-K_{H}^{0}$-stable on ($\{e\},\{e\}$), that is, for some $\delta>0$ the inclusion $T N_{\delta}(e) * T N_{\delta}(e) \subset K_{H}^{0}$ holds. Put

$$
f(z)=g(z)=z+\delta T_{k}^{-1} \phi_{k}(z) \in T N_{\delta}(e) .
$$

Then

$$
(f * g)(z)=z+\delta^{2} T_{k}^{-2} \phi_{k}(z) \in K_{H}^{0},
$$

and, by Lemma $2, \delta^{2} T_{k}^{-2}$ for any $k,|k| \geq 2$. Thus, $T_{k}^{-1}=O\left(k^{-1}\right)$ as $k \rightarrow \pm \infty$.

Conversely, from the latter relation it follows that a $M>0$ exists such that $T_{k}^{-1} \leq M|k|^{-1}$ (or $T_{k}|k|_{-1} \geq M_{-1}$) for all $|k| \geq 2$. Therefore,

$$
\delta^{\prime}=\inf \left\{T_{k}|k|^{-1}:|k|>2\right\}>0
$$

Choose any $f, g \in T N_{\delta}(e), 0<\delta<\delta^{\prime}$, and $h \in X$. Then we have $|k| \leq \delta^{-1} T_{k}, \quad\left|a_{k}(h)\right| \leq k^{2}$ and $\left|z^{-1} \phi_{k}(z)\right| \leq|z|$ for any $\| k \mid \geq 2, z \in D^{\prime}$. Since $g \in T N_{\delta}(e)$, there also holds $\left|a_{k}(g)\right| \leq \delta T_{k}^{-1},|k| \geq 2$. By using all the inequalities, we can estimate

$$
\begin{array}{r}
\left|\frac{f * g * h}{z}\right|=\left|1+\sum_{|k|=2}^{\infty} \frac{a_{k}(f) a_{k}(g) a_{k}(h)}{z} \phi_{k}(z)\right| \\
\geq 1-|z| \sum_{|k|=2}^{\infty} \delta k^{2} T_{k}^{-1}\left|a_{k}(f)\right| \geq 1-|z| \delta^{-1} \sum_{|k|=2}^{\infty} T_{k}\left|a_{k}(f)\right| \geq 1-|z|>0 .
\end{array}
$$

Thus, the condition (6) is valid for all $h \in X$, so $f * g \in K_{H}^{0}$. On the other hand, if $\delta>\delta^{\prime}$, then an integer $m,|m| \geq 2$, can be found such that $T_{m}|m|^{-1}<\delta$. The above example shows that for $f(z)=g(z)=$ $z+\delta T_{m}^{-1} \phi_{m}(z)$ their convolution $f * g \notin K_{H}^{0}$, whence $\delta_{T}\left(\{e\} *\{e\}, K_{H}^{0}\right) \delta^{\prime}$.

Case (c). Let (2) be $T-K_{H}^{0}$-stable on $\left(K_{H}^{0},\{e\}\right)$. Then there exists a positive δ such that $T N_{\delta}\left(K_{H}^{0}\right) * T N_{\delta}(e) \subset K_{H}^{0}$. Choose the functions

$$
f(z)=L_{0}(z)+\delta \eta_{k} T_{k}^{-1} \phi_{k}(z) \in T N_{\delta}\left(K_{H}^{0}\right.
$$

where

$$
\begin{aligned}
& L_{0}(z)=z+\sum_{|j|=2}^{\infty}(j+1) \phi_{j}(z) / 2 \in K_{H}^{0}, \quad \eta_{k}=\operatorname{sgn} k \\
& \text { and } g(z)=z+\delta \eta_{k} T_{k}^{-1} \phi_{k}(z) \in T N_{\delta}(e)
\end{aligned}
$$

By the above assumption we have

$$
(f * g)(z)=z+\left(\frac{|k+1|}{2}+\delta T_{k}^{-1}\right) \delta T_{k}^{-1}=\phi_{k}(z) \in K_{H}^{0}
$$

and from Lemma 2 it follows that

$$
\delta \frac{|k+1|}{2} T_{k}^{-1} \leq\left(\frac{|k+1|}{2}+\delta T_{k}^{-1}\right) \delta T_{k}^{-1} \leq k^{-2},
$$

hence $T_{k}^{-1}=O\left(k^{-3}\right)$ as $k \rightarrow \pm \infty$. Now assume that $\delta>\delta^{\prime}, \delta^{\prime}$ being the unique positive root of $\delta=\inf \left\{2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1}:|k| \geq 2\right\}$. Since both parts of the equation are monotonous relative to δ, we have

$$
\delta>\inf \left\{2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1}:|k| \geq 2\right\}
$$

and, by the above, functions $f \in T N_{\delta}\left(K_{H}^{0}\right), g \in T N_{\delta}(e)$ can be chosen such that $f * g \notin K_{H}^{0}$.

On the other hand, let $T_{k}^{-1}=O\left(k^{-3}\right)$ as $k \rightarrow \pm \infty$, i.e., there is a $M>0$ such that $T_{k}^{-1} \leq M|k|^{-3}$, or, equivalenty, $T_{k} \geq M^{-1}|k|^{3}$ for all $|k| \geq 2$. Obviously, $T_{k} \geq(2 M)^{-1} k^{2}|k+1|$ and hence

$$
2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1} \geq M^{-1}|k+1| T_{k}\left(|k+1| T_{k}+2 \delta\right)^{-1}
$$

Since

$$
|k+1| T_{k} \geq(2 M)^{-1} k^{2}|k+1|^{2} \geq 2 M^{-1} \quad \text { for all } \quad|k| \geq 2
$$

we have

$$
2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1} \geq M^{-1}(1+\delta M)^{-1}
$$

Therefore, the equation (5) yields

$$
\delta=\inf \left\{2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1}:|k| \geq 2\right\} \geq M^{-1}(1+\delta M)^{-1},
$$

so that its root $\delta^{\prime} \geq(\sqrt{5}-1) / 2 M$ and is positive.
Suppose now that $0<\delta \leq \delta^{\prime}$. Both parts of (5) being monotonous, with respect to δ, it follows that

$$
\begin{equation*}
\delta \leq 2 T_{k}^{2} k^{-2}\left(|k+1| T_{k}+2 \delta\right)^{-1} \quad \text { for all } \quad k,|k| \leq 2 . \tag{7}
\end{equation*}
$$

Assuming that $f \in T N_{\delta}\left(f_{0}\right)$ with $f_{0} \in K_{H}^{0}, g \in T N_{\delta}(e)$ and $h \in X$, we get

$$
\begin{aligned}
&\left|\frac{(f * g * h)(z)}{z}\right| \geq\left|\frac{\left(f_{0} * e * h\right)(z)}{z}\right|-\left|\frac{\left(f_{0} *(g-e) * h\right)(z)}{z}\right| \\
&-\left|\frac{\left(\left(f-f_{0}\right) *(g-e) * f\right)(z)}{z}\right| \\
& \geq 1-\sum_{|k|=2}^{\infty}\left[\left|a_{k}\left(f_{0}\right)\right|+\left|a_{k}(f)-a_{k}\left(f_{0}\right)\right|\right]\left|a_{k}(g) a_{k}(h) z^{-1} \phi_{k}(z)\right| .
\end{aligned}
$$

By the sharp estimate $\left|a_{k}\left(f_{0}\right)\right| \leq|k+1| / 2$ (found in [2] for $f_{0} \in K_{H}^{0}$), we use the inequalities $\left|a_{k}(f)-a_{k}\left(f_{0}\right)\right| \leq \delta T_{k}^{-1}$ and $a_{k}(h) \leq k^{2},|k| \geq 2$, to obtain

$$
\begin{equation*}
\left|\frac{(f * g * h)(z)}{z}\right| \geq 1-|z| \sum_{|k|=2}^{\infty}\left(\frac{|k+1|}{2}+\delta T_{k}^{-1}\right) k^{2}\left|a_{k}(g)\right|, \tag{8}
\end{equation*}
$$

where $z \in D^{\prime}$. Hence (7) and (8) yield

$$
\left|\frac{(f * g * h)(z)}{z}\right| \geq 1-\delta^{-1}|z| \sum_{|k|=2}^{\infty} T_{k}\left|a_{k}(g)\right| \geq 1-|z|>0
$$

and, by Lemma $1, f * g \in K_{H}^{0}$.
Case (e) is studied in a similar way by applying the sharp estimate $\left.\mid a_{k}\left(f_{0}\right)\right) \mid \leq$ $(k+1)(2 k+1) / 6$, valid for all $f_{0} \in S t_{H}^{0}$ (see [6]). To prove the remaining cases it suffices to replace the class X by Y (or by Z) and to repeat the previous reasoning.

The conclude with, let us state a counterpart of Theorem 1 for the integral convolution (3).

Theorem 2. The convolution (3) is:
a) $T-K_{H}^{0}$-stable on $(\{e\},\{e\}) \Longleftrightarrow T_{k}^{-1}=O\left(|k|^{-1 / 2}\right), k \rightarrow \pm \infty$; moreover,

$$
\delta_{T}\left(\{e\} \otimes\{e\}, K_{H}^{0}\right)=\inf \left\{T_{k}|k|^{-1 / 2}:|k| \geq 2\right\} ;
$$

b) T - \mathcal{P}-stable on $(\{e\},\{e\}) \Longleftrightarrow T_{k}^{-1}=O(1), k \rightarrow \pm \infty$; besides,

$$
\delta_{T}(\{e\} \otimes\{e\}, \mathcal{P})=\inf \left\{T_{k}:|k| \geq 2\right\}
$$

c) $T-K_{H}^{0}$-stable on $\left(K_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-2}\right), k \rightarrow \pm \infty$, where

$$
\delta_{T}\left(K_{H}^{0} \otimes\{e\}, K_{H}^{0}\right) \Longleftrightarrow \delta_{T}\left(K_{H}^{0} *\{e\}, \mathcal{P}\right) ;
$$

d) T - \mathcal{P}-stable on $\left(K_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-1}\right), k \rightarrow \pm \infty$, in addition $\delta=\delta_{T}\left(K_{H}^{0} \otimes\{e\}, \mathcal{P}\right)$ can be found from

$$
\delta=\inf \left\{2 T_{k}^{2}\left(|k+1| T_{k}+2 \delta\right)^{-1}:|k| \geq 2\right\}
$$

e) $T-K_{H}^{0}$-stable on $\left(S t_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-3}\right), k \rightarrow \pm \infty$, furthermore,

$$
\delta_{T}\left(S t_{H}^{0} \otimes\{e\}, K_{H}^{0}\right)=\delta_{T}\left(S t_{H^{*}}^{0}, \mathcal{P}\right) ;
$$

f) T - \mathcal{P}-stable on $\left(S t_{H}^{0},\{e\}\right) \Longleftrightarrow T_{k}^{-1}=O\left(k^{-2}\right), k \rightarrow \pm \infty$, where $\delta=\delta_{T}\left(S t_{H}^{0} \otimes\{e\}, \mathcal{P}\right)$ is the unique positive solution of the equation

$$
\delta=\inf \left\{6 T_{k}^{2}\left[\left((k+1)(2 k+1) T_{k}+6 \delta\right]^{-1}:|k| \geq 2\right\}\right.
$$

References

[1] Avci, Y. and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1-7.
[2] Clunie, J. and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
[3] Nezhmetdinov, I. R., Stability of geometric properties of convolutions of univalent functions in certain neighborhoods, Izv. Vyssh. Uchebn. Zaved. Mat. No 8 (1994), 46-54.
[4] Ruscheweyh, St., Über die Faltung schlichter Funktionen, Math. Z. 128 (1972), 8592.
[5] Sheil-Small, T. and E. M. Silvia, Neighborhoods of analytic functions, J. Analyse Math. 52 (1989), 210-240.
[6]
] (1990), 237-248.

Faculty of Mechanics and Mathematics
received September 18, 1996
Kazan State University
Kazan, Russian Federation

