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Stability of Geometric Properties of Convolutions 
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Abstract. Let be the class of complex-valued harmonic functions f 
given by the formula (1).

If M is a subclass of 7f° then a neighbourhood of f £ Ad may be 
defined by following an idea of Ruscheweyh. For given subclasses M , A/', P 
of W° the stability of the convolution M * J'S with respect to P means 
that f ♦ g e P whenever f 6 M,g € A/, rangle over sufficiently small 
neighbouhoods. Stability conditions in some special cases (A/ = {id} , Ad, P 
starlike, or convex) are established.

It is a well-known fact that any function /(z), harmonic in the unit disk 
D = {2 ; |2| < 1} can be written as /(z) = /i(z) + /A2)> both /i(z) and 
A (2) being regular functions in D. Consider the class 7f° of normalized 
harmonic functions

00

(1) f(z) = z + 52
1*1=2

where 0fc(z) = zk for k > 2 and </>fc(z) = z|fc| for k < -2. We retain the 
notation introduced by Clunie and Sheil-Small [2], according to which the 
superscript ”0” means that there is no term «i(/)z in the expansion (1).

Denote by S°H , St°H and K°H subclasses of , consisting of univalent, 
starlike and convex univalent functions, respectively.
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Given any f, g € 7Y° , define, as in [1], their Hadamard convolution

oo
(2) (/ * </)(*) = 52 > 

1*1=2

as well as their integral convolution

OO

(3) (/ ® if)(z) = 2+^2 •
1*1=2

We also introduce T-ó-neighborhoods of f € 'H° ,

(4) m(/) = L e H° : £ Tk\ak(g) - ak(f)\ < 6 j ,

1 W=2 J

generalizing those studied both in [2] and [3]. Here {T±k}^_2 are sequences 
of positive real numbers.

By a T — 6 -neighborhoods TNb(M) of a class A4 C H° we mean the 
union of all TNs(f), where f ranges over the whole class At .

In accordance with [3] let us give the basic 

Definition. Assume that At , V and P are subclasses of P° with

Ai*Ar={/*5:/eA4,5e -V} C P.

Then (2) is said to be T - P - stable on the pair (At, AT) if there exists a 
6 > 0 such that PA5(At) * PA6(A<) C P.

Avci and Zlotkiewicz [1] used a quite elementary approach to prove some 
relations of the form A4 * TNb(e) C P, where e(z) = z. Here we extend to 
the harmonic case the duality technique developed by Ruscheweyh [4] for 
analytic functions and apply it to deduce necessary and sufficient conditions 
for (2) and (3) to be stable on the pairs (Af,{e}), At being any of the 
classes St°H , K®¡ or {e} . Furthermore, we shall present explicit expressions 
or equations for the stability constants

¿t(A4 * AT, P) = sup{<5 > 0 : TNb(M) * TNb(J\T) C P} .

In the sequel P will denote either of two classes 5^ and St°H .
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Theorem 1. The convolution (2) is:
a) T — K°H-stable on ({e}, {e}) <=> = 0(k~1), k —*• ±oo ; more­

over,
ST ({e} * {e} , K°H) = inf {nW1 : |fc| > 2} ;

b) T -P-stable on ({e},{e}) <=> T£l — 0(|h|-1/2), k —► ±oo ; besides,

St ({e} * {e} , P) = inf { Tfc| fc|~1/2 : |fc| > 2} ;

c) T — K^-stahle on (7t^,{e}) <=> T^-1 = O(fc-3), k —► ±00, where
6 = &t(R is the unique positive root of the equation

6 = inf {27^fc“2(|fc + l|Tfc + 26)-1 : |Jk| > 2} ;

d) T-P-stabie on (A'°f, {e}) <=> T^1 = 0(k~2), k —> ±00 , in addition 
S = St^K^ * {e}, P) can be found from

6 = inf {2Tfc2|Jb|-1(|fc + l|Tfc + 2S)-1 : |*| > 2} ;

e) T — Kfj-st&ble on (St°H, {e}) <=> T^1 = 0{k~4), k —► ±00 , fur­
thermore, S = 6T(St°H * {e},7i^) satisfies the equation

6 = inf {6Ttk-2[(k + l)(2ifc + 1)2* + 6£]_1 : |fc| > 2} ;

f) T — P-stable on (St0^, {e}) <=> = O(fc-3), k —> ±00 , where
the constant S — Sr(St°H * {e},P) is the unique positive solution of 
the equation

6 = inf {er^lbl-1 [((Ik + l)(2Jk+ l)Tfc + 66]_1 : |fc| > 2} .

First, let us state and prove sufficient conditions for f G H° to be 
univalent, starlike or convex in terms of the convolution (2). Set

A' = {h G 77° : afc(h) = k(k + i«)/(l + io) with a G R for all |fc| > 2} ,

Y' = {h G Ti° : £tfc(h) = (k + ta)/(l + icr) with a G R for all |fc| > 2} ,

Z = {hen0 : ak(h) = (<l>k(x) - d>fc(jz))/(x - t/) with |x|, |t/| <l,x/y, 
for all |fc| > 2} ,

and Y = Y'UZ.
Observe that for any |fc| > 2 we have |at(h)| < k~ if h G X and 

\ak(h)\ < |fc| if h G Y (or Z).
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Lemma 1. If f € H° and for all h G X (Y or Z) there holds 

(6) (/*/»)(«)/0, z€D' = D\{0},

then f G (St°H or S°H), respectively.

Proof. Given h G Z, we have

oo

(/*h)(2) = z +
|fc|=2

ak(f)4>k(z)
f(xz) - f(yz) 

x - yx - y

Show that the condition (6) (holding for all h 6 Z) implies the univalence 
of f. Assume the contrary, i. e., there are 21,22 € D such that 21 22 ,
whereas /(21) — 7(22). Without loss of generality, let ¡2i| < |2r2| . Put 
2' = 22 and zi = xz', where |x|<l,j/=l,a:^t/. Hence for certain h G Z 
we obtain (/ * h)(2') = (/(zi) - /(22))/(x - y), and, by the contradiction, 
/ is univalent in D .

Now, if (6) holds for any h 6 Y , the above reasoning yields at once 
f G S°H . For h € Y' we have

b _L ’
(/»h)(z) = 2+52 i —L- *0 >ifc1 + *“

or, equivalently, 2/' - z/L + iof 0, for 2 G D', a G R. Therefore, 
by the normalization, darg/(reli)/d0 = Re[(z/' -2/0//] > 0, where 
2 = re'6,0 < r < 1. Hence for Dr = {2 : |2| < r} ,0 < r < 1, its image 
f(Dr) is a domain starlike with respect to the origin, and so is . Thus, 
f G St°H . The case when h G X is considered in a similar way, however, 
by the Choquet Theorem [1], we may discard an additional condition for 
univalence.

The following assertion appears to be useful in constructing examples 
which prove the sharpness of constants.

Lemma 2 (see [2]). Let m be an integer, |m| > 2. Then we have

z + c</>m(2) G A'h <=> |c| < m~2 ,

2 + c0m(z) G V <=> |c| < |m|_1.

Proof of Theorem 1.
Case (a). Let (2) be T — /¿^-stable on ({e} , {e}), that is, for some 6 > 0 
the inclusion TNs(e) * TNs(e) C Kfj holds. Put

/(z) = 5(2) = 2 + ¿Tf10fc(2) G TAi(e).
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Then
(/ * ff)(z) = * + ¿2T^2<t>k(z) € K°h ,

and, by Lemma 2, ¿2T^2 for any fc,|fc| > 2. Thus, T^1 = 0(k~ly) as 
k —♦ ±oo .

Conversely, from the latter relation it follows that a Af > 0 exists such 
that Tkx < Af|fc|_ 1 (or T\-|Zc|_i > Al_i) for all |fc| > 2. Therefore,

= inf {T^r1 : |Jb| > 2} > 0.

Choose any f ,g € TNs(e), 0 < 6 < , and h € X . Then we have

|fc| < 6~1Tk , |afc(h)| < k2 and |z~1 </>fc(z)| < |^| for any ||fc| > 2 , z £ D'.

Since g 6 TNs(e), there also holds |«fc(<7)| < t>Tk 1 , |A'| > 2. By using all 
the inequalities, we can estimate

f *g*h
z

oo

1+S
1*1=2

oo °°
> 1 - W E > 1 - M«'1 E T,|«fc(/)| > 1 - |z| > 0.

|*|=2 |fc|=2

Thus, the condition (6) is valid for all h € X, so f * g G A^. On the 
other hand, if 6 > 6', then an integer m,|m| > 2, can be found such 
that The above example shows that for f(z) = g(z) =
2+ their convolution f*g I(°fi, whence Ar({e}* {e}, A.

Case (c). Let (2) be T - A'^-stable on (K°H , {e}). Then there exists a 
positive 6 such that TNs(Kh) * TNs(e) C A'^ . Choose the functions

/(2) = A0(z) + € TN6(K°h ,

where
oo

A0(z) = z + E 0 + 1)^(z)/2 e K°h ’ 7?* = sSn k '
151=2

and g(z) = z + ¿r/kTkx <t>k(z) £ TNi(e}.

By the above assumption we have

(/*s)(*) = z + + ■ +f>Tk1^ 6Tkl = d>k(z) £ K°h
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and from Lemma 2 it follows that

• |fc + 1| ¿Tf1 < k~2

hence T^1 = 0(^k~3>) as k —► ±00. Now assume that 6 > 6' ,6' being the 
unique positive root of 6 = inf{2T^A:-2(|A; + 1|2\ + 26)_1 : |fc| > 2} . Since 
both parts of the equation are monotonous relative to 6, we have

6 > inf {2T%k~2(\k + l|Tfc + 2<$)—1 : |fc| > 2}

and, by the above, functions f € ,g € TNg(e) can be chosen
such that f * g 0 K°H .

On the other hand, let T^1 = O(fc-3) as k —> ±00, i.e., there is a 
M > 0 such that T^-1 < Af|A;|-3 , or, equivalenty, Tk > Af-1|&|3 for all 
|fc| > 2. Obviously, Tk > (2Af)_1fc2|fc + 1| and hence

2T%k~2(\k + l|n + 2£)~1 > AT1 \k 4- l|rfc(|fc + l|Tfc + 26)’1.

Since

|fc + l|Tfc > (2M)_1fc2|fc + 1|2 > 2M~l for all |fc| > 2,

we have
2T%k~2(\k + l|Tfc + 2i)_1 > Af-1(l + 6M)-1. 

Therefore, the equation (5) yields

6 = inf {27^ fc“2(|A: + l|n + 26)-1 : |fc| > 2} > Af_1(l + ¿Af)"1,

so that its root 6' > (y/5 — T)/2M and is positive.
Suppose now that 0 < 6 < . Both parts of (5) being monotonous, with

respect to 6 , it follows that

(7) 6 < 2T%k~2(\k + l|Tfc + 2i)-1 for all k,\k\<2.

Assuming that f 6 TNg(fo) with /o € ,<7 6 TNg(e) and h € A', we
get

(/o * e * h)(z) 
2

(/o * (g ~ e) * fe)(^) 
2

(/*g*/t)(z)
z

>

((/-/o)*(g~e) */)(*)
2

00

- 1 ~ ZL [la*(/o)| + |afc(/) - afc(/o)|] |afc(ff)afc(/i)^_1</>fc(2)| • 

1*1=2
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By the sharp estimate |a*:(/o)| < |b + l|/2 (found in [2] for Jo € A'^), we 
use the inequalities |a*:(/) — afc(/o)| < and afc(h) < fc2, |fc| > 2, to
obtain

(8)
(/*<?* h)(z)

z

where z € D'. Hence (7) and (8) yield

fc2|«fc(<7)l

z

oo

> E n|afc(5)|> 1-W>0,
1*1=2

and, by Lemma 1, f * g € A'^ .

Case (e) is studied in a similar way by applying the sharp estimate |ctfc(/o))| < 
(k + l)(2b + 1 )/6 , valid for all fo € St°H (see [6]). To prove the remaining 
cases it suffices to replace the class X by Y (or by Z) and to repeat the 
previous reasoning.

The conclude with, let us state a counterpart of Theorem 1 for the integral 
convolution (3).

Theorem 2. The convolution (3) is:
a) T - K°H-stable on ({e},{e}) <=> Tjf1 = O(|fc|-1/2), k —>■ ±oo; 

moreover,
MM ® {e} , K°„) = inf {Tk\k\~1'2 : |fc| > 2} ;

b) T — P-stable on ({e}, {e}) <=> TjJ1 = 0(1), b -+ ±00 ; besides,
¿T({e}®{e},P) = inf{Tfc:|fc|>2} ;

c) T - K°H-stable on (K°H, {e}) <=> TjJ1 = 0(k~2), k -> ±00 , where
6t(K°h ® {e}, A'#) <=> 6t(K°h *

d) T-P-stable on (K°H, {e}) <=> Tfc_1 = 0(b-1), fc —> ±00 , in addition
6 = ® {e},P) can be found from

6 = inf {2Tfc2(|b + l|Tfe + 26)_1 : |fc| > 2} ;

e) T - -stable on (St°H,{ej) <=> Tfc_1 = 0(fc~3), k -+ ±00, fur­
thermore,

® {e}, A /y) = P);
f) T - P-stable on (St°H,{e)) <=> TjJ1 = O(k~2), k -> ±00, where 

8 = 6T(St°H ® {e},P) is the unique positive solution of the equation
6 = inf {6Tfc2 [((b + l)(2h + l)Tfc + 66]"1 : |b| > 2} .
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