ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 15	SECTIO A	1996
------------	----------	------

ISCANDER R. NEZHMETDINOV (Kazan)

Stability of Geometric Properties of Convolutions of Univalent Harmonic Functions

ABSTRACT. Let \mathcal{H}^0 be the class of complex-valued harmonic functions f given by the formula (1).

If \mathcal{M} is a subclass of \mathcal{H}^0 then a neighbourhood of $f \in \mathcal{M}$ may be defined by following an idea of Ruscheweyh. For given subclasses $\mathcal{M}, \mathcal{N}, \mathcal{P}$ of \mathcal{H}^0 the stability of the convolution $\mathcal{M} * \mathcal{N}$ with respect to \mathcal{P} means that $f * g \in \mathcal{P}$ whenever $f \in \mathcal{M}, g \in \mathcal{N}$, rangle over sufficiently small neighbouhoods. Stability conditions in some special cases ($\mathcal{N} = \{id\}, \mathcal{M}, \mathcal{P}$ starlike, or convex) are established.

It is a well-known fact that any function f(z), harmonic in the unit disk $D = \{z : |z| < 1\}$ can be written as $f(z) = f_1(z) + \overline{f_2(z)}$, both $f_1(z)$ and $f_2(z)$ being regular functions in D. Consider the class \mathcal{H}^0 of normalized harmonic functions

(1)
$$f(z) = z + \sum_{|k|=2}^{\infty} a_k(f)\phi_k(z), \ z \in D,$$

where $\phi_k(z) = z^k$ for $k \ge 2$ and $\phi_k(z) = \overline{z}^{|k|}$ for $k \le -2$. We retain the notation introduced by Clunie and Sheil-Small [2], according to which the superscript "0" means that there is no term $a_1(f)\overline{z}$ in the expansion (1).

Denote by S_H^0 , St_H^0 and K_H^0 subclasses of \mathcal{H}^0 , consisting of univalent, starlike and convex univalent functions, respectively.

Given any $f, g \in \mathcal{H}^0$, define, as in [1], their Hadamard convolution

(2)
$$(f * g)(z) = z + \sum_{|k|=2}^{\infty} a_k(f) a_k(g) \phi_k(z),$$

as well as their integral convolution

(3)
$$(f \otimes g)(z) = z + \sum_{|k|=2}^{\infty} a_k(f) a_k(g) k^{-1} \phi_k(z) \,.$$

We also introduce $T-\delta$ -neighborhoods of $f \in \mathcal{H}^0$,

(4)
$$TN_{\delta}(f) = \left\{ g \in \mathcal{H}^0 : \sum_{|k|=2}^{\infty} T_k |a_k(g) - a_k(f)| \le \delta \right\},$$

generalizing those studied both in [2] and [3]. Here $\{T_{\pm k}\}_{k=2}^{\infty}$ are sequences of positive real numbers.

By a $T - \delta$ -neighborhoods $TN_{\delta}(\mathcal{M})$ of a class $\mathcal{M} \subset \mathcal{H}^0$ we mean the union of all $TN_{\delta}(f)$, where f ranges over the whole class \mathcal{M} .

In accordance with [3] let us give the basic

Definition. Assume that \mathcal{M}, \mathcal{N} and \mathcal{P} are subclasses of \mathcal{H}^0 with

$$\mathcal{M} * \mathcal{N} = \{f * g : f \in \mathcal{M}, g \in \mathcal{N}\} \subset \mathcal{P}.$$

Then (2) is said to be $T - \mathcal{P}$ - stable on the pair $(\mathcal{M}, \mathcal{N})$ if there exists a $\delta > 0$ such that $TN_{\delta}(\mathcal{M}) * TN_{\delta}(\mathcal{N}) \subset \mathcal{P}$.

Avci and Złotkiewicz [1] used a quite elementary approach to prove some relations of the form $\mathcal{M} * TN_b(e) \subset \mathcal{P}$, where e(z) = z. Here we extend to the harmonic case the duality technique developed by Ruscheweyh [4] for analytic functions and apply it to deduce necessary and sufficient conditions for (2) and (3) to be stable on the pairs $(\mathcal{M}, \{e\}), \mathcal{M}$ being any of the classes St_H^0 , K_H^0 or $\{e\}$. Furthermore, we shall present explicit expressions or equations for the stability constants

$$\delta_T(\mathcal{M} * \mathcal{N}, \mathcal{P}) = \sup\{\delta \ge 0 : TN_b(\mathcal{M}) * TN_b(\mathcal{N}) \subset \mathcal{P}\}$$

In the sequel \mathcal{P} will denote either of two classes S^0_H and St^0_H .

Theorem 1. The convolution (2) is: a) $T - K_H^0$ -stable on $(\{e\}, \{e\}) \iff T_k^{-1} = O(k^{-1}), k \to \pm \infty$; moreover.

$$\delta_T(\{e\} * \{e\}, K_H^0) = \inf\{T_k|k|^{-1} : |k| \ge 2\};$$

b) $T - \mathcal{P}$ -stable on $(\{e\}, \{e\}) \iff T_k^{-1} = O(|k|^{-1/2}), k \to \pm \infty$; besides,

$$\delta_T(\{e\} * \{e\}, \mathcal{P}) = \inf \left\{ T_k |k|^{-1/2} : |k| \ge 2 \right\};$$

c) $T - K_H^0$ -stable on $(K_H^0, \{e\}) \iff T_k^{-1} = O(k^{-3}), k \to \pm \infty$, where $\delta = \delta_T (K_H^0 * \{e\}, K_H^0)$ is the unique positive root of the equation

$$\delta = \inf \left\{ 2T_k^2 k^{-2} (|k+1|T_k+2\delta)^{-1} : |k| \ge 2 \right\};$$

d) $T-\mathcal{P}$ -stable on $(K_H^0, \{e\}) \iff T_k^{-1} = O(k^{-2}), k \to \pm \infty$, in addition $\delta = \delta_T(K_H^0 * \{e\}, \mathcal{P})$ can be found from

$$\delta = \inf \left\{ 2T_k^2 |k|^{-1} (|k+1|T_k+2\delta)^{-1} : |k| \ge 2 \right\} ;$$

e) $T - K_H^0$ -stable on $(St_H^0, \{e\}) \iff T_k^{-1} = O(k^{-4}), k \to \pm \infty, \text{ fur-}$ thermore, $\delta = \delta_T(St^0_H * \{e\}, K^0_H)$ satisfies the equation

$$\delta = \inf \left\{ 6T_k^2 k^{-2} [(k+1)(2k+1)T_k + 6\delta]^{-1} : |k| \ge 2 \right\};$$

f) $T - \mathcal{P}$ -stable on $(St_H^0, \{e\}) \iff T_k^{-1} = O(k^{-3}), k \to \pm \infty$, where the constant $\delta = \delta_T(St_H^0 * \{e\}, \mathcal{P})$ is the unique positive solution of the equation

$$\delta = \inf \left\{ 6T_k^2 |k|^{-1} \left[((k+1)(2k+1)T_k + 6\delta]^{-1} : |k| \ge 2 \right\} \right.$$

First, let us state and prove sufficient conditions for $f \in \mathcal{H}^0$ to be univalent, starlike or convex in terms of the convolution (2). Set

$$X = \{h \in \mathcal{H}^0 : a_k(h) = k(k+i\alpha)/(1+i\alpha) \text{ with } \alpha \in \mathbb{R} \text{ for all } |k| \ge 2\},\$$

$$Y' = \{h \in \mathcal{H}^0 : a_k(h) = (k+i\alpha)/(1+i\alpha) \text{ with } \alpha \in \mathbb{R} \text{ for all } |k| \ge 2\},\$$

$$Z = \{h \in \mathcal{H}^0 : a_k(h) = (\phi_k(x) - \phi_k(y))/(x-y) \text{ with } |x|, |y| \le 1, x \ne y,\$$

for all $|k| \ge 2\},\$

and $Y = Y' \cup Z$.

Observe that for any $|k| \geq 2$ we have $|a_k(h)| \leq k^2$ if $h \in X$ and $|a_k(h)| \leq |k|$ if $h \in Y$ (or Z).

Lemma 1. If $f \in \mathcal{H}^0$ and for all $h \in X$ (Y or Z) there holds

(6)
$$(f * h)(z) \neq 0, \quad z \in D' = D \setminus \{0\}.$$

then $f \in K_H^0(St_H^0 \text{ or } S_H^0)$, respectively.

Proof. Given $h \in \mathbb{Z}$, we have

$$(f * h)(z) = z + \sum_{|k|=2}^{\infty} \frac{\phi_k(x) - \phi_k(y)}{x - y} a_k(f) \phi_k(z) = \frac{f(xz) - f(yz)}{x - y}.$$

Show that the condition (6) (holding for all $h \in Z$) implies the univalence of f. Assume the contrary, i. e., there are $z_1, z_2 \in D$ such that $z_1 \neq z_2$, whereas $f(z_1) = f(z_2)$. Without loss of generality, let $|z_1| \leq |z_2|$. Put $z' = z_2$ and $z_1 = xz'$, where $|x| \leq 1, y = 1, x \neq y$. Hence for certain $h \in Z$ we obtain $(f * h)(z') = (f(z_1) - f(z_2))/(x - y)$, and, by the contradiction, f is univalent in D.

Now, if (6) holds for any $h \in Y$, the above reasoning yields at once $f \in S^0_H$. For $h \in Y'$ we have

$$(f*h)(z) = z + \sum_{|k|=2}^{\infty} \frac{k+i\alpha}{1+i\alpha} a_k(f)\phi_k(z) \neq 0,$$

or, equivalently, $zf'_{z} - \overline{z}f'_{\overline{z}} + i\alpha f \neq 0$, for $z \in D'$, $a \in \mathbb{R}$. Therefore, by the normalization, $d \arg f(re^{i\theta})/d\theta = \operatorname{Re}[(zf'_{z} - \overline{z}f'_{\overline{z}})/f] > 0$, where $z = re^{i\theta}$, 0 < r < 1. Hence for $D_r = \{z : |z| < r\}$, 0 < r < 1, its image $f(D_r)$ is a domain starlike with respect to the origin, and so is f(D). Thus, $f \in St^0_H$. The case when $h \in X$ is considered in a similar way, however, by the Choquet Theorem [1], we may discard an additional condition for univalence.

The following assertion appears to be useful in constructing examples which prove the sharpness of constants.

Lemma 2 (see [2]). Let m be an integer, $|m| \ge 2$. Then we have

$$egin{aligned} z+c\phi_m(z)\in K^0_H&\Longleftrightarrow |c|\leq m^{-2}\,,\ z+c\phi_m(z)\in \mathcal{P}&\Longleftrightarrow |c|\leq |m|^{-1}\,. \end{aligned}$$

Proof of Theorem 1.

Case (a). Let (2) be $T - K_H^0$ -stable on ({e}, {e}), that is, for some $\delta > 0$ the inclusion $TN_{\delta}(e) * TN_{\delta}(e) \subset K_H^0$ holds. Put

$$f(z) = g(z) = z + \delta T_k^{-1} \phi_k(z) \in TN_{\delta}(e).$$

Then

$$(f * g)(z) = z + \delta^2 T_k^{-2} \phi_k(z) \in K_H^0$$
,

and, by Lemma 2, $\delta^2 T_k^{-2}$ for any $k, |k| \ge 2$. Thus, $T_k^{-1} = O(k^{-1})$ as $k \to \pm \infty$.

Conversely, from the latter relation it follows that a M > 0 exists such that $T_k^{-1} \leq M|k|^{-1}$ (or $T_k|k|_{-1} \geq M_{-1}$) for all $|k| \geq 2$. Therefore,

$$\delta' = \inf \left\{ T_k |k|^{-1} : |k| > 2 \right\} > 0$$

Choose any $f,g\in TN_{\delta}(e), 0<\delta<\delta'$, and $h\in X$. Then we have

 $|k| \le \delta^{-1} T_k \,, \, \, |a_k(h)| \le k^2 \quad ext{and} \, \, |z^{-1} \phi_k(z)| \le |z| \, \, \, ext{for any} \, ||k| \ge 2 \,, z \in D' \,.$

Since $g \in TN_{\delta}(e)$, there also holds $|a_k(g)| \leq \delta T_k^{-1}$, $|k| \geq 2$. By using all the inequalities, we can estimate

$$\left|\frac{f*g*h}{z}\right| = \left|1 + \sum_{|k|=2}^{\infty} \frac{a_k(f)a_k(g)a_k(h)}{z}\phi_k(z)\right|$$

$$\geq 1 - |z| \sum_{|k|=2}^{\infty} \delta k^2 T_k^{-1} |a_k(f)| \geq 1 - |z| \delta^{-1} \sum_{|k|=2}^{\infty} T_k |a_k(f)| \geq 1 - |z| > 0.$$

Thus, the condition (6) is valid for all $h \in X$, so $f * g \in K_H^0$. On the other hand, if $\delta > \delta'$, then an integer $m, |m| \ge 2$, can be found such that $T_m |m|^{-1} < \delta$. The above example shows that for $f(z) = g(z) = z + \delta T_m^{-1} \phi_m(z)$ their convolution $f * g \notin K_H^0$, whence $\delta_T(\{e\} * \{e\}, K_H^0)\delta'$.

Case (c). Let (2) be $T - K_H^0$ -stable on $(K_H^0, \{e\})$. Then there exists a positive δ such that $TN_{\delta}(K_H^0) * TN_{\delta}(e) \subset K_H^0$. Choose the functions

$$f(z) = L_0(z) + \delta \eta_k T_k^{-1} \phi_k(z) \in TN_\delta(K_H^0),$$

where

$$\begin{split} L_0(z) &= z + \sum_{|j|=2}^{\infty} (j+1)\phi_j(z)/2 \in K_H^0, \quad \eta_k = \text{sgn } k ,\\ \text{and} \quad g(z) &= z + \delta \eta_k T_k^{-1} \phi_k(z) \in TN_\delta(e) \,. \end{split}$$

By the above assumption we have

$$(f * g)(z) = z + \left(\frac{|k+1|}{2} + \delta T_k^{-1}\right) \delta T_k^{-1} = \phi_k(z) \in K_H^0$$

and from Lemma 2 it follows that

$$\delta \frac{|k+1|}{2} T_k^{-1} \le \left(\frac{|k+1|}{2} + \delta T_k^{-1} \right) \delta T_k^{-1} \le k^{-2} ,$$

hence $T_k^{-1} = O(k^{-3})$ as $k \to \pm \infty$. Now assume that $\delta > \delta', \delta'$ being the unique positive root of $\delta = \inf\{2T_k^2k^{-2}(|k+1|T_k+2\delta)^{-1}: |k| \ge 2\}$. Since both parts of the equation are monotonous relative to δ , we have

$$\delta > \inf \left\{ 2T_k^2 k^{-2} (|k+1|T_k+2\delta)^{-1} : |k| \ge 2 \right\}$$

and, by the above, functions $f \in TN_{\delta}(K_{H}^{0}), g \in TN_{\delta}(e)$ can be chosen such that $f * g \notin K_{H}^{0}$.

On the other hand, let $T_k^{-1} = O(k^{-3})$ as $k \to \pm \infty$, i.e., there is a M > 0 such that $T_k^{-1} \leq M|k|^{-3}$, or, equivalenty, $T_k \geq M^{-1}|k|^3$ for all $|k| \geq 2$. Obviously, $T_k \geq (2M)^{-1}k^2|k+1|$ and hence

$$2T_k^2 k^{-2} (|k+1|T_k+2\delta)^{-1} \ge M^{-1} |k+1|T_k (|k+1|T_k+2\delta)^{-1}.$$

Since

$$|k+1|T_k \ge (2M)^{-1}k^2|k+1|^2 \ge 2M^{-1}$$
 for all $|k| \ge 2$,

we have

$$2T_k^2 k^{-2} (|k+1| T_k + 2\delta)^{-1} \ge M^{-1} (1 + \delta M)^{-1}.$$

Therefore, the equation (5) yields

$$\delta = \inf \{ 2T_k^2 k^{-2} (|k+1|T_k+2\delta)^{-1} : |k| \ge 2 \} \ge M^{-1} (1+\delta M)^{-1} ,$$

so that its root $\delta' \ge (\sqrt{5}-1)/2M$ and is positive.

Suppose now that $0 < \delta \leq \delta'$. Both parts of (5) being monotonous, with respect to δ , it follows that

(7)
$$\delta \le 2T_k^2 k^{-2} (|k+1|T_k+2\delta)^{-1} \text{ for all } k, |k| \le 2.$$

Assuming that $f \in TN_{\delta}(f_0)$ with $f_0 \in K^0_H, g \in TN_{\delta}(e)$ and $h \in X$, we get

$$\left|\frac{(f * g * h)(z)}{z}\right| \ge \left|\frac{(f_0 * e * h)(z)}{z}\right| - \left|\frac{(f_0 * (g - e) * h)(z)}{z}\right| - \left|\frac{((f - f_0) * (g - e) * f)(z)}{z}\right| \\\ge 1 - \sum_{|k|=2}^{\infty} \left[|a_k(f_0)| + |a_k(f) - a_k(f_0)|\right] |a_k(g)a_k(h)z^{-1}\phi_k(z)| .$$

By the sharp estimate $|a_k(f_0)| \leq |k+1|/2$ (found in [2] for $f_0 \in K_H^0$), we use the inequalities $|a_k(f) - a_k(f_0)| \leq \delta T_k^{-1}$ and $a_k(h) \leq k^2$, $|k| \geq 2$, to obtain

(8)
$$\left| \frac{(f * g * h)(z)}{z} \right| \ge 1 - |z| \sum_{|k|=2}^{\infty} \left(\frac{|k+1|}{2} + \delta T_k^{-1} \right) k^2 |a_k(g)|$$

where $z \in D'$. Hence (7) and (8) yield

$$\left|\frac{(f * g * h)(z)}{z}\right| \ge 1 - \delta^{-1}|z| \sum_{|k|=2}^{\infty} T_k |a_k(g)| \ge 1 - |z| > 0,$$

and, by Lemma 1, $f * g \in K_H^0$.

Case (e) is studied in a similar way by applying the sharp estimate $|a_k(f_0)| \le (k+1)(2k+1)/6$, valid for all $f_0 \in St^0_H$ (see [6]). To prove the remaining cases it suffices to replace the class X by Y (or by Z) and to repeat the previous reasoning.

The conclude with, let us state a counterpart of Theorem 1 for the integral convolution (3).

Theorem 2. The convolution (3) is:

a) $T - K_H^0$ -stable on $(\{e\}, \{e\}) \iff T_k^{-1} = O(|k|^{-1/2}), k \to \pm \infty;$ moreover,

$$\delta_T(\{e\} \otimes \{e\}, K_H^0) = \inf \left\{ T_k |k|^{-1/2} : |k| \ge 2 \right\};$$

- b) $T \mathcal{P}$ -stable on $(\{e\}, \{e\}) \iff T_k^{-1} = O(1), k \to \pm \infty$; besides, $\delta_T(\{e\} \otimes \{e\}, \mathcal{P}) = \inf \{T_k : |k| \ge 2\}$;
- c) $T K_H^0$ -stable on $(K_H^0, \{e\}) \iff T_k^{-1} = O(k^{-2}), k \to \pm \infty$, where $\delta_T(K_H^0 \otimes \{e\}, K_H^0) \iff \delta_T(K_H^0 * \{e\}, \mathcal{P});$
 - d) $T-\mathcal{P}$ -stable on $(K_H^0, \{e\}) \iff T_k^{-1} = O(k^{-1}), k \to \pm \infty$, in addition $\delta = \delta_T(K_H^0 \otimes \{e\}, \mathcal{P})$ can be found from

 $\delta = \inf \left\{ 2T_k^2 (|k+1|T_k+2\delta)^{-1} : |k| \ge 2 \right\};$

e) $T - K_H^0$ -stable on $(St_H^0, \{e\}) \iff T_k^{-1} = O(k^{-3}), k \to \pm \infty$, furthermore,

$$\delta_T(St^0_H \otimes \{e\}, K^0_H) = \delta_T(St^0_H *, \mathcal{P});$$

f) $T - \mathcal{P}$ -stable on $(St_H^0, \{e\}) \iff T_k^{-1} = O(k^{-2}), k \to \pm \infty$, where $\delta = \delta_T(St_H^0 \otimes \{e\}, \mathcal{P})$ is the unique positive solution of the equation

$$\delta = \inf \left\{ 6T_k^2 \left[((k+1)(2k+1)T_k + 6\delta)^{-1} : |k| \ge 2 \right] \right\}$$

REFERENCES

- Avci, Y. and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1-7.
- [2] Clunie, J. and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.
- [3] Nezhmetdinov, I. R., Stability of geometric properties of convolutions of univalent functions in certain neighborhoods, Izv. Vyssh. Uchebn. Zaved. Mat. No 8 (1994), 46-54.
- [4] Ruscheweyh, St., Über die Faltung schlichter Funktionen, Math. Z. 128 (1972), 85– 92.
- [5] Sheil-Small, T. and E. M. Silvia, Neighborhoods of analytic functions, J. Analyse Math. 52 (1989), 210-240.
- [6] _____, Constants for planar harmonic mappings, J. London Math. Soc. 42(2) (1990), 237-248.

Faculty of Mechanics and Mathematics received September 18, 1996 Kazan State University Kazan, Russian Federation