ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 11

SECTIO A

1996

JAN G. KRZYŻ (Lublin)

Some Remarks on the Isomorphism of Fuchsian Groups

ABSTRACT. Let G, \overline{G} be Fuchsian groups of the first kind acting on the unit disk Δ and isomorphic under $\theta(g)$, $g \in G$. Under some further conditions an automorphism γ of $\partial \Delta$ can be associated with θ . A formula for reconstructing $\theta(g)$ by means of γ is established.

Introduction. Notations. This paper deals with an isomorphism θ between Fuchsian groups G and \tilde{G} acting on the unit disk Δ , both being discontinuous and of the first kind. Discontinuity of G means that any $z \in \Delta$ has a neighbourhood which does not contain any pair of points equivalent under G. Moreover, G is said to be a Fuchsian group of the first kind if the fixed points of G are dense on $\mathbb{T} = \partial \Delta$.

In this case any $g \in G$ has either only one fixed point on $\mathbb{T}(parabolic case)$ or two different fixed points $\zeta_1, \zeta_2 \in \mathbb{T}$ (hyperbolic case).

If \mathfrak{M} stands for the group of all Möbius automorphisms of Δ then any $g \in \mathfrak{M}$ has the form $g(z) = e^{i\alpha}(z-a)(1-\overline{a}z)^{-1}$, where |a| < 1 and $0 \leq \alpha < 2\pi$. Moreover, if 0 < |a| < 1 then the inequality $\sin \frac{1}{2}\alpha < |a|$ distinguishes hyperbolic g, whereas the equality $\sin \frac{1}{2}\alpha = |a|$ is characteristic for parabolic g. For a hyperbolic $g \in \mathfrak{M}$ the circular arc joining in Δ the fixed points ζ_1, ζ_2 of g and orthogonal to \mathbb{T} is said to be the axis of g.

Research supported by the KBN-Grant Nr. 2 PO3A 002 08

According to the below quoted Theorem A an isomorphism $\theta: G \to \tilde{G}$ generates an automorphism γ of \mathbb{T} , so-called *boundary function*. Conversely, the isomorphism θ can be reconstructed in terms of γ , e.g. by formula (2), if γ fulfills suitable conditions.

In an earlier paper [1] the present author announced an analogous formula (6) in terms of the Poisson extension $P[\gamma] = h$. However, this formula holds only under an additional assumption on h to be quasiconformal. It is thus actually a particular case of formula (2). The characterization of γ whose Poisson extension is a quasiconformal self-mapping of Δ was given by Martio [4].

In this paper we establish a different representation of $\theta(g)$ under a much weaker assumption on γ (cf. formula (3)) which is supposed to be only a sense-preserving, homeomorphic self-mapping of \mathbb{T} .

Isomorphism and conjugation w. r. t. γ . Our starting point is the following basic

Theorem A [2], [5]. Let θ be an isomorphism between the Fuchsian groups G and \tilde{G} of Möbius transformations acting on Δ , both fixed point free and of the first kind. Suppose $\theta(g)$ is parabolic if and only if g is. Then θ generates a mapping from the set X of fixed points of G onto the set \tilde{X} of fixed points of \tilde{G} .

This mapping can be extended to a homeomorphism γ of \mathbb{T} if and only if the following axis condition is satisfied: $g_1, g_2 \in G$ have intersecting axes if and only if $\theta(g_1), \theta(g_2)$ do. The homeomorphism $\gamma : \mathbb{T} \to \mathbb{T}$ is said to be the boundary function of the isomorphism θ . It satisfies the relation

(1)
$$\gamma \circ g = \theta(g) \circ \gamma \quad \text{on } \mathbb{T}, \ g \in G$$

A natural problem arises to express the isomorphism $\theta(g), g \in G$, in terms of the boundary automorphism γ of **T**. This can be done for quasisymmetric γ which has a quasiconformal extension w to Δ . Then we have

(2)
$$\theta(g) = w \circ g \circ w^{-}$$

cf.[2], [3, p. 134]. Note that the r. h. s. in (2) belongs to \mathfrak{M} for any $g \in \mathfrak{M}$.

However, we are in a position to reconstruct the isomorphism $\theta(g)$ from its boundary function γ , without imposing any restrictions on γ . We have **Theorem.** Let $\theta(g)$ be an isomorphism between the Fuchsian groups G, \tilde{G} which satisfies the assumptions of Theorem A and let γ stand for the boundary function associated with the isomorphism θ . Then

(3)
$$\theta(g) = P[\gamma^{-1} \circ g \circ \gamma] \quad \text{on } \Delta, g \in G,$$

where $P[\phi]$ denotes the Poisson extension to Δ of the homeomorphism $\phi: \mathbb{T} \to \mathbb{T}$.

Proof. According to Theorem A the isomorphism $\theta(g)$ and the associated boundary function γ are related by the identity $\gamma \circ \theta(g) = g \circ \gamma$ on \mathbb{T} or equivalently, by the identity

(4)
$$\theta(g) = \gamma^{-1} \circ g \circ \gamma \quad \text{on } \mathbb{T}, \ g \in G.$$

This may be interpreted as a conjugation of groups G, \overline{G} under γ . Now $\theta(g) \in \overline{G} \subset \mathfrak{M}$ and it is determined by its boundary values on \mathbb{T} which are equal to the r. h. s. in (4). Hence (3) readily follows and the proof is complete.

The formula (3) may be applied only for $g \in G$ and a special boundary function γ intimately connected with the isomorphism $\theta: G \to \widetilde{G}$.

However, if γ is quasisymmetric on \mathbb{T} and w is an arbitrary quasiconformal automorphism of Δ with boundary values γ then $w^{-1} \circ g \circ w \in \mathfrak{M}$ for any $g \in \mathfrak{M}$. To see this observe that quasiconformal mappings w and $g \circ w$ have the same complex dilatation on Δ and satisfy the same Beltrami equation. Therefore both mappings differ from each other by a conformal mapping which means that $w^{-1} \circ g \circ w$ is conformal. Then, as a conformal self-mapping of Δ , it is Möbius. In this way any quasisymmetric γ generates a group automorphism of \mathfrak{M} given by formula (2). If γ fails to be quasisymmetric then (2) does not make sense, whereas (3) is still applicable.

REFERENCES

- Krzyż, J. G., Isomorphism of Fuchsian groups and harmonic maps, Mitteilungen aus dem Mathem. Seminar Giessen, Heft 228, 25-29.
- [2] Lehto, O., Group isomorphisms induced by quasiconformal mappings. Contributions to Analysis (1974), A collection of papers dedicated to Lipman Bers. Academic Press, 241-244.
- [3] _____, Univalent functions and Teichmüller spaces, Springer Verlag 1987.
- [4] Martio, O., On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. AI. 425 (1968), 1-9.
- [5] Tukia, P., On discrete groups of the unit disk and their isomorphisms, Ann. Sci. Fenn. Ser. AI. 504 (1972), 1-45.

received December 12, 1996

Instytut Matematyki UMCS Plac M. Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: krzyz@golem.umcs.lublin.pl