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Some Remarks on the Isomorphism
of Fuchsian Groups

ABSTRACT. Let G, G be Fuchsian groups of the first kind acting on the
unit disk A and isomorphic under 8(g), g € G. Under some further condi-
tions an automorphism 4 of dA can be associated with 6. A formula for
reconstructing 6(g) by means of ¥ is established.

Introduction. Notations. This paper deals with an isomorphism 6
between Fuchsian groups G and G acting on the unit disk A, both being
discontinuous and of the first kind. Discontinuity of G means that any
2 € A has a neighbourhood which does not contain any pair of points
equivalent under G. Moreover, G is said to be a Fuchsian group of the
first kind if the fixed points of G are dense on T = JA.

In this case any g € G has either only one fixed point on T (parabolic
case) or two different fixed points (1,(>» € T (hyperbolic case).

If M stands for the group of all Mébius automorphisms of A then any
g € M has the form g(z) = €'¥(z — a)(1 — @z)~!, where |a| < 1 and
0 < a < 27 . Moreover, if 0 < |a| < 1 then the inequality sin $a < |a| dis-
tinguishes hyperbolic g, whereas the equality sin %a = |a| is characteristic
for parabolic g. For a hyperbolic g € M the circular arc joining in A the
fixed points (;,(2 of g and orthogonal to T is said to be the azis of g.

Research supported by the KBN-Grant Nr. 2 PO3A 002 08



96 J. G. Krzyz

According to the below quoted Theorem A an isomorphism 8 : G — &
generates an automorphism 5 of T, so-called boundary function. Con-
versely, the isomorphism # can be reconstructed in terms of v, e.g. by
formula (2), if v fulfills suitable conditions.

In an earlier paper [1] the present author announced an analogous formula
(6) in terms of the Poisson extension P[y] = h. However, this formula
holds only under an additional assumption on h to be quasiconformal. It
is thus actually a particular case of formula (2). The characterization of +
whose Poisson extension is a quasiconformal self-mapping of A was given
by Martio [4].

In this paper we establish a different representation of 6(g) under a much
weaker assumption on v (cf. formula (3)) which is supposed to be only a
sense—preserving, homeomorphic self-mapping of T.

Isomorphism and conjugation w. r. t. 7. Our starting point is the
following basic

Theorem A [2], [5]. Let 6 be an isomorphism between the Fuchsian
groups G and G of Mébius transformations acting on A, both fixed point
free and of the first kind. Suppose 6(g) is parabolic if and only if g is.
Then 6 generates a mapping from the set X of fixed points of G onto the
set X of fixed points of G.

This mapping can be extended to a homeomorphism v of T if and only
if the following axis condition is satisfied: g1,g2 € G have intersecting axes
if and only if 6(gy), 6(g2) do. The homeomorphism v : T — T is said to
be the boundary function of the isomorphism 6. It satisfies the relation

(1) Yyog=06(g)oy onT,g€eq.

A natural problem arises to express the isomorphism 6(g),9 € G, in
terms of the boundary automorphism 4 of T. This can be done for qua-
sisymmetric 4 which has a quasiconformal extension w to A. Then we
have

(2) 6(g) = wogouw™

cf.[2], [3, p. 134]. Note that the r. h. s. in (2) belongs to 9 for any
geM.

However, we are in a position to reconstruct the isomorphism 6(g) from
its boundary function 4, without imposing any restrictions on 7. We have
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Theorem. Let 6(g) be an isomorphism between the Fuchsian groups G,

G which satisfies the assumptions of Theorem A and let v stand for the
boundary function associated with the isomorphism 6. Then

(3) 8(g)= Py 'ogoq] on A, g€eG,

where P[¢] denotes the Poisson extension to A of the homeomorphism
¢:T—-T.

Proof. According to Theorem A the isomorphism 6(g) and the associated
boundary function v are related by the identity yo068(g) =goy on T or
equivalently, by the identity

(4) B(g)=7"ogoy onT, g€aG.

This may be interpreted as a conjugation of groups G, G under 7. Now
8(g) € G C M and it is determined by its boundary values on T which
are equal to the r. h. s. in (4). Hence (3) readily follows and the proof is
complete.

The formula (3) may be applied only for ¢ € G and a special boundary
function 4 intimately connected with the isomorphism 6:G — G.

However, if v is quasisymmetric on T and w is an arbitrary quasicon-
formal automorphism of A with boundary values 5 then w=!ogow € M
for any g € 9. To see this observe that quasiconformal mappings w and
gow have the same complex dilatation on A and satisfy the same Beltrami
equation. Therefore both mappings differ from each other by a conformal
mapping which means that w=!ogow is conformal. Then, as a conformal
self-mapping of A, it is Mobius. In this way any quasisymmetric vy gen-
erates a group automorphism of 9 given by formula (2). If v fails to be
quasisymmetric then (2) does not make sense, whereas (3) is still applicable.
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