ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 7

SECTIO A

1996

1971 Straid Reach Star and a

EZZAT R. HASSAN (Lublin)

Nonlinear Volterra Integral Equation with Discontinuous Right–Hand Side

ABSTRACT. The existence of a maximal continuous solution to a nonlinear discontinuous Volterra integral equation is established.

1. Introduction. Our aim is to present a theorem concerning the existence of a maximal continuous solution to a nonlinear integral equation of the Volterra type:

(1)
$$x(t) = u(t) + \int_0^t f(t,\tau,x(\tau)) d\tau.$$

Usually techniques for deriving existence criteria are based on Schauder fixed point theorem and need f to be continuous in x, see e.g. [1], [3], [4], [7] or [2, Chapter 12]. We assume f to be right continuous and nondecreasing in that variable which allows us to use the inequalities method (called sometimes Perron method [7]). Conditions we assume for f are similar to those of [6] (conditions (C1),...,(C5)). It is worth of mention however that only ordinary differential equations are considered there.

2. Main result. Given the functions $u:[0,1] \to \mathbb{R}$ and $f:[0,1] \times [0,1] \times \mathbb{R} \to \mathbb{R}$. Assume that: (C1) u is continuous.

- (C2) For any $(t, x) \in [0, 1] \times \mathbb{R}$, $f(t, \cdot, x)$ is measurable.
- (C3) For any $t \in [0, 1]$ and almost all $\tau \in [0, 1]$, $f(t, \tau, \cdot)$ is non-decreasing and

$$\lim_{y \downarrow x} f(t, s, y) = f(t, s, x)$$

(C4) For any $(t, x) \in [0, 1] \times \mathbb{R}$, and almost all $\tau \in [0, 1]$,

$$\left|f\left(t,\tau,x\right)\right| \leq M\left(t\right).$$

where $M: [0,1] \rightarrow [0,\infty]$ is an integrable function.

(C5) Denote by \mathcal{M} the family of all continuous functions $x:[0,1] \to \mathbb{R}$ satisfying the inequality

(2)
$$|x(t)| \le |u(t)| + \int_0^t M(\tau) d\tau$$

We assume that all functions

$$[0,1] \ni t \longmapsto \int_0^t f(t,\tau,x(\tau)) \, d\tau$$

where $x \in \mathcal{M}$, are equicontinuous.

Theorem. There exists a maximal continuous solution x^* to the equation

$$x(t) = u(t) + \int_0^t f(t, \tau, x(\tau)) d\tau, \ t \in [0, 1].$$

Proof. Let ω be a common modulus of continuity of all functions

$$[0,1]
i t \longmapsto \int_0^t f(t,\tau,x(\tau)) d\tau$$

where $x \in \mathcal{M}$. Denote by \mathcal{X} the set of all $x \in \mathcal{M}$ such that

(3)
$$|x(t) - x(s)| \le |u(t) - u(s)| + \omega(|t - s|) + \left| \int_{s}^{t} M(\tau) d\tau \right|$$

and

(4)
$$x(t) \leq u(t) + \int_0^t f(t,\tau,x(\tau)) d\tau,$$

for all $s,t\in[0,1]$, and let us define x^* by the formula

$$x^{*}\left(t
ight)=\sup_{x\in\mathcal{X}}x\left(t
ight)$$
 .

Let the operator L be defined for any continuous $x:[0,1] \to \mathbb{R}$ by the formula

$$(Lx)(t) = u(t) + \int_0^t f(t,\tau,x(\tau)) d\tau$$

By (C3), we have

$$\lim_{y \uparrow x} f(t, \tau, y) \le f(t, \tau, x) \le \lim_{y \downarrow x} f(t, \tau, x)$$

for all $(t,x) \in [0,1] \times \mathbb{R}$ and almost all $\tau \in [0,1]$. Thus the composition $f(t, \cdot, x(\cdot))$ is a measurable function for any continuous x, see [5]. This, together with (C4), implies that the operator L is well defined. Moreover, for any continuous $x : [0,1] \to \mathbb{R}$, the function Lx satisfies (2), and, for any $x \in \mathcal{M}$, Lx satisfies (3) because of the following estimate:

$$|(Lx)(t) - (Lx)(s)| = \left| u(t) + \int_0^t f(t,\tau,x(\tau))d\tau - \left(u(s) + \int_0^s f(s,\tau,x(\tau))d\tau \right) \right|$$

$$\leq |u(t) - u(s)| + \left| \int_0^t f(t,\tau,x(\tau))d\tau - \int_0^s f(s,\tau,x(\tau))d\tau \right|$$

$$\leq |u(t) - u(s)| + \omega (|t-s|) .$$

We are going to prove that $x^* \in \mathcal{X}$ and $Lx^* = x^*$, which is just we have to do. Let us observe first that $\mathcal{X} \neq \emptyset$ since the function

$$t\longmapsto u\left(t
ight)-\int_{0}^{t}M\left(au
ight)d au$$

belongs to \mathcal{X} . Hence, x^* is also well defined and it is easy to see that x^* satisfies (2) and (3). By (C3), for any $x \in \mathcal{X}$ and any $t \in [0, 1]$, we have

$$x(t) \leq u(t) + \int_0^t f(t,\tau,x(\tau)) d\tau \leq u(t) + \int_0^t f(t,\tau,x^*(\tau)) d\tau.$$

Thus, $x^* \leq Lx^*$, which means that x^* satisfies (4), so that $x^* \in \mathcal{X}$. Let us set $y = Lx^*$. Clearly, y belongs to \mathcal{M} and satisfies (3). By the inequality $x^* \leq Lx^* = y$ and by (C3), we get $Lx^* \leq Ly = x^*$ and, finally, $Lx^* = x^*$. The proof is complete.

3. Remarks.

1. We assumed f to be right continuous in order to guarantee the measurability of the composition $f(t, \cdot, x(\cdot))$, for any continuous $x : [0, 1] \to \mathbb{R}$. If the assumption were omitted, the function $f(t, \cdot, x(\cdot))$ would not be measurable in general, as the following example shows.

Let $E \subset [0,1]$ be the non-measurable Vitali's set and let $f:[0,1] \times \mathbb{R} \to \mathbb{R}$ be defined by the formula

$$f(\tau, x) = \begin{cases} 0, \text{ if } x < \tau \text{ or } x = \tau \notin E, \\ 1, \text{ if } x = \tau \in E, \\ 2, \text{ if } x > \tau. \end{cases}$$

The function f is measurable in τ and non-decreasing in x. However, for $x(\tau) = \tau$, the composition $f(t, \cdot, x(\cdot))$ is non-measurable.

2. Our condition (C5) is not satisfactory. It is clear that we need it in the proof. Similar conditions occur in many papers on the subject, see e.g. [1], [3] or condition (iv) of Theorem 5.1, p. 372 in [2]. In particular, condition (G3) of [1] is the same as our (C5). Some functions f discontinuous in t, can satisfy condition (C5), see e.g. example 6.1 of [2, p. 375]. However, the ("almost continuous") function

 $f(t) = \begin{cases} 0, \text{ if } t \in [0,1] \setminus \left\{\frac{1}{2}\right\}, \\ 1, \text{ if } t = \frac{1}{2}, \end{cases}$

does not satisfy that condition.

3. Under the same assumptions on u and f the existence of a minimal continuous solution to the equation (1) can be obtained.

References

- Artstein, Z., Continuous dependence of solutions of Volterra integral equation, SIAM J. Math. Anal. 6 (1975), 446-456.
- [2] Gripenberg, G., S. O. Londen and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990.
- [3] Kelley, W. G., A Kneser Theorem for Volterra integral Equations, Proc. Amer. Math. Soc. 40 (1973), 183-190.
- [4] Miller, R. K. and G. R. Sell, Existence, uniqueness and continuity of solutions of integral equations, Ann. Math. Pura Appl. 80 (1968), 135-152.
- [5] Rzymowski, W. and D. Walachowski, One dimensional differential equations under weak assumptions, J. Math. Anal. Appl. 198 (1996), 657-670.

- [6] Schechter, E., One sided continuous dependence of maximal solutions, J. Differential Equations 39 (1981), 413-425.
- [7] Walter, W., Differential and Integral Inequalities, Springer Verlag, Berlin, Heidelberg, New York, 1970.

Instytut Matematyki UMCS Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland received November 10, 1995