ANNALES

UNIVERSITATIS MARIAE CURIE - SKLODOWSKA LUBLIN - POLONIA

VOL. L, 5
SECTIO A

MIROSLAV DOUPOVEC (Brno) JAN KUREK (Lublin)

Some Geometrical Constructions with (0,2)-Tensor Fields on Higher Order Cotangent Bundles

Abstract

We study some geometrical properties of the r-th order cotangent bundle, which are closely connected with liftings of $(0,2)$-tensor fields to this bundle.

1. Introduction. The r-th order cotangent bundle is defined as the space $T^{r *} M=J^{r}(M, \mathbb{R})_{0}$ of all r-jets of smooth functions $\varphi: M \rightarrow \mathbb{R}$ with the target $0 \in \mathbb{R}$. Every local diffeomorphism $f: M \rightarrow N$ is extended to a vector bundle morphism $T^{r *} f: T^{r *} M \rightarrow T^{r *} N, j_{x}^{r} \varphi \mapsto j_{f(x)}^{r}\left(\varphi \circ f^{-1}\right)$, where f^{-1} is constructed locally, [3]. Then $T^{r *}$ is a functor on the category $\mathcal{M} f_{m}$ of all m-dimensional manifolds and their local diffeomorphisms. Using the general concept of the bundle of geometric objects, $T^{r *} M$ is a natural bundle on $\mathcal{M} f_{m}$. Obviously, $T^{r *} M$ is a vector bundle over M and for $r=1$ we obtain the classical cotangent bundle $T^{*} M$. In what follows a tensor field of the type (r, s) will mean a smooth section of the vector bundle $T^{(r, s)} M=\stackrel{r}{\otimes} T M \otimes \stackrel{s}{\otimes} T^{*} M$ and $T^{(r, s)}$ will denote the corresponding vector bundle functor.
[^0]In [2] we have studied the problem, how a tensor field of the type (r, s) on M can induce a tensor field of the same type on $T^{*} M$. We have studied this problem for $(r, s)=(0,1),(r, s)=(0,2)$ and $(r, s)=(1,1)$. Such geometrical constructions are called liftings. Using a more general point of view, [3], [7], the liftings from [2] are in fact natural differential operators $T^{(r, s)} \rightsquigarrow T^{(r, s)} T^{*}$. In some particular cases it is possible to classify all natural operators of a certain type (in other words to describe the full list of all geometrical constructions in question), see e.g. [1], [2], [3], [4], [5] and [6].

The aim of this paper is to classify all natural operators $T^{(0,2)} \rightsquigarrow T^{(0,2)} T^{r *}$ for $r \geq 2$ and to study some related geometrical properties of higher order cotangent bundles. In particular, we will study linear homomorphisms $T T^{r *} M \rightarrow T^{*} T^{r *} M$, natural (0,2)-tensor fields on $T^{r *} M$ and natural $(0,3)$-tensor fields on $T^{3 *} M$. We also show that unlike the classical cotangent bundle $T^{*} M$, the higher order cotangent bundle $T^{r *} M$ has no canonical symplectic structure for $r \geq 2$. In particular, we prove that the only closed 2 -form on $T^{r^{*}} M$ is the pull-back of the canonical symplectic form from $T^{*} M$. We remark that $T^{r *} M$ is the classical example of a non product preserving functor. On the other hand, every product preserving functor can also be defined as the Weil functor T^{A} of A-velocities (cf. [3]) and Mikulski has in [6] classified all natural operators $T^{(0,2)} \rightsquigarrow T^{0,2)} T^{A}$ for any Weil functor T^{A}. All manifolds and maps are assumed infinitely differentiable.

2. Liftings of (0,2)-tensor fields to higher order cotangent bundles.

 The aim of this section is to show how an arbitrary $(0,2)$-tensor field on M can induce a $(0,2)$-tensor field on $T^{r *} M$ for $r \geq 2$, i.e. to classify all natural operators $T^{(0,2)} \rightsquigarrow T^{(0,2)} T^{r *}$.Let $q_{M}: T^{r *} M \rightarrow M$ be the vector bundle projection and let $q_{M}^{r, s}$: $T^{r *} M \rightarrow T^{s *} M$ be the projection which is defined for $r>s$ by $j_{x}^{r} \varphi \vdash j_{x}^{s} \varphi$. The canonical coordinates on $T^{r *} M$ will be denoted by ($x^{i}, u_{i}, \ldots, u_{i_{1} \ldots i_{r}}$). Let G_{m}^{r} be the group of all invertible r-jets from \mathbb{R}^{m} to \mathbb{R}^{m} with the source and the target zero. Then the canonical coordinates on G_{m}^{r} are denoted by ($a_{j}^{i}, a_{j k}^{i}, \ldots, a_{j_{1} \ldots j_{r}}^{i}$), while the coordinates of the inverse element will be denoted by a tilde. Roughly speaking, $a_{j}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{i}}, \ldots, a_{j_{1} \ldots j_{r}}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{i} \ldots \partial x^{i}}$ express the partial derivatives of the coordinate changes $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ given by $\bar{x}^{i}=\bar{x}^{i}\left(x^{j}\right)$. Using the coordinates of G_{m}^{r}, one can easily express the transformation laws of ($u_{i}, u_{i j}, u_{i j k}, \ldots, u_{i_{1} \ldots i_{r}}$) by

$$
\begin{align*}
\bar{u}_{i} & =\tilde{a}_{i}^{k} u_{k} \\
\bar{u}_{i j} & =\tilde{a}_{i}^{k} \tilde{a}_{l}^{j} u_{k \ell}+\tilde{a}_{i j}^{k} u_{k} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\bar{u}_{i j k} & =\tilde{a}_{i}^{\ell} \tilde{a}_{j}^{m} \tilde{a}_{k}^{n} u_{\ell m n}+\tilde{a}_{i j}^{\ell} \tilde{a}_{k}^{m} u_{\ell m}+\tilde{a}_{i k}^{\ell} \tilde{a}_{j}^{m} u_{\ell m}+\tilde{a}_{i}^{\ell} \tilde{a}_{j k}^{m} u_{\ell m}+\tilde{a}_{i j k}^{\ell} u_{\ell}, \\
\quad \ldots & \bar{u}_{i_{1} \ldots i_{r}}
\end{aligned}=\tilde{a}_{i_{1}}^{j_{1}} \ldots \tilde{a}_{i_{r}}^{j_{r}} u_{j_{1} \ldots j_{r}}+\cdots+\tilde{a}_{i_{1} \ldots i_{r}}^{k} u_{k} .
$$

In other words, the formulae (1) express the action of G_{m}^{r} on the standard fibre of $\left(T^{r=} \mathbb{R}^{m}\right)_{0}$.

The canonical symplectic 2 -form $\Lambda_{M}=d u_{i} \wedge d x^{i}$ on $T^{*} M$ is natural with respect to the following definition. Consider a natural bundle F over m-manifolds.

Definition. A natural $(0, r)$-tensor field on F is a system of $(0, r)$ tensor fields $\omega_{M}: F M \rightarrow T^{(0, r)} F M$ for every m-manifold M satisfying $T^{(0, r)} F f \circ \omega_{M}=\omega_{N} \circ F f$ for all $f: M \rightarrow N$ from $\mathcal{M} f_{m}$.

We have
Lemma. Let
(2) $\quad \alpha=d u_{i} \otimes d x^{i}-u_{i j} d x^{i} \otimes d x^{j} \quad$ and $\quad \beta=d x^{i} \otimes d u_{i}-u_{i j} d x^{i} \otimes d x^{j}$.

Then α and β are natural $(0,2)$-tensor fields on $T^{r} M$ for $r \geq 2$.

Proof. Using (1) we easily prove that $\bar{\alpha}=\alpha$ and $\bar{\beta}=\beta$, i.e. that α and β are defined geometrically (independently of the coordinate changes).

Let $g=g_{i j} d x^{i} \otimes d x^{j}$ be a $(0,2)$-tensor field on M. Then the relation $\langle g, X \otimes Y\rangle=\left\langle g^{\prime}, Y \otimes X\right\rangle$ defines another $(0,2)$ - tensor field $g^{\prime}=g_{j i} d x^{i} \otimes$ $d x^{j}$ on M. Further, let $\lambda_{M}=u_{i} d x^{i}$ be the classical Liouville 1 -form on $T * M$. We prove

Proposition 1. All natural operators $T^{(0,2)} \leadsto T^{(0,2)} T^{r *}$ transforming $(0,2)$-tensor fields on M into $(0,2)$-tensor fields on $T^{r *} M$ for $r \geq 2$ are of the form

$$
\begin{equation*}
g \mapsto c_{1} q_{M}^{*} g+c_{2} q_{M}^{*} g^{\prime}+c_{3}\left(q_{M}^{r_{1}, 1}\right)^{*}\left(\lambda_{M} \otimes \lambda_{M}\right)+c_{4} \alpha+c_{5} \beta, \tag{3}
\end{equation*}
$$

where * means the pull-back and c_{1}, \ldots, c_{5} are arbitrary real numbers.

Proof. By [3], it suffices to find all G_{m}^{r}-equivariant maps

$$
\left(J^{r} T^{(0,2)}\right)_{0} \mathbb{R}^{m} \oplus\left(T^{r *}\right)_{0} \mathbb{R}^{m} \rightarrow\left(T^{(0,2)} T^{r *}\right)_{0} \mathbb{R}^{m}
$$

between standard fibres, which correspond to the r-th order natural operators in question. The canonical coordinates on the standard fibre $\left(T^{r *}\right)_{0} \mathbb{R}^{m}$
are $\left(u_{i}, u_{i j}, \ldots, u_{i_{1} \ldots i_{r}}\right)$ with the action of G_{m}^{r} given by (1). Further, we will denote by $\left(g_{i j}, g_{i j, k}, \ldots, g_{i j, k_{1} \ldots k_{r}}\right)$ the canonical coordinates on the standard fibre $\left(J^{r} T^{(0,2)}\right)_{0} \mathbb{R}^{m}$. Finally, the coordinate expression of a $(0,2)$-tensor field on $T^{r *} M$

$$
\begin{aligned}
G & =A_{i j} d x^{i} \otimes d x^{j}+B_{j}^{i} d u_{i} \otimes d x^{j}+C_{i}^{j} d x^{i} \otimes d u_{j}+D_{i}^{j k} d x^{i} \otimes d u_{j k} \\
& +D_{i}^{j k \ell} d x^{i} \otimes d u_{j k \ell}+\cdots+D_{i}^{j_{2} \ldots j_{r}} d x^{i} \otimes d u_{j_{1} \ldots j_{r}}+E_{i}^{j k} d u_{j k} \otimes d x^{i} \\
& +E_{i}^{j k \ell} d u_{j k \ell} \otimes d x^{i}+\cdots+E_{i}^{j_{1} \ldots j_{r}} d u_{j_{1} \ldots j_{r}} \otimes d x^{i}+F^{i j} d u_{i} \otimes d u_{j} \\
& +F^{i j k} d u_{i} \otimes d u_{j k}+\cdots+F^{i_{1} \ldots i_{\bullet} j_{1} \ldots j_{r}} d u_{i_{1} \ldots i_{s}} \otimes d u_{j_{1} \ldots j_{r}}+\ldots
\end{aligned}
$$

define the canonical coordinates $\left(A_{i j}, \ldots, F^{i_{1} \ldots i, j_{1} \ldots j_{r}}, \ldots\right)$ on the standard fibre $\left(T^{(0,2)} T^{r m}\right)_{0} \mathbb{R}^{m}$. Consider first the maps

$$
D_{i}^{j k}=D_{i}^{j k}\left(g_{i j}, g_{i j, k}, \ldots, g_{i j, k_{1} \ldots k_{r}}, u_{i}, u_{i j}, \ldots, u_{i_{1} \ldots i_{r}}\right) .
$$

Then the homotheties $a_{j}^{i}=k \delta_{j}^{i}$ yield

$$
k D_{i}^{j k}=D_{i}^{j k}\left(\frac{1}{k^{2}} g_{i j}, \frac{1}{k^{3}} g_{i j, k}, \ldots, \frac{1}{k^{r+2}} g_{i j, k_{1} \ldots k_{r}}, \frac{1}{k} u_{i}, \frac{1}{k^{2}} u_{i j}, \ldots, \frac{1}{k^{r}} u_{i_{1} \ldots i_{r}}\right)
$$

Multiplying both sides of this equation by $\frac{1}{k}$ and then setting $\frac{1}{k} \rightarrow 0$ we obtain that $D_{i}^{j k}=0$. Quite analogously we prove that all $D^{\prime} s=0, E^{\prime} s=0$ and $F^{\prime} s=0$. Moreover, by homotheties, each r-th order natural operator is reduced to the zero order one (the coordinates of G do not depend on $\left.\left(g_{i j, k}, \ldots, g_{i j, k_{1} \ldots k_{r}}\right)\right)$. Now it suffices to find the form of

$$
\begin{aligned}
A_{i j} & =A_{i j}\left(g_{i j}, u_{i}, \ldots, u_{i_{1} \ldots i_{r}}\right) \\
B_{j}^{i} & =B_{j}^{i}\left(g_{i j}, u_{i}, \ldots, u_{i_{1} \ldots i_{r}}\right) \\
C_{i}^{j} & =C_{i}^{j}\left(g_{i j}, u_{i}, \ldots, u_{i_{1} \ldots i_{r}}\right)
\end{aligned}
$$

Since $D^{\prime} s=0, E^{\prime} s=0$ and $F^{\prime} s=0$, in the transformation laws of $A_{i j}, B_{j}^{i}$ and C_{i}^{j} the terms with $D^{\prime} s, E^{\prime} s$ and $F^{\prime} s$ may be omitted. One evaluates easily the following transformation laws

$$
\begin{aligned}
\bar{A}_{i j} & =\tilde{a}_{i}^{k} \tilde{a}_{j}^{\ell} A_{k \ell}-\tilde{a}_{p j}^{m} a_{\ell}^{p} u_{m} C_{i}^{\ell}-\tilde{a}_{p i}^{m} a_{\ell}^{p} u_{m} B_{j}^{\ell} \\
\bar{B}_{j}^{i} & =\tilde{a}_{j}^{\ell} a_{k}^{i} B_{\ell}^{k} \\
\bar{C}_{i}^{j} & =\tilde{a}_{i}^{k} a_{\ell}^{j} C_{k}^{\ell}
\end{aligned}
$$

Using homotheties again we find that

$$
\begin{aligned}
A_{i j} & =c_{1} g_{i j}+c_{2} g_{j i}+c_{3} u_{i j}+c_{4} u_{i} u_{j} \\
C_{i}^{j} & =c_{5} \delta_{i}^{j} \\
B_{j}^{i} & =c_{6} \delta_{j}^{i}
\end{aligned}
$$

Moreover, by equivariance we prove that $c_{3}=-c_{5}-c_{6}$, which corresponds to the coordinate form of (3). Finally, by [3], every natural operator in question has a finite order.

Remark 1. Notice that the difference $\alpha-\beta$ is exactly the pull-back of the canonical symplectic form Λ_{M} on $T^{*} M$, so that the list (3) can be rewritten as
(3*) $g \mapsto c_{1} q_{M}^{*} g+c_{2} q_{M}^{*} g^{\prime}+c_{3}\left(q_{M}^{r, 1}\right)^{*}\left(\lambda_{M} \otimes \lambda_{M}\right)+c_{4}\left(q_{M}^{r, 1}\right)^{*} \Lambda_{M}+c_{5} \beta$.

Remark 2. By [2], all natural operators $T^{(0,2)} \rightsquigarrow T^{(0,2)} T^{*}$ transforming (0,2)-tensor fields to the cotangent bundle are linearly generated by the following 4-parameter family

$$
g \mapsto c_{1} q_{M}^{*} g+c_{2} q_{M}^{*} g^{\prime}+c_{3} \lambda_{M} \otimes \lambda_{M}+c_{4} \Lambda_{M},
$$

while for $r \geq 2$ we have 5 -parameter family (3^{*}) with an extra (0,2)-tensor field β (or α).

By (3^{*}), the only closed 2-form on $T^{r *} M$ for $r \geq 2$ is $\left(q_{M}^{r, 1}\right)^{*} \Lambda_{M}$ and we have

Corollary 1. There is no canonical symplectic structure on $T^{r *} M$ for $r \geq 2$.

Corollary 2. There is no linear canonical isomorphism $T T^{r *} M \rightarrow T^{*} T^{r *} M$ over the identity of $T^{r *} M$ for $r \geq 2$.

On the other hand, in the case $r=1$ we have the well known natural equivalence $T T^{*} M \rightarrow T^{*} T^{*} M$ which is induced by the canonical symplectic structure of the cotangent bundle.

Corollary 3. The only natural (0,2)-tensor fields on $T^{r *} M$ for $r \geq 2$ are $\left(q_{M}^{r, 1}\right)^{*}\left(\lambda_{M} \otimes \lambda_{M}\right),\left(q_{M}^{r, 1}\right)^{*} \Lambda_{M}$ and α (or β).
3. Natural tensor fields. By [2], the only natural $(0,1)$-tensor field on $T^{*} M$ is the classical Liouville form λ_{M}. It is not difficult to prove, that the pull-back $\left(q_{M}^{r, 1}\right)^{-} \lambda_{M}$ is the only natural $(0,1)$-tensor field on $T^{r=} M$ for all $r \geq 2$. Using tensor product and the exterior differential, we have two natural (0,2)-tensor fields $\lambda_{M} \otimes \lambda_{M}$ and $d \lambda_{M}=\Lambda_{M}$ on $T^{*} M$. By [2], all natural $(0,2)$-tensor fields on $T^{*} M$ form a 2-parameter family linearly generated by $\lambda_{M} \otimes \lambda_{M}$ and Λ_{M}. For $r \geq 2$ we have an additional (0,2)tensor field α (or β) on $T^{r=} M$ and by Corollary 3 the family of all natural
(0,2)-tensor fields on $T^{r *} M$ is linearly generated by three tensor fields for all $r \geq 2$.

Further, natural (0,3)-tensor fields on $T^{r=} M$ can be constructed by means of tensor products of λ_{M}, α and β. We have a question: Is there a natural (0,3)-tensor field on $T^{3 *} M$, which does not arise from $\lambda_{M} \otimes \alpha$, $\lambda_{M} \otimes \beta, \alpha \otimes \lambda_{M}, \beta \otimes \lambda_{M}$ and $\lambda_{M} \otimes \lambda_{M} \otimes \lambda_{M}$? This question is a particular case of a more general problem of finding all natural $(0, r)$-tensor fields on $T^{r *}$ M. Put

$$
\begin{align*}
& \gamma_{1}=u_{k} d x^{i} \otimes d x^{k} \otimes d u_{i}-u_{k} u_{i j} d x^{i} \otimes d x^{k} \otimes d x^{j}, \\
& \gamma_{2}=u_{k} d u_{i} \otimes d x^{k} \otimes d x^{i}-u_{k} u_{i j} d x^{i} \otimes d x^{k} \otimes d x^{j} . \tag{4}
\end{align*}
$$

We have
Proposition 2. All natural $(0,3)$-tensor fields on $T^{3 *} M$ are linearly generated by $\left(q_{M}^{3,1}\right)^{*}\left(\lambda_{M} \otimes \lambda_{M} \otimes \lambda_{M}\right),\left(q_{M}^{3,1}\right)^{*} \lambda_{M} \otimes \alpha,\left(q_{M}^{3,1}\right)^{*} \lambda_{M} \otimes \beta, \alpha \otimes\left(q_{M}^{3,1}\right)^{*} \lambda_{M}$, $\beta \otimes\left(q_{M}^{3,1}\right)^{*} \lambda_{M}, \gamma_{1}$ and γ_{2}.

Proof. The proof is quite similar to that of Proposition 1, so that we sketch the principal steps only. The coordinate expression of a (0,3)-tensor field on $T^{3 *} M$ is of the form

$$
\begin{aligned}
G & =A_{i j k} d x^{i} \otimes d x^{j} \otimes d x^{k}+B_{i j}^{k} d x^{i} \otimes d x^{j} \otimes d u_{k} \\
& +C_{i j}^{k} d x^{i} \otimes d u_{k} \otimes d x^{j}+D_{i j}^{k} d u_{k} \otimes d x^{i} \otimes d x^{j} \\
& +E_{i j}^{k \ell} d x^{i} \otimes d x^{j} \otimes d u_{k \ell}+F_{i j}^{k \ell} d x^{i} \otimes d u_{k \ell} \otimes d x^{j} \\
& +G_{i j}^{k \ell} d u_{k \ell} \otimes d x^{i} \otimes d x^{j}+\ldots
\end{aligned}
$$

where all the coefficients are functions of ($\left.u_{i}, u_{i j}, \ldots, u_{i_{1} \ldots i_{r}}\right)$. By homotheties, all the coefficients except $A_{i j k}, \ldots, G_{i j}^{k \ell}$ are zero. Using this fact, we compute the transformation laws in the form

$$
\begin{aligned}
\bar{A}_{i j k} & =A_{i j k}+a_{n k}^{r} u_{r} B_{i j}^{n}+a_{n j}^{r} u_{r} C_{i k}^{n}+a_{n i}^{r} u_{r} D_{j k}^{n} \\
& +\left(a_{n p k}^{r} u_{r}+a_{n k}^{r} u_{r p}+a_{p k}^{s} u_{n s}\right) E_{i j}^{n p} \\
& +\left(a_{n p j}^{r} u_{r}+a_{n j}^{r} u_{r p}+a_{p j}^{s} u_{n s}\right) F_{i k}^{n j}+\left(a_{n p i}^{r} u_{r}+a_{n i}^{r} u_{r p}+a_{p i}^{s} u_{n s}\right) G_{j k}^{n p}, \\
\bar{B}_{i j}^{k} & =B_{i j}^{k}+a_{r s}^{k} E_{i j}^{r s}, \\
\bar{C}_{i j}^{k} & =C_{i j}^{k}+a_{r s}^{k} F_{i j}^{r s} \\
\bar{D}_{i j}^{k} & =D_{i j}^{k}+a_{r s}^{k} G_{i j}^{r s},
\end{aligned}
$$

while the remaining coordinates $E_{i j}^{k \ell}, F_{i j}^{k \ell}$ and $G_{i j}^{k \ell}$ have tensorial transformation laws. The rest of the proof is then an easy exercise with the homotheties and equivariances analogously to the proof of Proposition 1.
4. Canonical homomorphisms. We have proved that there is no linear canonical isomorphism $T T^{r *} M \rightarrow T^{*} T^{r *} M$ for $r \geq 2$. Each (0,2)-tensor field $g=g_{i j} d x^{i} \otimes d x^{j}$ on M can be identified with a linear homomorphism $g_{L}: T M \rightarrow T^{*} M,\left(x^{i}, y^{i}\right) \mapsto\left(x^{i}, u_{i}=g_{i j} y^{j}\right)$. If M is a symplectic manifold and g is the corresponding symplectic form, then g_{L} is an isomorphism.

Analogously, a $(0,2)$-tensor field G on $T^{r *} M$ induces a linear homomorphism $G_{L}: T T^{r *} M \rightarrow T^{*} T^{r *} M$ over the identity of $T^{r *} M$. Denoting by ($x^{i}, u_{i}, \ldots, u_{i_{1} \ldots i_{r}}, X^{i}, U_{i}, \ldots, U_{i_{1} \ldots i_{r}}$) the canonical coordinates on $T T^{r *} M$ and ($x^{i}, u_{i}, \ldots, u_{i_{1} \ldots i_{r}}, \alpha_{i} d x^{i}+\beta^{i} d u_{i}+\cdots+\beta^{i_{1} \ldots i_{r}} d u_{i_{1} \ldots i_{r}}$) the canonical coordinates on $T^{*} T^{r *} M$, the (0,2)-tensor fields α and β induce the homomorphisms $\alpha_{L}, \beta_{L}: T T^{r *} M \rightarrow T^{*} T^{r *} M$. The equations of α_{L} are

$$
\begin{equation*}
\alpha_{i}=-u_{i j} X^{j}, \quad \beta^{i}=X^{i}, \quad \beta^{i j}=0, \ldots, \beta^{i_{1} \ldots i_{r}}=0 \tag{5}
\end{equation*}
$$

and the equations of β_{L} are

$$
\begin{equation*}
\alpha_{i}=-u_{i j} X^{j}+U_{i}, \quad \beta^{i}=0, \ldots, \beta^{i_{1} \ldots i_{r}}=0 \tag{6}
\end{equation*}
$$

At the end we prove the stronger form of Corollary 2 for $r=2$.
Proposition 3. There is no canonical isomorphism $T T^{2 *} M \rightarrow T^{*} T^{2 *} M$ over the identity of $T^{2 *} M$.

Proof. The action of G_{m}^{3} on the standard fibre $T^{* *} T^{2 *} M$ is

$$
\bar{\beta}^{i j}=a_{k}^{i} a_{\ell}^{j} \beta^{k \ell}, \quad \bar{\beta}^{i}=a_{j}^{i} \beta^{j}+a_{j k}^{i} \beta^{j k}
$$

while we will not need the equations of $\bar{\alpha}_{i}$.
By equivariance, $\beta^{i j}=\beta^{i j}\left(u_{i}, u_{i j}, X^{i}, U_{i}, U_{i j}\right)$ do not depend of $U_{i j}$. Further, introduce new variables $p_{i}, q_{j} \in \mathbb{R}^{m *}$ and consider the function $f\left(u_{i}, u_{i j}, X^{i}, U_{i}, p_{i}, q_{i}\right)=\beta^{i j} p_{i} q_{j}$. Then f is G_{m}^{1}-invariant. By the tensor evaluation theorem from [3],

$$
f=f\left(u_{i} X^{i}, u_{i j} X^{i} X^{j}, U_{i} X^{i}, p_{i} X^{i}, q_{i} X^{i}\right)
$$

Replace $u_{i} X^{i}, U_{i} X^{i}$ and $u_{i j} X^{i} X^{j}$ by $I_{1}=u_{i} X^{i}, I_{2}=U_{i} X^{i}-u_{i j} X^{i} X^{j}$ and $u_{i j} X^{i} X^{j}$, so that $f=f\left(I_{1}, I_{2}, p_{i} X^{i}, q_{i} X^{i}, u_{i j} X^{i} X^{j}\right)$. One evaluates easily that $I_{1}, I_{2}, p_{i} X^{i}$ and $q_{i} X^{i}$ are G_{m}^{2}-invariant expressions. Then the equivariance yield that f does not depend of the fifth variable, so that $f=f\left(I_{1}, I_{2}, p_{i} X^{i}, q_{i} X^{i}\right)$. Differentiating with respect to p_{i} and then setting $p_{i}=0$ we have $\beta^{i j} \varphi_{j}=\tilde{f}\left(I_{1}, I_{2}, q_{i} X^{i}\right) X^{i}$. Analogously, differentiating this with respect to q_{i} and then setting $q_{i}=0$ we prove that $\beta^{i j}=\psi\left(I_{1}, I_{2}\right) X^{i} X^{j}$
where ψ is an arbitrary function of two variables. Further, using a similar procedure as that for $\beta^{i j}$ we deduce that $\beta^{i}=\varphi\left(I_{1}, I_{2}\right) X^{i}$. By equivariance,

$$
\varphi\left(I_{1}, I_{2}\right) X^{i}+a_{j k}^{i} \psi\left(I_{1}, I_{2}\right) X^{j} X^{k}=\varphi\left(I_{1}, I_{2}\right) X^{i}
$$

which reads $\psi=0$. Up till now, we have proved $\beta^{i}=\varphi X^{i}, \beta^{i j}=0$, which can not be equations of an isomorphism.

Acknowledgement. Authors wish to thank an expert referee for his remarks that improved the contents of this paper.

References

[1] Doupovec, M., Natural liftings of (0,2)-tensor fields to the tangent bundle, Arch. Math.(Brno) 30 (1994), 215-225.
[2] Doupovec, M. and J. Kurek, Liftings of tensor fields to the cotangent bundle, Differential Geometry and Applications, Proc. Conf. Aug. 28 - Sept. 1, 1995 Brno, Czech Republic, Masaryk University, Brno (1996), 141-150.
[3] Kolář, I., P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993.
[4] Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58 (1993), 29-35.
[5] Mikulski, W., Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107-119.
[6] Mikulski, W., The geometrical constructions lifting tensor fields of type $(0,2)$ on manifolds to the bundles of A-velocities, Nagoya Math. J. 140 (1995), 117-137.
[7] Zajtz, A., Foundations of Differential Geometry (to appear).
Department of Mathematics
received September 16, 1996
FS VUT Brno
Technická 2, 61669 Brno, Czech Republic
e-mail: doupovec@mat.fme.vutbr.cz
Instytut Matematyki UMCS
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: kurek@golem.umcs.lublin.pl

[^0]: 1991 Mathematics Subjecl Classification. 53A55, 58A 20.
 Key words and phrases. Higher order cotangent bundle, natural operator, tensor field.
 Supported by the GA CR, Grant No. 201/96/0079 and by the Maria Curie Sklodowska University.

