ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 5

SECTIO A

1996

MIROSLAV DOUPOVEC (Brno) JAN KUREK (Lublin)

Some Geometrical Constructions with (0,2)-Tensor Fields on Higher Order Cotangent Bundles

ABSTRACT. We study some geometrical properties of the r-th order cotangent bundle, which are closely connected with liftings of (0, 2)-tensor fields to this bundle.

1. Introduction. The r-th order cotangent bundle is defined as the space $T^{r*}M = J^r(M, \mathbb{R})_0$ of all r-jets of smooth functions $\varphi: M \to \mathbb{R}$ with the target $0 \in \mathbb{R}$. Every local diffeomorphism $f: M \to N$ is extended to a vector bundle morphism $T^{r*}f: T^{r*}M \to T^{r*}N, j_x^r \varphi \mapsto j_{f(x)}^r(\varphi \circ f^{-1})$, where f^{-1} is constructed locally, [3]. Then T^{r*} is a functor on the category $\mathcal{M}f_m$ of all m-dimensional manifolds and their local diffeomorphisms. Using the general concept of the bundle of geometric objects, $T^{r*}M$ is a natural bundle on $\mathcal{M}f_m$. Obviously, $T^{r*}M$ is a vector bundle over M and for r = 1 we obtain the classical cotangent bundle T^*M . In what follows a tensor field of the type (r,s) will mean a smooth section of the vector bundle $T^{(r,s)}M = \overset{\circ}{\otimes}T^*M \otimes \overset{\circ}{\otimes}T^*M$ and $T^{(r,s)}$ will denote the corresponding vector bundle functor.

¹⁹⁹¹ Mathematics Subject Classification. 53A55, 58A20.

Key words and phrases. Higher order cotangent bundle, natural operator, tensor field. Supported by the GA CR, Grant No. 201/96/0079 and by the Maria Curie Sklodowska University.

In [2] we have studied the problem, how a tensor field of the type (r,s)on M can induce a tensor field of the same type on T^*M . We have studied this problem for (r,s) = (0,1), (r,s) = (0,2) and (r,s) = (1,1). Such geometrical constructions are called liftings. Using a more general point of view, [3], [7], the liftings from [2] are in fact natural differential operators $T^{(r,s)} \rightarrow T^{(r,s)}T^*$. In some particular cases it is possible to classify all natural operators of a certain type (in other words to describe the full list of all geometrical constructions in question), see e.g. [1], [2], [3], [4], [5] and [6].

The aim of this paper is to classify all natural operators $T^{(0,2)} \rightsquigarrow T^{(0,2)}T^{r*}$ for $r \geq 2$ and to study some related geometrical properties of higher order cotangent bundles. In particular, we will study linear homomorphisms $TT^{r*}M \to T^*T^{r*}M$, natural (0,2)-tensor fields on $T^{r*}M$ and natural (0,3)-tensor fields on $T^{3*}M$. We also show that unlike the classical cotangent bundle T^*M , the higher order cotangent bundle $T^{r*}M$ has no canonical symplectic structure for $r \geq 2$. In particular, we prove that the only closed 2-form on $T^{r*}M$ is the pull-back of the canonical symplectic form from T^*M . We remark that $T^{r*}M$ is the classical example of a non product preserving functor. On the other hand, every product preserving functor can also be defined as the Weil functor T^A of A-velocities (cf. [3]) and Mikulski has in [6] classified all natural operators $T^{(0,2)} \sim T^{0,2}T^A$ for any Weil functor T^A . All manifolds and maps are assumed infinitely differentiable.

2. Liftings of (0, 2)-tensor fields to higher order cotangent bundles. The aim of this section is to show how an arbitrary (0, 2)-tensor field on M can induce a (0, 2)-tensor field on $T^{r*}M$ for $r \ge 2$, i.e. to classify all natural operators $T^{(0,2)} \rightsquigarrow T^{(0,2)}T^{r*}$.

Let $q_M : T^{r*}M \to M$ be the vector bundle projection and let $q_M^{r,s} : T^{r*}M \to T^{s*}M$ be the projection which is defined for r > s by $j_x^r \varphi \mapsto j_x^s \varphi$. The canonical coordinates on $T^{r*}M$ will be denoted by $(x^i, u_i, \ldots, u_{i_1\ldots i_r})$. Let G_m^r be the group of all invertible r-jets from \mathbb{R}^m to \mathbb{R}^m with the source and the target zero. Then the canonical coordinates on G_m^r are denoted by $(a_j^i, a_{jk}^i, \ldots, a_{j_1\ldots j_r}^i)$, while the coordinates of the inverse element will be denoted by a tilde. Roughly speaking, $a_j^i = \frac{\partial \overline{x}^i}{\partial x^j}, \ldots, a_{j_1\ldots j_r}^i = \frac{\partial \overline{x}^i}{\partial x^{j_1}\ldots \partial x^{j_r}}$ express the partial derivatives of the coordinate changes $\mathbb{R}^m \to \mathbb{R}^m$ given by $\overline{x}^i = \overline{x}^i(x^j)$. Using the coordinates of G_m^r , one can easily express the transformation laws of $(u_i, u_{ij}, u_{ijk}, \ldots, u_{i_1\ldots i_r})$ by

(1)
$$\overline{u}_{i} = \widetilde{a}_{i}^{k} u_{k},$$
$$\overline{u}_{ij} = \widetilde{a}_{i}^{k} \widetilde{a}_{\ell}^{j} u_{k\ell} + \widetilde{a}_{ij}^{k} u_{k},$$

$$\overline{u}_{ijk} = \widetilde{a}_i^{\ell} \widetilde{a}_j^m \widetilde{a}_k^n u_{\ell m n} + \widetilde{a}_{ij}^{\ell} \widetilde{a}_k^m u_{\ell m} + \widetilde{a}_{ik}^{\ell} \widetilde{a}_j^m u_{\ell m} + \widetilde{a}_i^{\ell} \widetilde{a}_{jk}^m u_{\ell m} + \widetilde{a}_{ijk}^{\ell} u_{\ell},$$

 $\overline{u}_{i_1\ldots i_r} = \widetilde{a}_{i_1}^{j_1}\ldots \widetilde{a}_{i_r}^{j_r} u_{j_1\ldots j_r} + \cdots + \widetilde{a}_{i_1\ldots i_r}^k u_k.$

In other words, the formulae (1) express the action of G_m^r on the standard fibre of $(T^{r*}\mathbb{R}^m)_0$.

The canonical symplectic 2-form $\Lambda_M = du_i \wedge dx^i$ on T^*M is natural with respect to the following definition. Consider a natural bundle F over m-manifolds.

Definition. A natural (0,r)-tensor field on F is a system of (0,r)-tensor fields $\omega_M : FM \to T^{(0,r)}FM$ for every *m*-manifold M satisfying $T^{(0,r)}Ff \circ \omega_M = \omega_N \circ Ff$ for all $f: M \to N$ from $\mathcal{M}f_m$.

We have

Lemma. Let

(2) $\alpha = du_i \otimes dx^i - u_{ij} dx^i \otimes dx^j$ and $\beta = dx^i \otimes du_i - u_{ij} dx^i \otimes dx^j$.

Then α and β are natural (0, 2)-tensor fields on $T^{r*}M$ for $r \geq 2$.

Proof. Using (1) we easily prove that $\overline{\alpha} = \alpha$ and $\overline{\beta} = \beta$, i.e. that α and β are defined geometrically (independently of the coordinate changes). \Box

Let $g = g_{ij}dx^i \otimes dx^j$ be a (0,2)-tensor field on M. Then the relation $\langle g, X \otimes Y \rangle = \langle g', Y \otimes X \rangle$ defines another (0,2)-tensor field $g' = g_{ji}dx^i \otimes dx^j$ on M. Further, let $\lambda_M = u_i dx^i$ be the classical Liouville 1-form on T^*M . We prove

Proposition 1. All natural operators $T^{(0,2)} \rightarrow T^{(0,2)}T^{r*}$ transforming (0,2)-tensor fields on M into (0,2)-tensor fields on $T^{r*}M$ for $\tau \geq 2$ are of the form

(3) $g \mapsto c_1 q_M^* g + c_2 q_M^* g' + c_3 (q_M^{r,1})^* (\lambda_M \otimes \lambda_M) + c_4 \alpha + c_5 \beta,$

where * means the pull-back and c_1, \ldots, c_5 are arbitrary real numbers.

Proof. By [3], it suffices to find all G_m^r -equivariant maps

 $(J^{r}T^{(0,2)})_{0}\mathbb{R}^{m} \oplus (T^{r*})_{0}\mathbb{R}^{m} \to (T^{(0,2)}T^{r*})_{0}\mathbb{R}^{m}$

between standard fibres, which correspond to the *r*-th order natural operators in question. The canonical coordinates on the standard fibre $(T^{r*})_0 \mathbb{R}^m$ are $(u_i, u_{ij}, \ldots, u_{i_1 \ldots i_r})$ with the action of G_m^r given by (1). Further, we will denote by $(g_{ij}, g_{ij,k}, \ldots, g_{ij,k_1 \ldots k_r})$ the canonical coordinates on the standard fibre $(J^r T^{(0,2)})_0 \mathbb{R}^m$. Finally, the coordinate expression of a (0,2)-tensor field on $T^{r*}M$

$$G = A_{ij}dx^{i} \otimes dx^{j} + B_{j}^{i}du_{i} \otimes dx^{j} + C_{i}^{j}dx^{i} \otimes du_{j} + D_{i}^{jk}dx^{i} \otimes du_{jk}$$

+ $D_{i}^{jk\ell}dx^{i} \otimes du_{jk\ell} + \dots + D_{i}^{j_{1}\dots j_{r}}dx^{i} \otimes du_{j_{1}\dots j_{r}} + E_{i}^{jk}du_{jk} \otimes dx^{i}$
+ $E_{i}^{jk\ell}du_{jk\ell} \otimes dx^{i} + \dots + E_{i}^{j_{1}\dots j_{r}}du_{j_{1}\dots j_{r}} \otimes dx^{i} + F^{ij}du_{i} \otimes du_{j}$
+ $F^{ijk}du_{i} \otimes du_{jk} + \dots + F^{i_{1}\dots i_{s}j_{1}\dots j_{r}}du_{i_{1}\dots i_{s}} \otimes du_{j_{1}\dots j_{r}} + \dots$

define the canonical coordinates $(A_{ij}, \ldots, F^{i_1 \ldots i_j j_1 \ldots j_r}, \ldots)$ on the standard fibre $(T^{(0,2)}T^{r*})_0 \mathbb{R}^m$. Consider first the maps

$$D_i^{jk} = D_i^{jk}(g_{ij}, g_{ij,k}, \dots, g_{ij,k_1\dots k_r}, u_i, u_{ij}, \dots, u_{i_1\dots i_r}).$$

Then the homotheties $a_i^i = k \delta_i^i$ yield

$$kD_i^{jk} = D_i^{jk} \left(\frac{1}{k^2} g_{ij}, \frac{1}{k^3} g_{ij,k}, \dots, \frac{1}{k^{r+2}} g_{ij,k_1\dots k_r}, \frac{1}{k} u_i, \frac{1}{k^2} u_{ij}, \dots, \frac{1}{k^r} u_{i_1\dots i_r} \right).$$

Multiplying both sides of this equation by $\frac{1}{k}$ and then setting $\frac{1}{k} \to 0$ we obtain that $D_i^{jk} = 0$. Quite analogously we prove that all D's = 0, E's = 0 and F's = 0. Moreover, by homotheties, each *r*-th order natural operator is reduced to the zero order one (the coordinates of *G* do not depend on $(g_{ij,k}, \ldots, g_{ij,k_1}, \ldots, k_r)$). Now it suffices to find the form of

$$A_{ij} = A_{ij}(g_{ij}, u_i, \dots, u_{i_1 \dots i_r}), B_j^i = B_j^i(g_{ij}, u_i, \dots, u_{i_1 \dots i_r}), C_i^j = C_i^j(g_{ij}, u_i, \dots, u_{i_1 \dots i_r}).$$

Since D's = 0, E's = 0 and F's = 0, in the transformation laws of A_{ij} , B_j^i and C_i^j the terms with D's, E's and F's may be omitted. One evaluates easily the following transformation laws

$$\begin{split} \overline{A}_{ij} &= \widetilde{a}_i^k \widetilde{a}_j^\ell A_{k\ell} - \widetilde{a}_{pj}^m a_\ell^p u_m C_i^\ell - \widetilde{a}_{pi}^m a_\ell^p u_m B_j^\ell, \\ \overline{B}_j^i &= \widetilde{a}_j^\ell a_k^i B_\ell^k, \\ \overline{C}_i^j &= \widetilde{a}_i^k a_\ell^j C_k^\ell. \end{split}$$

Using homotheties again we find that

$$egin{aligned} A_{ij} &= c_1 g_{ij} + c_2 g_{ji} + c_3 u_{ij} + c_4 u_i u_j, \ C^j_i &= c_5 \delta^j_i, \ B^i_j &= c_6 \delta^i_j. \end{aligned}$$

Moreover, by equivariance we prove that $c_3 = -c_5 - c_6$, which corresponds to the coordinate form of (3). Finally, by [3], every natural operator in question has a finite order. \Box

Remark 1. Notice that the difference $\alpha - \beta$ is exactly the pull-back of the canonical symplectic form Λ_M on T^*M , so that the list (3) can be rewritten as

$$(3^*) \quad g \mapsto c_1 q_M^* g + c_2 q_M^* g' + c_3 (q_M^{r,1})^* (\lambda_M \otimes \lambda_M) + c_4 (q_M^{r,1})^* \Lambda_M + c_5 \beta.$$

Remark 2. By [2], all natural operators $T^{(0,2)} \rightarrow T^{(0,2)}T^*$ transforming (0,2)-tensor fields to the cotangent bundle are linearly generated by the following 4-parameter family

$$g \mapsto c_1 q_M^* g + c_2 q_M g' + c_3 \lambda_M \otimes \lambda_M + c_4 \Lambda_M,$$

while for $r \ge 2$ we have 5-parameter family (3^{*}) with an extra (0,2)-tensor field β (or α).

By (3^{*}), the only closed 2-form on $T^{r*}M$ for $r \ge 2$ is $(q_M^{r,1})^*\Lambda_M$ and we have

Corollary 1. There is no canonical symplectic structure on $T^{r*}M$ for $r \geq 2$.

Corollary 2. There is no linear canonical isomorphism $TT^{r*}M \to T^{*}T^{r*}M$ over the identity of $T^{r*}M$ for $r \geq 2$.

On the other hand, in the case r = 1 we have the well known natural equivalence $TT^*M \to T^*T^*M$ which is induced by the canonical symplectic structure of the cotangent bundle.

Corollary 3. The only natural (0,2)-tensor fields on $T^{r*}M$ for $r \geq 2$ are $(q_M^{r,1})^*(\lambda_M \otimes \lambda_M), (q_M^{r,1})^*\Lambda_M$ and α (or β).

3. Natural tensor fields. By [2], the only natural (0, 1)-tensor field on T^*M is the classical Liouville form λ_M . It is not difficult to prove, that the pull-back $(q_M^{r,1})^*\lambda_M$ is the only natural (0, 1)-tensor field on $T^{r*}M$ for all $r \geq 2$. Using tensor product and the exterior differential, we have two natural (0, 2)-tensor fields $\lambda_M \otimes \lambda_M$ and $d\lambda_M = \Lambda_M$ on T^*M . By [2], all natural (0, 2)-tensor fields on T^*M form a 2-parameter family linearly generated by $\lambda_M \otimes \lambda_M$ and Λ_M . For $r \geq 2$ we have an additional (0, 2)-tensor field α (or β) on $T^{r*}M$ and by Corollary 3 the family of all natural

(0,2)-tensor fields on $T^{r*}M$ is linearly generated by three tensor fields for all $r \geq 2$.

Further, natural (0,3)-tensor fields on $T^{r*}M$ can be constructed by means of tensor products of λ_M , α and β . We have a question: Is there a natural (0,3)-tensor field on $T^{3*}M$, which does not arise from $\lambda_M \otimes \alpha$, $\lambda_M \otimes \beta$, $\alpha \otimes \lambda_M$, $\beta \otimes \lambda_M$ and $\lambda_M \otimes \lambda_M \otimes \lambda_M$? This question is a particular case of a more general problem of finding all natural (0, r)-tensor fields on $T^{r*}M$. Put

(4)
$$\gamma_1 = u_k dx^i \otimes dx^k \otimes du_i - u_k u_{ij} dx^i \otimes dx^k \otimes dx^j,$$
$$\gamma_2 = u_k du_i \otimes dx^k \otimes dx^i - u_k u_{ij} dx^i \otimes dx^k \otimes dx^j.$$

We have

Proposition 2. All natural (0,3)-tensor fields on $T^{3*}M$ are linearly generated by $(q_M^{3,1})^*(\lambda_M \otimes \lambda_M \otimes \lambda_M), (q_M^{3,1})^*\lambda_M \otimes \alpha, (q_M^{3,1})^*\lambda_M \otimes \beta, \alpha \otimes (q_M^{3,1})^*\lambda_M, \beta \otimes (q_M^{3,1})^*\lambda_M, \gamma_1 \text{ and } \gamma_2.$

Proof. The proof is quite similar to that of Proposition 1, so that we sketch the principal steps only. The coordinate expression of a (0,3)-tensor field on $T^{3*}M$ is of the form

$$G = A_{ijk} dx^{i} \otimes dx^{j} \otimes dx^{k} + B_{ij}^{k} dx^{i} \otimes dx^{j} \otimes du_{k}$$

+ $C_{ij}^{k} dx^{i} \otimes du_{k} \otimes dx^{j} + D_{ij}^{k} du_{k} \otimes dx^{i} \otimes dx^{j}$
+ $E_{ij}^{k\ell} dx^{i} \otimes dx^{j} \otimes du_{k\ell} + F_{ij}^{k\ell} dx^{i} \otimes du_{k\ell} \otimes dx^{j}$
+ $G_{ij}^{k\ell} du_{k\ell} \otimes dx^{i} \otimes dx^{j} + \dots$

where all the coefficients are functions of $(u_i, u_{ij}, \ldots, u_{i_1\ldots i_r})$. By homotheties, all the coefficients except $A_{ijk}, \ldots, G_{ij}^{k\ell}$ are zero. Using this fact, we compute the transformation laws in the form

$$\begin{split} \overline{A}_{ijk} &= A_{ijk} + a_{nk}^{r} u_{r} B_{ij}^{n} + a_{nj}^{r} u_{r} C_{ik}^{n} + a_{ni}^{r} u_{r} D_{jk}^{n} \\ &+ (a_{npk}^{r} u_{r} + a_{nk}^{r} u_{rp} + a_{pk}^{s} u_{ns}) E_{ij}^{np} \\ &+ (a_{npj}^{r} u_{r} + a_{nj}^{r} u_{rp} + a_{pj}^{s} u_{ns}) F_{ik}^{np} + (a_{npi}^{r} u_{r} + a_{ni}^{r} u_{rp} + a_{pi}^{s} u_{ns}) G_{jk}^{np}, \\ \overline{B}_{ij}^{k} &= B_{ij}^{k} + a_{rs}^{k} E_{ij}^{rs}, \\ \overline{C}_{ij}^{k} &= C_{ij}^{k} + a_{rs}^{k} F_{ij}^{rs}, \\ \overline{D}_{ij}^{k} &= D_{ij}^{k} + a_{rs}^{k} G_{ij}^{rs}, \end{split}$$

while the remaining coordinates $E_{ij}^{k\ell}$, $F_{ij}^{k\ell}$ and $G_{ij}^{k\ell}$ have tensorial transformation laws. The rest of the proof is then an easy exercise with the homotheties and equivariances analogously to the proof of Proposition 1. \Box 4. Canonical homomorphisms. We have proved that there is no linear canonical isomorphism $TT^{r*}M \to T^{*}T^{r*}M$ for $r \geq 2$. Each (0,2)-tensor field $g = g_{ij}dx^i \otimes dx^j$ on M can be identified with a linear homomorphism $g_L: TM \to T^*M$, $(x^i, y^i) \mapsto (x^i, u_i = g_{ij}y^j)$. If M is a symplectic manifold and g is the corresponding symplectic form, then g_L is an isomorphism.

Analogously, a (0,2)-tensor field G on $T^{r*}M$ induces a linear homomorphism $G_L: TT^{r*}M \to T^*T^{r*}M$ over the identity of $T^{r*}M$. Denoting by $(x^i, u_i, \ldots, u_{i_1\ldots i_r}, X^i, U_i, \ldots, U_{i_1\ldots i_r})$ the canonical coordinates on $TT^{r*}M$ and $(x^i, u_i, \ldots, u_{i_1\ldots i_r}, \alpha_i dx^i + \beta^i du_i + \cdots + \beta^{i_1\ldots i_r} du_{i_1\ldots i_r})$ the canonical coordinates on $T^*T^{r*}M$, the (0, 2)-tensor fields α and β induce the homomorphisms $\alpha_L, \beta_L: TT^{r*}M \to T^*T^{r*}M$. The equations of α_L are

(5)
$$\alpha_i = -u_{ij}X^j, \quad \beta^i = X^i, \quad \beta^{ij} = 0, \dots, \beta^{i_1 \dots i_r} = 0$$

and the equations of β_L are

(6)
$$\alpha_i = -u_{ij}X^j + U_i, \quad \beta^i = 0, \dots, \beta^{i_1 \dots i_r} = 0.$$

At the end we prove the stronger form of Corollary 2 for r = 2.

Proposition 3. There is no canonical isomorphism $TT^{2*}M \to T^*T^{2*}M$ over the identity of $T^{2*}M$.

Proof. The action of G_m^3 on the standard fibre $T^*T^{2*}M$ is

$$\overline{\beta}^{ij} = a^i_k a^j_\ell \beta^{k\ell}, \qquad \overline{\beta}^i = a^i_j \beta^j + a^i_{jk} \beta^{jj}$$

while we will not need the equations of $\overline{\alpha}_i$.

By equivariance, $\beta^{ij} = \beta^{ij}(u_i, u_{ij}, X^i, U_i, U_{ij})$ do not depend of U_{ij} . Further, introduce new variables $p_i, q_j \in \mathbb{R}^{m*}$ and consider the function $f(u_i, u_{ij}, X^i, U_i, p_i, q_i) = \beta^{ij} p_i q_j$. Then f is G_m^1 -invariant. By the tensor evaluation theorem from [3],

$$f = f(u_i X^i, u_{ij} X^i X^j, U_i X^i, p_i X^i, q_i X^i).$$

Replace $u_i X^i$, $U_i X^i$ and $u_{ij} X^i X^j$ by $I_1 = u_i X^i, I_2 = U_i X^i - u_{ij} X^i X^j$ and $u_{ij} X^i X^j$, so that $f = f(I_1, I_2, p_i X^i, q_i X^i, u_{ij} X^i X^j)$. One evaluates easily that I_1 , I_2 , $p_i X^i$ and $q_i X^i$ are G_m^2 -invariant expressions. Then the equivariance yield that f does not depend of the fifth variable, so that $f = f(I_1, I_2, p_i X^i, q_i X^i)$. Differentiating with respect to p_i and then setting $p_i = 0$ we have $\beta^{ij}q_j = \tilde{f}(I_1, I_2, q_i X^i)X^i$. Analogously, differentiating this with respect to q_i and then setting $q_i = 0$ we prove that $\beta^{ij} = \psi(I_1, I_2)X^i X^j$ where ψ is an arbitrary function of two variables. Further, using a similar procedure as that for β^{ij} we deduce that $\beta^i = \varphi(I_1, I_2) X^i$. By equivariance,

$$\varphi(I_1, I_2)X^i + a_{jk}^i \psi(I_1, I_2)X^j X^k = \varphi(I_1, I_2)X^i$$

which reads $\psi = 0$. Up till now, we have proved $\beta^i = \varphi X^i$, $\beta^{ij} = 0$, which can not be equations of an isomorphism. \Box

Acknowledgement. Authors wish to thank an expert referee for his remarks that improved the contents of this paper.

REFERENCES

- Doupovec, M., Natural liftings of (0,2)-tensor fields to the tangent bundle, Arch. Math.(Brno) 30 (1994), 215-225.
- [2] Doupovec, M. and J. Kurek, Liftings of tensor fields to the cotangent bundle, Differential Geometry and Applications, Proc. Conf. Aug. 28 - Sept. 1, 1995 Brno, Czech Republic, Masaryk University, Brno (1996), 141-150.
- [3] Kolář, I., P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993.
- Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58 (1993), 29-35.
- [5] Mikulski, W., Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107-119.
- [6] Mikulski, W., The geometrical constructions lifting tensor fields of type (0,2) on manifolds to the bundles of A-velocities, Nagoya Math. J. 140 (1995), 117-137.
- [7] Zajtz, A., Foundations of Differential Geometry (to appear).

Department of Mathematics FS VUT Brno Technická 2, 616 69 Brno, Czech Republic e-mail: doupovec@mat.fme.vutbr.cz

Instytut Matematyki UMCS Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: kurek@golem.umcs.lublin.pl