
ANNALES
UNIVERSITATIS MARIAE C U RIE - S K L O D O W S K A 

LUBLIN - POLONIA

VOL. L, 5 SECTIO A 1996

MIROSLAV DOUPOVEC (Brno) 
JAN KUREK (Lublin)

Some Geometrical Constructions with (0,2)-Tensor 
Fields on Higher Order Cotangent Bundles

Abstract. We study some geometrical properties of the r-th order cotan­
gent bundle, which are closely connected with liftings of (0, 2)-tensor fields 
to this bundle.

1. Introduction. The r-th order cotangent bundle is defined as the space 
Tr* M = Jr(M, K)o of all r-jets of smooth functions <p : M — R with the 
target 0 C R. Every local diffeomorphism f : M —» N is extended to a 
vector bundle morphism Tr*f : Tr*M —> Tr*N, /_1),
where /_1 is constructed locally, [3]. Then Tr* is a functor on the category 

of all m-dimensional manifolds and their local diffeomorphisms. Using 
the general concept of the bundle of geometric objects, Tr*M is a natural 
bundle on A4fm. Obviously, Tr*M is a vector bundle over M and for r = 1 
we obtain the classical cotangent bundle T*M. In what follows a tensor 
field of the type (r,s) will mean a smooth section of the vector bundle
T^r’s'> M = ®TM <g> ®T*M and T^r,a^ will denote the corresponding vector 
bundle functor.
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In [2] we have studied the problem, how a tensor field of the type (r,s) 
on M can induce a tensor field of the same type on T*M. We have studied 
this problem for (r, s) = (0,1), (r, s) = (0,2) and (r, s) = (1,1). Such 
geometrical constructions are called liftings. Using a more general point of 
view, [3], [7], the liftings from [2] are in fact natural differential operators 
T(r's) T(r,»)T* In some particular cases it is possible to classify all 
natural operators of a certain type (in other words to describe the full list 
of all geometrical constructions in question), see e.g. [1], [2], [3], [4], [5] and 
[6]-

The aim of this paper is to classify all natural operators T^0,2* T(-0,r>Tr*
for r > 2 and to study some related geometrical properties of higher or­
der cotangent bundles. In particular, we will study linear homomorphisms 
TTr*M —* T*Tr*M, natural (0,2)-tensor fields on Tr*M and natural 
(0,3)-tensor fields on T3*M. We also show that unlike the classical cotan­
gent bundle T*M, the higher order cotangent bundle Tr*M has no canonical 
symplectic structure for r > 2. In particular, we prove that the only closed 
2-form on Tr,M is the pull-back of the canonical symplectic form from 
T*M. We remark that Tr*M is the classical example of a non product pre­
serving functor. On the other hand, every product preserving functor can 
also be defined as the Weil functor TA of A-velocities (cf. [3]) and Mikul­
ski has in [6] classified all natural operators T(°>2) for any Weil
functor Ta. All manifolds and maps are assumed infinitely differentiable.

2. Liftings of (0,2)-tensor fields to higher order cotangent bundles.
The aim of this section is to show how an arbitrary (0,2)-tensor field on 
M can induce a (0,2)-tensor field on Tr,M for r > 2, i.e. to classify all 
natural operators T<-0,2) ,

Let qM : Tr*M A1 be the vector bundle projection and let qr̂  : 
Tr*M —> TS“M be the projection which is defined for r > s by jTx<p h- 
The canonical coordinates on Tr*M will be denoted by (a:*, Ui,..., u^...^). 
Let Grm be the group of all invertible r-jets from Rm to Rm with the source 
and the target zero. Then the canonical coordinates on Grm are denoted 
by (a*;, a'jk,..., a'^ jr), while the coordinates of the inverse element will be
denoted by a tilde. Roughly speaking, a) = = dxh^dxi7
express the partial derivatives of the coordinate changes Rm —> Rm given 
by x' = af(a:J). Using the coordinates of G^, one can easily express the 
transformation laws of («,-, Ujj, Ujjk,..., Uti...ir) by

Ui = rf-Uk,

Uij = a-a^Ukt + a^Uk,
(1)
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Uijk — ®A®tmn T ^ij^k ^Cm 4" ^ik^j ^tm 4" d'i^'jk^'tm T

Ui,...^ = aft . + • • • + ¡¡¿j...ir«fc.

In other words, the formulae (1) express the action of G’m on the standard 
fibre of (Tr*R’n)0.

The canonical symplectic 2-form A v = dui A dx' on T*M is natural 
with respect to the following definition. Consider a natural bundle F over 
m-manifolds.

Definition. A natural (0,r)-tensor field on F is a system of (0,r)- 
tensor fields : FM —> T^’^FA'I for every m-manifold M satisfying 
T^Ff =uNoFf for all / : M A from Mfm.

We have 

Lemma. Let

(2) q = dui ® dx' — Uijdx' ® dx3 and (3 = dx' ® dui — Uijdx' ® dx3. 

Then a and (3 are natural (0,2)-tensor fields on Tr*M for r > 2.

Proof. Using (1) we easily prove that a = a and (3 — /3, i.e. that a and (3 
are defined geometrically (independently of the coordinate changes). □

Let g = gtjdx' ® dx3 be a (0,2)-tensor field on M. Then the relation 
(5, X = (g',Y ® X) defines another (0,2)- tensor field g' = gjidx' ® 
dx3 on M. Further, let Àm = Uidx' be the classical Liouville 1-form on 
T*M. We prove

Proposition 1. All natural operators T^0,2) T(-0,2^Tr* transforming
(Q,2)-tensor fields on M into (0,2)-tensor fields on Tr*M for r > 2 are 
of the form

(3) g cxq’Mg + c2q*Mg' + c3(qr̂ )*(AM ® AM) + c4a + c5/J, 

where * means the pull-back and cy,...,cs are arbitrary real numbers.

Proof. By [3], it suffices to find all G^-equivariant maps

(JrT(o’2))oKm©(Tr*)oR (T(O,2)Tr.)o]Rmm

between standard fibres, which correspond to the r-th order natural opera­
tors in question. The canonical coordinates on the standard fibre (Tr*)oRm
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are (u;, u,j,with the action of given by (1). Further, we will 
denote by y, 9ij,k, • • •, 9ij,ki ...kr) the canonical coordinates on the standard 
fibre (JrT(°’2))0Rm. Finally, the coordinate expression of a (0,2)-tensor 
field on

G = Aijdx' ® dxi + Bjdui ® dx-* + C^dx' ® duj 4- D^dx* ® dujk 

4- DJikedx' ® dujke + • • • + D^’^dx' ® duji__.jr + E^dujk ® dx*

4- Eikedujki ® dx' +---- h EJi1" -’r duj1.,_jr ® dx1 4- F'^dui ® duj

4- F,jkdui ® dujk 4- • • • 4- Fil",,jl"jrduil...i, ® dujl_jr 4- .. .

define the canonical coordinates (Ajj,..., F'1'"•?r,...) on the standard 
fibre (T(0’2)rr*)0Rm. Consider first the maps

Fj = D^ ((/ij, Qij'ki • • • , 9ij,ki ...kT 1 uii uij, • • •, uii ...ir )•

Then the homotheties a’- = yield

, ^ikil 1 1 1 1 1 \
kP, —Di jer+2Sii,ki...kr,

Multiplying both sides of this equation by | and then setting | 0 we
obtain that D^ = 0. Quite analogously we prove that all D's = 0, E's — 0 
and F's = 0. Moreover, by homotheties, each r-th order natural operator 
is reduced to the zero order one (the coordinates of G do not depend on 
(9ij,k, • • ■,9ij,ki...kr))- Now it suffices to find the form of

•djj = ut, • • •, )i
Bj = Ui,..., ),
C*/ = Wj,..., ).

Since D's = 0, E's = 0 and F's = 0, in the transformation laws of Aij, Bj 
and Cf the terms with D's, E's and F's may be omitted. One evaluates 
easily the following transformation laws

Aij = dkdjAke - d™apumC- - 

X = dfa Bk,

= dkajtCek.

Using homotheties again we find that

Aij = <A9ij 4- c2gji 4- c3u0 4- c4UiUj,
C{ = cs6i,

B} = c6t>}.
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Moreover, by equivariance we prove that C3 = —C5 - C6, which corresponds 
to the coordinate form of (3). Finally, by [3], every natural operator in 
question has a finite order. □

Remark 1. Notice that the difference a — (3 is exactly the pull-back of the 
canonical symplectic form A a/ on T*M, so that the list (3) can be rewritten 
as

(3*) g «->• cxq*Mg + c2q*Mg' + c3(9m)’(Am ® Am) + c4(^’ )*\M + c5/3.

Remark 2. By [2], all natural operators T^0,2) T^0,2^T* transforming
(0,2)-tensor fields to the cotangent bundle are linearly generated by the 
following 4-parameter family

g 1—► C\q*Mg + c^q^g' + c^Xm ® Xm + c4 Am,

while for r > 2 we have 5-parameter family (3*) with an extra (0,2)-tensor 
field ¡3 (or a).

By (3*), the only closed 2-form on Tr*M for r > 2 is (g^y1 )’Am and we 
have

Corollary 1. There is no canonical symplectic structure on Tr*M for 
r>2.

Corollary 2. There is no linear canonical isomorphism TTr*M —> TTr,M 
over the identity ofTr*M for r >2.

On the other hand, in the case r = 1 we have the well known natural 
equivalence TT*M —♦ T*T”M which is induced by the canonical symplectic 
structure of the cotangent bundle.

Corollary 3. The only natural (0,2)-tensor fields on Tr*M for r > 2 are 
(?M )*(Am ® Am), (<?m )’Am and o (or p).

3. Natural tensor fields. By [2], the only natural (0, l)-tensor field on 
T*M is the classical Liouville form Am- It is not difficult to prove, that 
the pull-back (?m )*Am is the only natural (0, l)-tensor field on Tr*M for 
all r > 2. Using tensor product and the exterior differential, we have two 
natural (0,2)-tensor fields Xm ® Am and ¿Xm — Xm on T*M. By [2], 
all natural (0,2)-tensor fields on T* M form a 2-parameter family linearly 
generated by Am ® Am and Aa/. For r > 2 we have an additional (0,2)- 
tensor field a (or /3) on Tr* M and by Corollary 3 the family of all natural
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(0,2)-tensor fields on Tr*M is linearly generated by three tensor fields for 
all r > 2.

Further, natural (0,3)-tensor fields on Tr*M can be constructed by 
means of tensor products of Xm, a and (3. We have a question: Is there 
a natural (0,3)-tensor field on T3*M, which does not arise from Xm ® a, 
Xm ® ft, a® Xm, P ® Xm and Xm ® Xm ® Xm7- This question is a particular 
case of a more general problem of finding all natural (0, r)-tensor fields on 
Tr,M. Put

7x = Ukdx' ® dxk ® dui — UkUijdx' ® dxk ® dx3,
(4) Jb * jl

72 = u^dui ® dxK ® dx' — Uk’Uijdx' ® dxK ® dx3.

We have

Proposition 2. AU natural (0,3)-tensor fields on T3*M are linearly gener­
ated by (</m )'(XM® Xm ®AM), )*Xm®cx, GIm ) Xm®P, a®Çq^j )*Xm, 
P® (îmPm, 7i and 72-

Proof. The proof is quite similar to that of Proposition 1, so that we sketch 
the principal steps only. The coordinate expression of a (0,3)-tensor field 
on T3* M is of the form

G = Aijkdx' ® dx3 ® dxk + Bkjdx' ® dx3 ® duk 

+ Ckjdx' ® duk ® dx3 + Dkjduk ® dx' ® dx3 

+ Ekjdx' ® dx3 ® duki + F,kedx' ® duke ® dx3 

+ Gkjduke ® dx' ® dx3 + ...

where all the coefficients are functions of (uj, u,y,..., By homoth-
eties, all the coefficients except Aijk,... ,Gk- are zero. Using this fact, we 
compute the transformation laws in the form

Ajjfc — Ajjfc T + anjUrCik T O-niUrD
+ {anpkur + ankurp + O-pk^E^

+ (anpjUr + anjUrP 4' apjUns)Eik> + (anpiUr + aniUrp + apiuns)Gjki

b-î = fij + 4,e;‘, 

Cy = Cj +

By = + at,G-y
while the remaining coordinates Ekf, Ftke and Gk- have tensorial transfor­
mation laws. The rest of the proof is then an easy exercise with the homo- 
theties and equivariances analogously to the proof of Proposition 1. □
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4. Canonical homomorphisms. We have proved that there is no linear 
canonical isomorphism TTr*M -+ T*Tr*M for r > 2. Each (0,2)-tensor 
field g = gijdx' ® dx3 on M can be identified with a linear homomorphism 
gL -TM —*■ T'M , (ar’,jz‘) >->• = g^y2)- If M is a symplectic manifold
and g is the corresponding symplectic form, then gL is an isomorphism.

Analogously, a (0,2)-tensor field G on Tr*M induces a linear homomor­
phism Gl • TTr*M —► T*Tr*M over the identity of Tr*M. Denoting by 
(a;*, Uj,..., Ui,..the canonical coordinates on TTr*M
and (x‘,+ (3'dui + ••• + the canonical
coordinates on T*Tr*M, the (0,2)-tensor fields a and P induce the homo­
morphisms oil, Pl : TTr"M TTr,M. The equations of «£ are

(5) ai = -uijX3, P^X*, Pij = 0,...,p^ =0

and the equations of Pl are

(6) a, = -Ui jX3 + Ui, /T = 0,...,/^-’'=0.

At the end we prove the stronger form of Corollary 2 for r = 2.

Proposition 3. There is no canonical isomorphism TT2*M —> T*T2*M 
over the identity ofT2*M.

Proof. The action of G2t on the standard fibre T*T2*M is

while we will not need the equations of a,-.
By equivariance, P'3 = P'3(ui,Uij, X',Ui,Uij) do not depend of Uij. 

Further, introduce new variables Pi,qj € Rm* and consider the function 
f(ui, Uij, X', Ui,pi, qp = P'3piqj. Then f is Gj„-invariant. By the tensor 
evaluation theorem from [3],

f = f(uiXi,uijXiX3,UiXi,piXi,qiXi).

Replace urf, UiXi and UijX'X3 by A = ulXi,I2 = U,X' - utJX'X3 
and UijX'X3, so that f = f (lx, I2,PiX',qiX', UijX'X3). One evaluates 
easily that A, J2, PiX' and qiX' are G^-invariant expressions. Then the 
equivariance yield that f does not depend of the fifth variable, so that 
f = /(A, Differentiating with respect to pi and then setting
Pi = 0 we have P'3qj = f(Zx, Z2, qiX')X'. Analogously, differentiating this 
with respect to and then setting qi — 0 we prove that P'3 = ^(A, Z2)X'X3
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where ip is an arbitrary function of two variables. Further, using a similar 
procedure as that for /?*•’ we deduce that f3' = /2)A‘. By equivariance,

(XA, + aijkiP(I1,I2)XjXk =

which reads ip = 0. Up till now, we have proved /?’ = pX', (3,J = 0, which 
can not be equations of an isomorphism. □
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