UNIVERSITATIS MARIAE CURIE - SKEODOWSKA LUBLIN - POLONIA

VOL. L, 3
SECTIO A.
1996

KRZYSZTOF BOLIBOK (Lublin)

Constructions of Lipschitzian Mappings with Non Zero Minimal Displacement in Spaces $L^{1}(0,1)$ and $L^{2}(0,1)$

Abstract

The study of minimal displacement problem was initiated by Goe- bel in 1973 [3] and, while some further results have been obtained by Franchetti [1], Furi and Martelli [2], Reich [6] and [7], several major questions remain open. The aim of this paper is to show constructions of lipschitzian mappings with positive minimal displacement in spaces $L^{1}(0,1)$ and $L^{2}(0,1)$ which can be used as the first estimates from below of minimal displacement characteristic of X in those spaces.

Introduction. Let B, S be respectively, the unit ball and sphere in an infinitely dimensional Banach space X with norm $\|\cdot\|$. For any $k \geq 0$, let $L(k)$ denote the class of Lipschitz mappings $T: B \rightarrow B$ with constant k.

By $\psi_{X}(k)$ we will denote the minimal displacement characteristic of X

$$
\psi_{X}(k)=\sup \left[\inf _{x \in B}\|x-T x\|\right]
$$

where supremum is taken over all mappings T belonging to $L(k)$. It is known that for any space X

$$
\psi_{X}(k) \leq 1-\frac{1}{k} \quad \text { for } k \geq 1
$$

There are some "square" spaces like $c_{0}, C[0,1]$ for which $\psi_{X}(k)=1-1 / k$. In the case of space l^{1} we know only that $\psi_{X}(k)<1-1 / k$ and that $\psi_{l^{1}}(k) \leq \psi_{L^{1}(0,1)}(k)$ but it is still unknown if $\psi_{L^{1}(0,1)}(k)=1-1 / k$ or not. Since 1973 [3] evaluation for Hilbert space H

$$
\psi_{H}(k) \leq(1-1 / k) \sqrt{k /(k+1)}
$$

has not been improved neither its exactness was shown. Our construction in the Hilbert space $L^{2}(0,1)$ which can be used as the estimate from below of $\psi_{H}(k)$ is far from the above and probably far from the real value of $\psi_{H}(k)$.

Construction in $L^{1}(0,1)$. Let us consider the unit ball B in $L^{1}(0,1)$. For any $f \in B$ and $k \geq 1$ define t_{f} as the solution of the equation

$$
\int_{0}^{t}(1+k|f(s)|) d s=1
$$

with respect to t. Set

$$
(T f)(t)= \begin{cases}1+k|f(t)| & \text { for } t \leq t_{f} \\ 0 & \text { for } t>t_{f}\end{cases}
$$

Obviously $T: B \rightarrow B$ (more precisely $T: B \rightarrow S$). Suppose $f, g \in B$ with $t_{f} \leq t_{g}$. Then

$$
\begin{aligned}
\|T f-T g\| & =\int_{0}^{1}|(T f)(t)-(T g)(t)| d t \\
& =\int_{0}^{t_{f}}|k| f(t)|-k| g(t) \| d t+\int_{t_{f}}^{t_{g}}(1+k|g(t)|) d t \\
& \leq k \int_{0}^{t_{f}}|f(t)-g(t)| d t+1-\int_{0}^{t_{f}}(1+k|g(t)|) d t \\
& \leq k\|f-g\|+\int_{0}^{t_{f}}(k|f(t)|-k|g(t)|) d t \leq 2 k\|f-g\|
\end{aligned}
$$

which shows that $T \in L(2 k)$. Now we can calculate minimal displacement of T.

$$
\begin{aligned}
\|T f-f\| & =\int_{0}^{1}|(T f)(t)-f(t)| d t=\int_{0}^{t_{f}}|1+k| f(t)|-f(t)| d t+\int_{t_{f}}^{1}|f(t)| d t \\
& \geq \int_{0}^{t_{f}}(1+(k-1)|f(t)|) d t=t_{f}+(k-1) \int_{0}^{t_{f}}|f(t)| d t
\end{aligned}
$$

Because

$$
1=\int_{0}^{t_{f}}(1+k|f(t)|) d t
$$

so we obtain

$$
\int_{0}^{t_{f}}|f(t)| d t=\left(1-t_{f}\right) / k
$$

Finally we get

$$
\begin{aligned}
\|T f-f\| & \geq t_{f}+(k-1) \int_{0}^{t_{f}}|f(t)| d t=t_{f}+(k-1)\left(1-t_{f}\right) / k \\
& =t_{f} / k+(k-1) / k \geq 1-1 / k
\end{aligned}
$$

Which means

$$
\psi_{L^{1}(0,1)}(2 k) \geq 1-1 / k
$$

so

$$
\psi_{L^{1}(0,1)}(k) \geq 1-2 / k
$$

This result can be slightly improved, by taking a tangent line to the graph from 1 , because function $\psi_{\boldsymbol{X}}$ is concave with respect to 1 (see [3]). After easy calculations we get

$$
\psi_{L^{1}(0,1)}(k) \geq \begin{cases}(3-2 \sqrt{2})(k-1) & \text { for } 1 \leq k \leq 2+\sqrt{2} \\ 1-\frac{2}{k} & \text { for } k>2+\sqrt{2}\end{cases}
$$

Now, we show what happens with a construction similar to the above in the space $L^{2}(0,1)$.

Construction in $L^{2}(0,1)$. Let B and S denote, respectively, the unit ball and sphere in the Hilbert space $L^{2}(0,1)$ with standard norm and inner product. As in the previous construction, for $f \in B$ and $k \geq 1$ define t_{f} as the solution of the equation

$$
\int_{0}^{t}(1+k|f(s)|)^{2} d s=1
$$

with respect to t and set

$$
(T f)(t)= \begin{cases}1+k|f(t)| & \text { for } t \leq t_{f} \\ 0 & \text { for } t>t_{f}\end{cases}
$$

Obviously $T: B \rightarrow B$ (more precisely $T: B \rightarrow S$). Suppose that $f, g \in B$ with $t_{f} \leq t_{g}$. Then

$$
\begin{aligned}
\| T f & -T g \|^{2}=\int_{0}^{1}|(T f)(t)-(T g)(t)|^{2} d t \\
& =\int_{0}^{t_{f}}(k|f(t)|-k|g(t)|)^{2} d t+\int_{t_{f}}^{t_{g}}(1+k|g(t)|)^{2} d t \\
& \leq k^{2} \int_{0}^{t_{f}}(f(t)-g(t))^{2} d t+1-\int_{0}^{t_{f}}(1+k|g(t)|)^{2} d t \\
& \leq k^{2}\|f-g\|^{2}+\int_{0}^{t_{f}}\left((1+k|f(t)|)^{2}-(1+k|g(t)|)^{2}\right) d t \\
& \leq k^{2}\|f-g\|^{2}+2 k \int_{0}^{t_{f}}|f(t)-g(t)| d t+k^{2} \int_{0}^{t_{f}}\left((f(t))^{2}-(g(t))^{2}\right) d t
\end{aligned}
$$

Because

$$
\begin{aligned}
\int_{0}^{t_{f}}|f(t)-g(t)| d t & \leq \sqrt{\int_{0}^{t_{f}}(f(t)-g(t))^{2} d t} \sqrt{\int_{0}^{t_{f}} d t} \\
& \leq \sqrt{t_{f}}\|f-g\| \leq\|f-g\|
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{t_{f}}\left((f(t))^{2}-(g(t))^{2}\right) d t & \leq \sqrt{\int_{0}^{t_{f}}(f(t)-g(t))^{2} d t \sqrt{\int_{0}^{t_{f}}(f(t)+g(t))^{2} d t}} \\
& \leq\|f-g\|\|f+g\| \leq 2\|f-g\| .
\end{aligned}
$$

So we finally get

$$
\begin{aligned}
\|T f-T g\|^{2} & \leq k^{2}\|f-g\|^{2}+2 k\|f-g\|+2 k^{2}\|f-g\| \\
& =k^{2}\|f-g\|^{2}+2 k(k+1)\|f-g\|
\end{aligned}
$$

This shows that T is uniformly continuous. However (as my be checked) T is not lipschitzian. Nerveless, T may be used to produce a lipschitzian mapping but let us first calculate the minimal displacement of T.

$$
\begin{aligned}
\| T f & -f \|^{2}=\int_{0}^{1}((T f)(t)-f(t))^{2} d t \\
& =\int_{0}^{t_{f}}(1+k|f(t)|-f(t))^{2} d t+\int_{t_{f}}^{1}(f(t))^{2} d t \\
& \geq \int_{0}^{t_{f}}(1+(k-1)|f(t)|)^{2} d t \\
& =\int_{0}^{t_{f}} d t+2(k-1) \int_{0}^{t_{f}}|f(t)| d t+(k-1)^{2} \int_{0}^{t_{f}}(f(t))^{2} d t
\end{aligned}
$$

Because

$$
1=\int_{0}^{t_{f}}(1+k|f(t)|)^{2} d t=t_{f}+2 k \int_{0}^{t_{f}}|f(t)| d t+k^{2} \int_{0}^{t_{f}}(f(t))^{2} d t
$$

so

$$
\begin{aligned}
\frac{k^{2}}{(k-1)^{2}}\|T f-f\|^{2} & \geq \frac{k^{2}}{(k-1)^{2}} t_{f}+\frac{2 k^{2}}{k-1} \int_{0}^{t_{f}}|f(t)| d t+k^{2} \int_{0}^{t_{f}}(f(t))^{2} d t \\
& \geq t_{f}+2 k \int_{0}^{i_{f}}|f(t)| d t+k^{2} \int_{0}^{i_{f}}(f(t))^{2} d t=1
\end{aligned}
$$

Which finally shows that

$$
\|T f-f\| \geq 1-1 / k
$$

Now we can modify the mapping T to obtain a lipschitzian mapping. Let us take $\varepsilon>0$ and choose a set $W \subset B$ with the following properties
(i) $\forall f, g \in W \quad f \neq g \quad\|f-g\| \geq \varepsilon$
(ii) $\forall f \in B \quad \operatorname{dist}(f, W) \leq \varepsilon$, where $\operatorname{dist}(f, W)=\inf _{g \in W}\|f-g\|$.

Let $T_{1}=T_{\mid W}$. We claim T_{1} is lipschitzian on W.
Indeed for any $f, g \in W$ we have

$$
\begin{aligned}
\left\|T_{1} f-T_{1} g\right\| & \leq \sqrt{k^{2}\|f-g\|^{2}+2 k(k+1)\|f-g\|} \\
& \leq \sqrt{k^{2}+\frac{2 k(k+1)}{\varepsilon}}\|f-g\|
\end{aligned}
$$

By Kirzbraun's theorem $T_{1}: W \rightarrow S$ may be extended to a mapping $T_{2}: B \rightarrow B$ with the same Lipschitz constant. It is possible to calculate minimal displacement of T_{2}

$$
\begin{aligned}
\left\|f-T_{2} f\right\| & \geq\left\|f_{1}-T_{2} f_{1}\right\|-\left(\left\|f-f_{1}\right\|+\left\|T_{2} f_{1}-T_{2} f\right\|\right) \\
& \geq 1-\frac{1}{k}-\varepsilon-\sqrt{k^{2}+\frac{2 k(k+1)}{\varepsilon}} \varepsilon \\
& =1-\frac{1}{k}-\varepsilon\left(1+\sqrt{k^{2}+\frac{2 k(k+1)}{\varepsilon}}\right)
\end{aligned}
$$

where $f_{1} \in W$ and $\left\|f-f_{1}\right\| \leq \varepsilon$. We obtain that

$$
\psi_{L^{2}(0,1)}\left(\sqrt{k^{2}+\frac{2 k(k+1)}{\varepsilon}}\right) \geq 1-\frac{1}{k}-\varepsilon\left(1+\sqrt{k^{2}+\frac{2 k(k+1)}{\varepsilon}}\right)
$$

which implies

$$
\psi_{L^{2}(0,1)}(k) \geq 1-\frac{2+\varepsilon}{\sqrt{1+\varepsilon(\varepsilon+2) k^{2}}-1}-\varepsilon(k+1)
$$

for sufficiently large k.
This estimate strongly depends on the choice of ε. For instance for $k=$ 50 almost optimal value of ε is $\varepsilon=0.005$ and then $\psi_{L^{2}(0,1)}(50)>0.25$.

References

[1] Franchetti, C., Lipschitz maps and the geometry of the unit ball in normed spaces, Arch. Math. 46 (1986), 76-84.
[2] Furi, M. and M. Martelli, On the minimal displacement of points under alphaLipschitz maps in normed spaces, Boll. Un. Mat. Ital. 9 (1975), 791-799.
[3] Goebel, K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 48 (1973), 151-163.
[4] Goebel, K. and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press.
[5] Kirzbraun, M. D., Úber die Zusamenziehende und Lipschitzsche Transformationen, Fund. Math. 22, 77-108.
[6] Reich, S., Minimal displacement of points under weakly inward pseudolipschitzian mappings I, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975), 40-44.
[7] Reich, S., Minimal displacement of points under weakly inward pseudolipschitzian mappings II, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 60 (1976), 95-96.

