UNIVERSITATIS MARIAE CURIE - SKLODOWSKA LUBLIN - POLONIA

VOL. L, 1

AISHAH S. ABDULLAH, ROSIHAN M. ALI (Penang) and VIKRAMADITYA SINGH ${ }^{\dagger}$ (Patiala)

On Functions Starlike with Respect to a Boundary Point

Abstract

Let U be the unit disc $|z|<1$ and \mathcal{G} be the class of functions $f(z)=1+\sum_{n=1}^{\infty} d_{n} z^{n}$ analytic and non-vanishing in U, and satisfying $\operatorname{Re}\left\{2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-x}\right\}>0$ in U. We examine the importance of the Koebe function $z /(1-z)^{2}$ to the class \mathcal{G} and obtain sharp inequalities involving the coefficients d_{1}, d_{2} and d_{3}.

1. Introduction. Let $U=\{z:|z|<1\}$ be the unit disc and $S^{*}(\alpha)$, $0 \leq \alpha \leq 1$, denote the class of analytic functions f in U normalized so that $f(0)=f^{\prime}(0)-1=0$, and such that

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha, \quad z \in U
$$

Thus $f \in S^{*}(\alpha)$ maps U univalently onto a domain starlike with respect to the origin. We shall denote the class $S^{*}(0)$ simply by S^{*}. Further let S denote the familiar class of normalized analytic univalent functions in U.

The class $S^{*}(\alpha)$ has been extensively investigated during the last fifty years. However, not much seems to be known about the class of analytic functions that map U onto domains that are starlike with respect to a

[^0]boundary point. Egerváry [1] seems among the early researchers to have come across such functions in his investigations on the Cesáro partial sums of the geometric series $\sum_{n=1}^{\infty} z^{n}$. However, Robertson [5] was the first to initiate a systematic study of this class, and we follow his terminology in this paper.

Definition. Let \mathcal{G} denote the class of functions $f(z)=1+d_{1} z+d_{2} z^{2}+$ $\cdots+d_{n} z^{n}+\cdots$, analytic and non-vanishing in U and such that

$$
\begin{equation*}
\operatorname{Re}\left\{2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}\right\}>0, \quad z \in U . \tag{1}
\end{equation*}
$$

It was shown [5] that a function f belongs to \mathcal{G} if and only if there exists a function $g \in S^{*}(1 / 2)$ such that

$$
\begin{equation*}
f(z)=(1-z) \frac{g(z)}{z} \tag{2}
\end{equation*}
$$

This is equivalent to the condition $f \in \mathcal{G}$ if and only if there exists an $h \in S^{*}$ such that

$$
\begin{equation*}
\phi(z)=\frac{h(z)(1-z)^{2}}{z}=f^{2}(z) \tag{3}
\end{equation*}
$$

Furthermore, either f is identically equal to the constant 1 , or ϕ is close-to-convex with respect to h satisfying

$$
\operatorname{Re}\left\{-\frac{z \phi^{\prime}(z)}{h(z)}\right\}>0, \quad z \in U
$$

Moreover, the coefficients d_{n} of $f \in \mathcal{G}$ satisfy

$$
\begin{equation*}
\left|d_{n}\right| \leq n\left|d_{1}\right| . \tag{4}
\end{equation*}
$$

Inequality (4) is the general inequality for close-to-convex functions [4]. The equality is attained for any positive integer n and the function

$$
f(z)=\frac{1-z}{\sqrt{1-2 z \cos \theta+z^{2}}}, \quad 0<\theta<2 \pi, \quad d_{1}=\cos \theta-1
$$

which satisfies (2) and for which

$$
\lim _{\theta \rightarrow 0}\left[\frac{f(z)-1}{\cos \theta-1}\right]=\frac{z}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n}
$$

From (3) we notice a peculiar role of the Koebe function or its rotations. These functions have several special properties [2]. In this paper we examine the special role of the Koebe and the generalized Koebe functions. In addition, we obtain sharp inequalities involving the coefficients of functions in \mathcal{G}.

2. Results.

Theorem 1. The functions $g_{x}(z)=z(1-x z)^{-2},|x|=1$ are the only functions $g \in S$ so that for any $h \in S^{*}, h \neq g$, the function $f(z)=$ $h(z) / g(z)$ is close-to-convex.

Proof. Let $h(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in S^{*}$, and $g_{x}(z)=z+2 x z^{2}+\cdots$. Then $\left|b_{2}\right| \leq|2 x|=2$ and since $g_{x} \neq h$, we have $b_{2} \neq 2 x$. Hence, for $0 \leq \rho \leq 1, \rho b_{2}-2 x$ remains bounded away from zero.

Let $0<\rho<1$ and define

$$
f_{\rho}(z)=\frac{h(\rho z)}{\rho g_{x}(z)}
$$

Then f_{ρ} is analytic in U and

$$
\operatorname{Re}\left\{-\frac{1}{x} \frac{\rho z f_{\rho}^{\prime}(z)}{h(\rho z)}\right\}>0, \quad z \in U
$$

Thus f_{ρ} is univalent and close-to-convex in U, so $\left(f_{\rho}(z)-1\right) /\left(\rho b_{2}-2 x\right)$ is a normalized close-to-convex function in U. Since this class is compact and $\rho b_{2}-2 x$ is bounded away from zero, we can take the limit $\rho \rightarrow 1$ and conclude that $f(z)=h(z) / g_{x}(z)$ is close-to-convex in U.

If $g(z)=z+a_{2} z^{2}+\cdots \in S$ but $g \neq g_{x},|x|=1$, then $\left|a_{2}\right|<2$. There are many triples $(\lambda, \varepsilon, \delta) \in(0,1) \times \partial U \times \partial U$ satisfying

$$
\lambda \varepsilon+(1-\lambda) \delta=\frac{a_{2}}{2}
$$

so that we can find one such triple for which

$$
h(z)=\frac{z}{(1-\varepsilon z)^{2 \lambda}(1-\delta z)^{2-2 \lambda}} \in S^{*}
$$

is different from g. But

$$
h(z)=z+2(\lambda \varepsilon+\delta(1-\lambda)) z^{2}+\cdots=z+a_{2} z^{2}+\cdots,
$$

and a simple calculation shows that $f^{\prime}(0)=0$ for $f(z)=h(z) / g(z)$ not identical to a constant. Thus such a function f is not even locally univalent at $z=0$. Hence g does not have the property needed in the theorem

We are thankful to St. Ruscheweyh for suggesting this proof.

We observe that $g \in S$ in some sense cannot be relaxed. Indeed, the functions

$$
g_{\nu}(z)=\frac{z}{\nu\left(1+z^{2}\right)+2 z}, \quad-1 \leq \nu \leq 1, \quad \nu \neq 0
$$

are univalent in U and belong to S only for $\nu=1$. For $-1<\nu<1$ these functions are meromorphic univalent in U. If $h \in S^{*}$ and

$$
\begin{equation*}
f(z)=h(z)\left(2 z+\nu\left(1+z^{2}\right)\right) / z \tag{5}
\end{equation*}
$$

then

$$
\frac{z f^{\prime}(z)}{h(z)}=-\frac{\left(1-z^{2}\right)}{z} \nu+\left\{2+\nu\left(\frac{1}{z}+z\right)\right\} \frac{z h^{\prime}(z)}{h(z)}
$$

and it is clear that $\operatorname{Re}\left\{z f^{\prime}(z) / h(z)\right\}>0$ for $-1 \leq \nu \leq 1$.
If $h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, then (5) along with (4) for $f(z)$ gives the following sharp inequality for coefficients of starlike functions:

$$
\mid 2 a_{n}+\nu\left(a_{n+1}+a_{n-1}|\leq n| 2+\nu a_{2} \mid .\right.
$$

Theorem 2. Let $g \in S^{*}(\alpha), 0 \leq \alpha \leq 1$, and let

$$
\begin{equation*}
\phi(z)=(1-z)^{2(1-\alpha)} g(z) / z . \tag{6}
\end{equation*}
$$

Then either ϕ is the constant 1 , or $\phi(z),[\phi(z)]^{1 / 2(1-\alpha)},[\phi(z)]^{1 /(1-\alpha)}$, and $\log \phi(z)$ are close-to-convex in U.

Proof. We first observe that, if $g \in S^{*}(\alpha)$ then

$$
g_{1}(z)=\frac{g(z)}{(1-z)^{2 \alpha}} \quad \text { and } \quad g_{2}(z)=z\left[\frac{g(z)}{z}\right]^{1 /(1-\alpha)}
$$

are in S^{*}. Further, for ϕ defined by (6),

$$
[\phi(z)]^{1 /(1-\alpha)}=\frac{(1-z)^{2}}{z} g_{2}(z) \quad \text { and } \quad[\phi(z)]^{1 / 2(1-\alpha)}=\frac{(1-z)}{z} h(z)
$$

where g_{2} is defined above and $h \in S^{*}(1 / 2)$. From [5] we deduce that $[\phi(z)]^{1 /(1-\alpha)}$ and $[\phi(z)]^{1 / 2(1-\alpha)}$ are close-to-convex if ϕ is not a constant. Notice that

$$
\begin{equation*}
\frac{z \phi^{\prime}(z)}{\phi(z)}=\frac{z \phi^{\prime}(z)}{g_{1}(z)} \frac{z}{(1-z)^{2}}, \quad g_{1} \in S^{*} \tag{7}
\end{equation*}
$$

and

$$
\frac{z \phi^{\prime}(z)}{\phi(z)}=\left(\frac{z g^{\prime}(z)}{g(z)}-\alpha\right)-(1-\alpha) \frac{1+z}{1-z}
$$

Hence

$$
-\frac{1}{1-\alpha} \frac{z \phi^{\prime}(z)}{g_{1}(z)}=\frac{1-z^{2}}{z}-\frac{(1-z)^{2}}{z} \frac{1}{1-\alpha}\left(\frac{z g^{\prime}(z)}{g(z)}-\alpha\right)
$$

Therefore $\operatorname{Re}\left\{-\frac{1}{1-\alpha} \frac{z \phi^{\prime}(z)}{g_{1}(z)}\right\}>0$ and ϕ is close-to-convex. From (7) we also conclude that $\log \phi(z)$ is close-to-convex.

The following yields some interesting coefficient bounds.

Theorem 3. If $f \in \mathcal{G}$ with

$$
\begin{equation*}
f(z)=\frac{(1-z) g(z)}{z}=1+\sum_{n=1}^{\infty} d_{n} z^{n}, \quad g \in S^{*}(1 / 2) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{n}(z)=1+\sum_{k=1}^{n} d_{k} z^{k}, \quad S_{0}(z)=1 \tag{9}
\end{equation*}
$$

then the functions

$$
\begin{equation*}
\phi_{n}(z)=\frac{1}{z^{n}}\left(1-\frac{S_{n-1}(z)}{f(z)}\right)+\frac{S_{n-1}(1)}{f(z)}, \quad n \geq 1 \tag{10}
\end{equation*}
$$

are analytic in U and

$$
\begin{equation*}
\left|\phi_{n}(z)\right| \leq 1 \tag{11}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\left|S_{n}(1)\right| \leq 1 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\left|S_{n}(1)\right|^{2}+\sum_{m=1}^{p}\left|d_{n+m}\right|^{2} \leq 1+\sum_{n=1}^{p}\left|d_{n}\right|^{2}, \quad p \geq 1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|d_{n+1}-d_{1} S_{n}(1)\right| \leq 1-\left|S_{n}(1)\right|^{2} . \tag{14}
\end{equation*}
$$

Proof. For $z, \zeta \in U$, let

$$
\phi(z, \zeta)=\frac{\zeta}{g(\zeta)} \frac{g(z)-g(\zeta)}{z-\zeta}, \quad g \in S^{*}(1 / 2)
$$

Then by [6], $\operatorname{Re} \phi(z, \zeta)>1 / 2$. Hence in view of (8)

$$
\phi(z, \zeta)=\frac{1}{1-z / \zeta}-\frac{f(z)}{f(\zeta)}\left(\frac{\zeta}{\zeta-z}-\frac{1}{1-z}\right)
$$

Expansion of $\phi(z, \zeta)$ in powers of z yields

$$
\phi(z, \zeta)=1+\sum_{n=1}^{\infty} \phi_{n}(\zeta) z^{n}
$$

where $\phi_{n}(\zeta)$ is defined by (9) and (10). As $\operatorname{Re} \phi(z, \zeta)>1 / 2,(11)$ follows.
Notice that

$$
\phi_{n}(\zeta)=\frac{S_{n}(1)+d_{n+1} \zeta+\cdots+d_{n+m} \zeta^{m}+\cdots}{1+\sum_{n=1}^{\infty} d_{n} \zeta^{n}}
$$

The inequalities (12) and (13) now follow from the fact that $\left|\phi_{n}(\zeta)\right| \leq 1$ and $\phi_{n}(\zeta)$ is analytic for $\zeta \in U$. The inequality (14) is a consequence of the fact that, if

$$
\phi_{n}(\zeta)=a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots, \quad\left|\phi_{n}(\zeta)\right|<1, \quad \zeta \in U
$$

then $\left|a_{1}\right| \leq 1-\left|a_{0}\right|^{2}$.
If $f \in \mathcal{G}$, inequality (11) for $n=1$ gives

$$
\left|f(z)-\frac{1-z}{1-|z|^{2}}\right| \leq \frac{|z||1-z|}{1-|z|^{2}}, \quad z \in U
$$

which yields a distortion theorem for functions of the class \mathcal{G}.

Theorem 4. If $f(z)=1+\sum_{n=1}^{\infty} d_{n} z^{n} \in \mathcal{G}$, then the coefficients d_{n} satisfy the following sharp inequalities:

$$
\begin{align*}
& \left|2 d_{2}+1-d_{1}^{2}\right| \leq 1 \tag{15}\\
& \left|2 d_{2}-\left(1+d_{1}\right)\left(1+3 d_{1}\right)\right| \leq 1 \\
& \left|2 d_{2}-2 d_{1}\left(1+d_{1}\right)\right| \leq 1-\left|1+d_{1}\right|^{2} \\
& \left|3 d_{3}-3 d_{1} d_{2}+1+d_{1}^{3}\right| \leq 1 \\
& \left|3 d_{3}-d_{2}\left(4+7 d_{1}\right)-\left(1+d_{1}\right)\left(1+d_{1}-3 d_{1}^{2}\right)\right| \leq 1
\end{align*}
$$

and

$$
\begin{equation*}
\left|3 d_{3}-d_{2}\left(8+11 d_{1}\right)+\left(1+d_{1}\right)\left(1+7 d_{1}+9 d_{1}^{2}\right)\right| \leq 1 \tag{20}
\end{equation*}
$$

We need the following for the proof of Theorem 4:

Lemma 1 [3]. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}$ be analytic in U. Then $|g(z)| \leq|f(z)|, z \in U$, if and only if

$$
\sum_{j=0}^{\infty}\left\{\left|\sum_{k=0}^{\infty} a_{k} z_{k+j}\right|^{2}-\left|\sum_{k=0}^{\infty} b_{k} z_{k+j}\right|^{2}\right\}
$$

is positive semidefinite on the family of all sequences $\left\{z_{k}\right\}$ satisfying

$$
\lim \sup _{k \rightarrow \infty}\left|z_{k}\right|^{1 / k}<1
$$

Proof of Theorem 4. Let $d_{0}=1$ and

$$
\begin{aligned}
& \psi(z)=2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}=\frac{1+\sum_{n=1}^{\infty}\left[(2 n+1) d_{n}+(3-2 n) d_{n-1}\right] z^{n}}{1+\sum_{n=1}^{\infty}\left(d_{n}-d_{n-1}\right) z^{n}} \\
& =1+2\left(1+d_{1}\right) z+2\left(2 d_{2}+1-d_{1}^{2}\right) z^{2}+2\left(3 d_{3}-3 d_{1} d_{2}+d_{1}^{3}+1\right) z^{3}+\cdots .
\end{aligned}
$$

Then $\psi \in P$. Hence

$$
\phi(z)=\frac{\psi(z)-1}{\psi(z)+1}=\frac{\left(1+d_{1}\right) z+2\left(d_{2} z^{2}+\left(3 d_{3}-d_{2}\right) z^{3}+\cdots\right.}{1+2 d_{1} z+\left(3 d_{2}-d_{1}\right) z^{2}+\cdots}
$$

is analytic in U and satisfies $|\phi(z)|<1$.
Applying Lemma 1 to the function $\phi(z) / z$ with

$$
z_{0}=b\left(1-d_{1}\right)+\lambda\left(d_{1}-d_{2}\right), \quad z_{1}=b, \quad z_{2}=\lambda, \quad z_{k}=0, k \geq 3
$$

gives

$$
\begin{aligned}
\mid b\left(1-d_{1}^{2}+2 d_{2}\right) & +\left.\lambda\left\{\left(d_{1}-d_{2}\right)\left(1+d_{1}\right)+\left(3 d_{3}-d_{2}\right)\right\}\right|^{2} \\
& \leq|\lambda|^{2}+\left|b+2 \lambda d_{1}\right|^{2}-\left|\lambda\left(1+d_{1}\right)\right|^{2} .
\end{aligned}
$$

The choice $\lambda=0$ gives (15) and the choice $b=\lambda\left(1-d_{1}\right)$ gives (18). Further, the choice $b=-\lambda\left(1+3 d_{1}\right)$ gives (19).

If we choose

$$
z_{0}=-b(1+3 d-1)-\lambda\left(5 d_{2}-d_{1}\right), \quad z_{1}=b, \quad z_{2}=\lambda, \quad z_{k}=0, k \geq 3
$$

and apply Lemma 1 again to $\phi(z) / z$, we obtain

$$
\begin{aligned}
\mid b\left\{\left(2 d_{2}-\left(1+d_{1}\right)\left(1+3 d_{1}\right)\right\}\right. & +\left.\lambda\left\{3 d_{3}-d_{2}-\left(5 d_{2}-d_{1}\right)\left(1+d_{1}\right)\right\}\right|^{2} \\
& \leq|\lambda|^{2}+\left|b+2 \lambda d_{1}\right|^{2}-\left|\lambda\left(1+d_{1}\right)\right|^{2} .
\end{aligned}
$$

For $\lambda=0$ this gives (16) and the choice $b=-\lambda\left(1+3 d_{1}\right)$ yields (20).
Similarly, for $z_{0}=1, z_{1}=y, z_{k}=0, k \geq 2$, Lemma 1 yields

$$
\begin{aligned}
\left(1-\left|1+d_{1}\right|^{2}\right) & +4 \operatorname{Re}\left\{y\left(d_{1}-d_{2}\left(1+\bar{d}_{1}\right)\right)\right\} \\
& +|y|^{2}\left(3\left|d_{1}\right|^{2}-4\left|d_{2}\right|^{2}-2 \operatorname{Re} d_{1}\right) \geq 0 .
\end{aligned}
$$

Upon completing squares, we deduce that

$$
\left(3\left|d_{1}\right|^{2}-4\left|d_{2}\right|^{2}-2 \operatorname{Re} d_{1}\right)\left(1-\left|1+d_{1}\right|^{2}\right) \geq 4\left|d_{1}-d_{2}\left(1+\bar{d}_{1}\right)\right|^{2}
$$

that is

$$
\left(1-\left|1+d_{1}\right|^{2}\right)\left(4\left|d_{2}\right|^{2}-4\left|d_{1}\right|^{2}\right)+4\left|d_{2}\left(1+\bar{d}_{1}\right)-d_{1}\right|^{2} \leq\left(1-\left|1+d_{1}\right|^{2}\right)^{2}
$$

Since

$$
4\left|d_{2}\left(1+\bar{d}_{1}\right)-d_{1}\right|^{2}-4\left|d_{2}\right|^{2}\left|1+d_{1}\right|^{2}-4\left|d_{1}\right|^{2}=-8 \operatorname{Re}\left\{d_{2} \bar{d}_{1}\left(1+\bar{d}_{1}\right)\right\}
$$

this establishes (17).
Sharpness of the above inequalities follows from the fact that the defining equation (1) yields

$$
\psi(z)=2 \frac{z f^{\prime}(z)}{f(z)}+\frac{1+z}{1-z}=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

and it is readily seen that (15) and (18) are respectively equivalent to

$$
\left|p_{2}\right| \leq 2 \quad \text { and } \quad\left|p_{3}\right| \leq 2 .
$$

The inequality (17) corresponds to the well-known inequality

$$
\left|p_{2}-p_{1}^{2} / 2\right| \leq 2-\left|p_{1}\right|^{2} / 2 .
$$

If we take the relationship (3) for f and take

$$
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad h \in S^{*}
$$

then inequalities (15) and (16) are easily seen to be equivalent to the inequalities $\left|a_{3}-a_{2}^{2} / 2\right| \leq 1$ and $\left|a_{3}-a_{2}^{2}\right| \leq 1$.

It appears that the inequalities involving coefficients of functions $f \in \mathcal{G}$ not only give the familiar well-known inequalities for coefficients of functions with positive real part and S^{*}, but they also give rise to some less-known results. Thus (19) is seen equivalent to

$$
\left|p_{3}-p_{1} p_{2}\right| \leq 2
$$

and (17) to

$$
\begin{equation*}
\left|a_{3}-3 a_{2}^{2} / 4\right| \leq 1-\left|a_{2}\right|^{2} / 4 . \tag{21}
\end{equation*}
$$

The inequality (21) is identical with an inequality proved by Trimble [7] for convex functions.

References

[1] Egerváry, E., Abbildungseigenschaften der arithmetischen Mittel der geometrischen Reihe, Math. Z. 42 (1937), 221-230.
[2] Hallenbeck, D. J. and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman, 1984.
[3] Leverenz, C. R., Hermitian forms in function theory, Trans. Amer. Math. Soc. 286 (1984), 675-688.
[4] Reade, M. O., On close-to-convex univalent functions, Michigan Math. J. 3 (1955), 59-62.
[5] Robertson, M. S., Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), 327-345.
[6] Ruscheweyh, St. and T. Sheil-Small, Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1974), 119-135.
[7] Trimble, S. Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266-267.

School of Mathematical Sciences
received October 9, 1995
Universiti Sains Malaysia
Penang, Malaysia
Punjabi University
Patiala, India

[^0]: 1991 Mathematics Subject Classification. 30C45.

