ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 1 SECTIO A

AISHAH S. ABDULLAH, ROSIHAN M. ALI (Penang) and VIKRAMADITYA SINGH[†] (Patiala)

On Functions Starlike with Respect to a Boundary Point

ABSTRACT. Let U be the unit disc |z| < 1 and G be the class of functions $f(z) = 1 + \sum_{n=1}^{\infty} d_n z^n$ analytic and non-vanishing in U, and satisfying $\operatorname{Re}\left\{2\frac{zf'(z)}{f(z)} + \frac{1+z}{1-z}\right\} > 0$ in U. We examine the importance of the Koebe function $z/(1-z)^2$ to the class G and obtain sharp inequalities involving the coefficients d_1 , d_2 and d_3 .

1. Introduction. Let $U = \{z : |z| < 1\}$ be the unit disc and $S^*(\alpha)$, $0 \le \alpha \le 1$, denote the class of analytic functions f in U normalized so that f(0) = f'(0) - 1 = 0, and such that

$${
m Re}\; rac{zf'(z)}{f(z)} > lpha \;, \;\; z \in U \;.$$

Thus $f \in S^*(\alpha)$ maps U univalently onto a domain starlike with respect to the origin. We shall denote the class $S^*(0)$ simply by S^* . Further let S denote the familiar class of normalized analytic univalent functions in U.

The class $S^*(\alpha)$ has been extensively investigated during the last fifty years. However, not much seems to be known about the class of analytic functions that map U onto domains that are starlike with respect to a

¹⁹⁹¹ Mathematics Subject Classification. 30C45.

boundary point. Egerváry [1] seems among the early researchers to have come across such functions in his investigations on the Cesaro partial sums of the geometric series $\sum_{n=1}^{\infty} z^n$. However, Robertson [5] was the first to initiate a systematic study of this class, and we follow his terminology in this paper.

Definition. Let \mathcal{G} denote the class of functions $f(z) = 1 + d_1 z + d_2 z^2 + \cdots + d_n z^n + \cdots$, analytic and non-vanishing in U and such that

(1)
$$\operatorname{Re}\left\{2\frac{zf'(z)}{f(z)} + \frac{1+z}{1-z}\right\} > 0, \quad z \in U.$$

It was shown [5] that a function f belongs to \mathcal{G} if and only if there exists a function $g \in S^*(1/2)$ such that

(2)
$$f(z) = (1-z)\frac{g(z)}{z}$$
.

This is equivalent to the condition $f \in \mathcal{G}$ if and only if there exists an $h \in S^*$ such that

(3)
$$\phi(z) = \frac{h(z)(1-z)^2}{z} = f^2(z).$$

Furthermore, either f is identically equal to the constant 1, or ϕ is close-to-convex with respect to h satisfying

$$\operatorname{Re}\left\{-\frac{z\phi'(z)}{h(z)}\right\} > 0, \quad z \in U$$

Moreover, the coefficients d_n of $f \in \mathcal{G}$ satisfy

$$|d_n| \le n|d_1|$$

Inequality (4) is the general inequality for close-to-convex functions [4]. The equality is attained for any positive integer n and the function

$$f(z) = rac{1-z}{\sqrt{1-2z\cos\theta+z^2}}, \quad 0 < \theta < 2\pi, \quad d_1 = \cos\theta - 1$$

which satisfies (2) and for which

$$\lim_{\theta \to 0} \left[\frac{f(z) - 1}{\cos \theta - 1} \right] = \frac{z}{(1 - z)^2} = \sum_{n=1}^{\infty} n z^n$$

From (3) we notice a peculiar role of the Koebe function or its rotations. These functions have several special properties [2]. In this paper we examine the special role of the Koebe and the generalized Koebe functions. In addition, we obtain sharp inequalities involving the coefficients of functions in \mathcal{G} .

2. Results.

Theorem 1. The functions $g_x(z) = z(1-xz)^{-2}$, |x| = 1 are the only functions $g \in S$ so that for any $h \in S^*$, $h \neq g$, the function f(z) = h(z)/g(z) is close-to-convex.

Proof. Let $h(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S^*$, and $g_x(z) = z + 2xz^2 + \cdots$. Then $|b_2| \leq |2x| = 2$ and since $g_x \neq h$, we have $b_2 \neq 2x$. Hence, for $0 \leq \rho \leq 1$, $\rho b_2 - 2x$ remains bounded away from zero. Let $0 < \rho < 1$ and define

$$f_{\rho}(z) = \frac{h(\rho z)}{\rho g_x(z)} \,.$$

Then f_{ρ} is analytic in U and

$$\operatorname{Re}\left\{-\frac{1}{x}\frac{\rho z f_{\rho}'(z)}{h(\rho z)}\right\} > 0\,, \quad z \in U\,.$$

Thus f_{ρ} is univalent and close-to-convex in U, so $(f_{\rho}(z) - 1)/(\rho b_2 - 2x)$ is a normalized close-to-convex function in U. Since this class is compact and $\rho b_2 - 2x$ is bounded away from zero, we can take the limit $\rho \to 1$ and conclude that $f(z) = h(z)/g_x(z)$ is close-to-convex in U.

If $g(z) = z + a_2 z^2 + \cdots \in S$ but $g \neq g_x$, |x| = 1, then $|a_2| < 2$. There are many triples $(\lambda, \varepsilon, \delta) \in (0, 1) \times \partial U \times \partial U$ satisfying

$$\lambda \varepsilon + (1 - \lambda)\delta = \frac{a_2}{2},$$

so that we can find one such triple for which

$$h(z) = \frac{z}{(1 - \varepsilon z)^{2\lambda} (1 - \delta z)^{2-2\lambda}} \in S^*$$

is different from g. But

$$h(z) = z + 2(\lambda\varepsilon + \delta(1-\lambda))z^2 + \cdots = z + a_2z^2 + \cdots,$$

and a simple calculation shows that f'(0) = 0 for f(z) = h(z)/g(z) not identical to a constant. Thus such a function f is not even locally univalent at z = 0. Hence g does not have the property needed in the theorem

We are thankful to St. Ruscheweyh for suggesting this proof.

We observe that $g \in S$ in some sense cannot be relaxed. Indeed, the functions

$$g_{\nu}(z) = \frac{z}{\nu(1+z^2)+2z}, \quad -1 \le \nu \le 1, \quad \nu \ne 0$$

are univalent in U and belong to S only for $\nu = 1$. For $-1 < \nu < 1$ these functions are meromorphic univalent in U. If $h \in S^*$ and

(5)
$$f(z) = h(z) \left(2z + \nu(1+z^2) \right) / z$$

then

$$\frac{zf'(z)}{h(z)} = -\frac{(1-z^2)}{z}\nu + \left\{2 + \nu\left(\frac{1}{z} + z\right)\right\} \frac{zh'(z)}{h(z)}$$

and it is clear that $\operatorname{Re} \left\{ \frac{zf'(z)}{h(z)} \right\} > 0$ for $-1 \le \nu \le 1$.

If $h(z) = z + \sum_{n=2}^{\infty} a_n z^n$, then (5) along with (4) for f(z) gives the following sharp inequality for coefficients of starlike functions:

$$|2a_n + \nu(a_{n+1} + a_{n-1})| \le n|2 + \nu a_2|.$$

Theorem 2. Let $g \in S^*(\alpha)$, $0 \le \alpha \le 1$, and let

(6) $\phi(z) = (1-z)^{2(1-\alpha)}g(z)/z$.

Then either ϕ is the constant 1, or $\phi(z)$, $[\phi(z)]^{1/2(1-\alpha)}$, $[\phi(z)]^{1/(1-\alpha)}$, and $\log \phi(z)$ are close-to-convex in U.

Proof. We first observe that, if $g \in S^*(\alpha)$ then

$$g_1(z) = \frac{g(z)}{(1-z)^{2\alpha}}$$
 and $g_2(z) = z \left[\frac{g(z)}{z}\right]^{1/(1-\alpha)}$

are in S^* . Further, for ϕ defined by (6),

$$[\phi(z)]^{1/(1-\alpha)} = \frac{(1-z)^2}{z} g_2(z)$$
 and $[\phi(z)]^{1/2(1-\alpha)} = \frac{(1-z)}{z} h(z)$,

where g_2 is defined above and $h \in S^*(1/2)$. From [5] we deduce that $[\phi(z)]^{1/(1-\alpha)}$ and $[\phi(z)]^{1/2(1-\alpha)}$ are close-to-convex if ϕ is not a constant. Notice that

(7)
$$\frac{z\phi'(z)}{\phi(z)} = \frac{z\phi'(z)}{g_1(z)} \frac{z}{(1-z)^2}, \quad g_1 \in S^*$$

and

$$\frac{z\phi'(z)}{\phi(z)} = \left(\frac{zg'(z)}{g(z)} - \alpha\right) - (1-\alpha)\frac{1+z}{1-z}.$$

Hence

$$-\frac{1}{1-\alpha}\frac{z\phi'(z)}{g_1(z)} = \frac{1-z^2}{z} - \frac{(1-z)^2}{z}\frac{1}{1-\alpha}\left(\frac{zg'(z)}{g(z)} - \alpha\right)$$

Therefore Re $\left\{-\frac{1}{1-\alpha}\frac{z\phi'(z)}{g_1(z)}\right\} > 0$ and ϕ is close-to-convex. From (7) we also conclude that $\log \phi(z)$ is close-to-convex.

The following yields some interesting coefficient bounds.

Theorem 3. If $f \in \mathcal{G}$ with

(8)
$$f(z) = \frac{(1-z)g(z)}{z} = 1 + \sum_{n=1}^{\infty} d_n z^n, \quad g \in S^*(1/2),$$

and

(9)
$$S_n(z) = 1 + \sum_{k=1}^n d_k z^k, \quad S_0(z) = 1,$$

then the functions

(10)
$$\phi_n(z) = \frac{1}{z^n} \left(1 - \frac{S_{n-1}(z)}{f(z)} \right) + \frac{S_{n-1}(1)}{f(z)}, \quad n \ge 1,$$

are analytic in U and

$$(11) \qquad \qquad |\phi_n(z)| \le 1 \,.$$

In particular

$$(12) \qquad |S_n(1)| \le 1,$$

(13)
$$|S_n(1)|^2 + \sum_{m=1}^p |d_{n+m}|^2 \le 1 + \sum_{n=1}^p |d_n|^2, \quad p \ge 1,$$

and

(14)
$$|d_{n+1} - d_1 S_n(1)| \le 1 - |S_n(1)|^2.$$

Proof. For $z, \zeta \in U$, let

$$\phi(z,\zeta) = \frac{\zeta}{g(\zeta)} \frac{g(z) - g(\zeta)}{z - \zeta}, \quad g \in S^*(1/2).$$

Then by [6], $\operatorname{Re} \phi(z, \zeta) > 1/2$. Hence in view of (8)

$$\phi(z,\zeta) = \frac{1}{1-z/\zeta} - \frac{f(z)}{f(\zeta)} \left(\frac{\zeta}{\zeta-z} - \frac{1}{1-z}\right) \,.$$

Expansion of $\phi(z,\zeta)$ in powers of z yields

$$\phi(z,\zeta) = 1 + \sum_{n=1}^{\infty} \phi_n(\zeta) z^n$$

where $\phi_n(\zeta)$ is defined by (9) and (10). As Re $\phi(z,\zeta) > 1/2$, (11) follows. Notice that

$$\phi_n(\zeta) = \frac{S_n(1) + d_{n+1}\zeta + \dots + d_{n+m}\zeta^m + \dots}{1 + \sum_{n=1}^{\infty} d_n\zeta^n}$$

The inequalities (12) and (13) now follow from the fact that $|\phi_n(\zeta)| \leq 1$ and $\phi_n(\zeta)$ is analytic for $\zeta \in U$. The inequality (14) is a consequence of the fact that, if

$$\phi_n(\zeta) = a_0 + a_1\zeta + a_2\zeta^2 + \cdots, \quad |\phi_n(\zeta)| < 1, \quad \zeta \in U,$$

then $|a_1| \leq 1 - |a_0|^2$.

If $f \in \mathcal{G}$, inequality (11) for n = 1 gives

$$\left| f(z) - \frac{1-z}{1-|z|^2} \right| \le \frac{|z| |1-z|}{1-|z|^2}, \quad z \in U,$$

which yields a distortion theorem for functions of the class ${\cal G}$.

Theorem 4. If $f(z) = 1 + \sum_{n=1}^{\infty} d_n z^n \in \mathcal{G}$, then the coefficients d_n satisfy the following sharp inequalities:

(15) $\begin{aligned} |2d_{2} + 1 - d_{1}^{2}| &\leq 1, \\ (16) & |2d_{2} - (1 + d_{1})(1 + 3d_{1})| \leq 1, \\ (17) & |2d_{2} - 2d_{1}(1 + d_{1})| \leq 1 - |1 + d_{1}|^{2}, \\ (18) & |3d_{3} - 3d_{1}d_{2} + 1 + d_{1}^{3}| \leq 1, \\ (19) & |3d_{3} - d_{2}(4 + 7d_{1}) - (1 + d_{1})(1 + d_{1} - 3d_{1}^{2})| \leq 1, \\ and \\ (20) & |3d_{3} - d_{2}(8 + 11d_{1}) + (1 + d_{1})(1 + 7d_{1} + 9d_{1}^{2})| \leq 1. \end{aligned}$

We need the following for the proof of Theorem 4:

Lemma 1 [3]. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ be analytic in U. Then $|g(z)| \le |f(z)|$, $z \in U$, if and only if

$$\sum_{j=0}^{\infty} \left\{ \left| \sum_{k=0}^{\infty} a_k z_{k+j} \right|^2 - \left| \sum_{k=0}^{\infty} b_k z_{k+j} \right|^2 \right\}$$

is positive semidefinite on the family of all sequences $\{z_k\}$ satisfying

 $\lim \sup_{k \to \infty} |z_k|^{1/k} < 1 \,.$

Proof of Theorem 4. Let $d_0 = 1$ and

$$\psi(z) = 2 \frac{zf'(z)}{f(z)} + \frac{1+z}{1-z} = \frac{1 + \sum_{n=1}^{\infty} [(2n+1)d_n + (3-2n)d_{n-1}]z^n}{1 + \sum_{n=1}^{\infty} (d_n - d_{n-1})z^n}$$

= 1 + 2(1 + d_1)z + 2(2d_2 + 1 - d_1^2)z^2 + 2(3d_3 - 3d_1d_2 + d_1^3 + 1)z^3 + \cdots

Then $\psi \in P$. Hence

$$\phi(z) = \frac{\psi(z) - 1}{\psi(z) + 1} = \frac{(1 + d_1)z + 2(d_2z^2 + (3d_3 - d_2)z^3 + \cdots}{1 + 2d_1z + (3d_2 - d_1)z^2 + \cdots}$$

is analytic in U and satisfies $|\phi(z)| < 1$.

Applying Lemma 1 to the function $\phi(z)/z$ with

$$z_0 = b(1 - d_1) + \lambda(d_1 - d_2), \quad z_1 = b, \quad z_2 = \lambda, \quad z_k = 0, \ k \ge 3$$

gives

$$\left| b(1 - d_1^2 + 2d_2) + \lambda \left\{ (d_1 - d_2)(1 + d_1) + (3d_3 - d_2) \right\} \right|^2 \\ \leq |\lambda|^2 + |b + 2\lambda d_1|^2 - |\lambda(1 + d_1)|^2 \,.$$

The choice $\lambda = 0$ gives (15) and the choice $b = \lambda(1 - d_1)$ gives (18). Further, the choice $b = -\lambda(1 + 3d_1)$ gives (19).

If we choose

$$z_0 = -b(1+3d-1) - \lambda(5d_2-d_1)\,, \quad z_1 = b\,, \quad z_2 = \lambda\,, \quad z_k = 0\,, \; k \geq 3$$

and apply Lemma 1 again to $\phi(z)/z$, we obtain

$$b\left\{(2d_2 - (1+d_1)(1+3d_1)\right\} + \lambda\left\{3d_3 - d_2 - (5d_2 - d_1)(1+d_1)\right\}\right|^2$$

$$\leq |\lambda|^2 + |b + 2\lambda d_1|^2 - |\lambda(1+d_1)|^2.$$

For $\lambda = 0$ this gives (16) and the choice $b = -\lambda(1 + 3d_1)$ yields (20). Similarly, for $z_0 = 1$, $z_1 = y$, $z_k = 0$, $k \ge 2$, Lemma 1 yields

$$ig(1-|1+d_1|^2ig)+4\operatorname{Re}ig\{y(d_1-d_2(1+\overline{d}_1))ig\} \ +|y|^2ig(3|d_1|^2-4|d_2|^2-2\operatorname{Re}d_1ig)\geq 0\,.$$

Upon completing squares, we deduce that

 $\left(3|d_1|^2-4|d_2|^2-2\operatorname{Re} d_1
ight)\left(1-|1+d_1|^2
ight)\geq 4|d_1-d_2(1+\overline{d}_1)|^2\,,$

that is

 $\left(1-|1+d_1|^2\right)\left(4|d_2|^2-4|d_1|^2\right)+4\left|d_2(1+\overline{d}_1)-d_1\right|^2 \le \left(1-|1+d_1|^2\right)^2\,.$ Since

 $4 \left| d_2(1 + \overline{d}_1) - d_1 \right|^2 - 4 |d_2|^2 |1 + d_1|^2 - 4 |d_1|^2 = -8 \operatorname{Re} \left\{ d_2 \overline{d}_1(1 + \overline{d}_1) \right\},$ this establishes (17).

Sharpness of the above inequalities follows from the fact that the defining equation (1) yields

$$\psi(z) = 2 \frac{zf'(z)}{f(z)} + \frac{1+z}{1-z} = 1 + \sum_{n=1}^{\infty} p_n z^n$$

and it is readily seen that (15) and (18) are respectively equivalent to

 $|p_2| \le 2$ and $|p_3| \le 2$.

The inequality (17) corresponds to the well-known inequality

$$|p_2 - p_1^2/2| \le 2 - |p_1|^2/2$$
.

If we take the relationship (3) for f and take

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad h \in S^*$$

then inequalities (15) and (16) are easily seen to be equivalent to the inequalities $|a_3 - a_2^2/2| \le 1$ and $|a_3 - a_2^2| \le 1$.

It appears that the inequalities involving coefficients of functions $f \in \mathcal{G}$ not only give the familiar well-known inequalities for coefficients of functions with positive real part and S^* , but they also give rise to some less-known results. Thus (19) is seen equivalent to

 $|p_3 - p_1 p_2| \le 2$

and (17) to

(21)
$$|a_3 - 3a_2^2/4| \le 1 - |a_2|^2/4$$

The inequality (21) is identical with an inequality proved by Trimble [7] for convex functions.

References

- Egervary, E., Abbildungseigenschaften der arithmetischen Mittel der geometrischen Reihe, Math. Z. 42 (1937), 221-230.
- [2] Hallenbeck, D. J. and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Pitman, 1984.
- [3] Leverenz, C. R., Hermitian forms in function theory, Trans. Amer. Math. Soc. 286 (1984), 675-688.
- [4] Reade, M. O., On close-to-convex univalent functions, Michigan Math. J. 3 (1955), 59-62.
- Robertson, M. S., Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), 327-345.
- [6] Ruscheweyh, St. and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1974), 119-135.
- Trimble, S. Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266-267.

School of Mathematical Sciences Universiti Sains Malaysia Penang, Malaysia received October 9, 1995

Punjabi University Patiala, India