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On Functions Starlike with Respect 
to a Boundary Point

Abstract. Let U be the unit disc |z| < 1 and Ç be the class of functions 
f(z) = 1 + dnzn analytic and non-vanishing in U , and satisfying
Re {2 > 0 in U . We examine the importance of the Koebe

function z/(l ~ ■2)2 to the class (/ and obtain sharp inequalities involving 
the coefficients di , di and ¿3 .

1. Introduction. Let U = {z : |^| < 1} be the unit disc and 5*(ct),
0 < a < 1, denote the class of analytic functions f in U normalized so 
that /(0) = /'(0) —1 = 0, and such that

Re^>«, zeU. 
f(z)

Thus f 6 S*(a) maps U univalently onto a domain starlike with respect 
to the origin. We shall denote the class 5*(0) simply by S*. Further let S 
denote the familiar class of normalized analytic univalent functions in U .

The class S’’(a) has been extensively investigated during the last fifty 
years. However, not much seems to be known about the class of analytic 
functions that map U onto domains that are starlike with respect to a
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boundary point. Egervary [1] seems among the early researchers to have 
come across such functions in his investigations on the Cesaro partial sums 
of the geometric series £”=1zn. However, Robertson [5] was the first to 
initiate a systematic study of this class, and we follow his terminology in 
this paper.

Definition. Let Q denote the class of functions /(z) = 1 + d\z + d2Z2 + 
---- b dnzn + •••■, analytic and non-vanishing in U and such that

(1)

It was shown [5] that a function f belongs to Q if and only if there 
exists a function g 6 £*(1/2) such that

(2)

This is equivalent to the condition f G G if and only if there exists an 
h 6 £* such that

(3)

Furthermore, either f is identically equal to the constant 1, or (¡> is close- 
to-convex with respect to li satisfying

Moreover, the coefficients dn of f G G satisfy

(4) |d„| < n|di| •
Inequality (4) is the general inequality for close-to-convex functions [4]. 

The equality is attained for any positive integer n and the function 
1 - zf ( — —-________________

\/l — 2zcos 0 + z2 ’ 
which satisfies (2) and for which 

/(*)-!'

0 < 0 < 2x , di = cos 0-1

lim0-»O cos 0—1 (1 - 2)2
= S>”-

n=l

From (3) we notice a peculiar role of the Koebe function or its rotations. 
These functions have several special properties [2]. In this paper we exam
ine the special role of the Koebe and the generalized Koebe functions. In 
addition, we obtain sharp inequalities involving the coefficients of functions 
in G-
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2. Results.

Theorem 1. The functions gx(z) = z(l — xz)~2 , |ar| = 1 are the only 
functions g £ S so that for any h £ S* , h / g, the function f(z) = 
^(2)/ff(2:) JS close-to-convex.

Proof. Let h(z) = z + ^2^_2 bnzn € S* , and gx(z) = z + 2xz2 + • • • . 
Then |h2| < |2a;| = 2 and since gx h, we have ¿2 /2a;. Hence, for 
0 < p < 1, ph2 — 2a; remains bounded away from zero.

Let 0 < p < 1 and define

A>(*) P9x(z) '

Then fp is analytic in U and

Re i 1 pzf'P(z)) 
I x h(pz) f >0, z e u.

Thus fp is univalent and close-to-convex in U, so (/p(z) - l)/(pi>2 _ 2a;) 
is a normalized close-to-convex function in U. Since this class is compact 
and pb2 — 2x is bounded away from zero, we can take the limit p -+ 1 and 
conclude that /(z) = h(z)/gx(z) is close-to-convex in U .

If fif(z) = z + a2z2 + • • • £ S but g / gx , |a;| = 1, then |«21 < 2 . There 
are many triples (A,e,b) £ (0,1) X dU X dU satisfying

Ae + (1 - A)i = y,

so that we can find one such triple for which

(l-£z)2A(l-iz)2-2A eS

is different from g . But

h(z) = z + 2(Ae + ¿(1 - A))z2 + • • • = z + a2z2 + ,

and a simple calculation shows that /'(0) = 0 for /(z) = h(z)/g(z') not 
identical to a constant. Thus such a function f is not even locally univalent 
at z = 0. Hence g does not have the property needed in the theorem

We are thankful to St. Ruscheweyh for suggesting this proof.
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We observe that g 6 S in some sense cannot be relaxed, 
functions

Indeed, the

-1 < p < 1, v/0

are univalent in U and belong to S only for u = 1. For — 1 < v < 1 these 
functions are meromorphic univalent in U. If h G S* and

(5) /(*) = h(z)(2z + i/(l + z2))/z,

then
zh'(z)
h(z)

and it is clear that Re {zf'Çz^/hÇz)} >0 for -1 < v < 1.
If h(z) = z + » t^ien (^) along with (4) for /(z) gives the

following sharp inequality for coefficients of starlike functions:

|2a„ + p(an+i + ®n—1| < n|2 + va2

Theorem 2. Let g G S*(a), 0 < a < 1 , and let

(6) ¿(z) = (1 - z)2(1-o)0(z)/z •

Then either <f> is the constant 1, or <j>(z), [«/»(z)]1 1 _, [«^(z)]1^1-,
and log</>(z) are close-to-convex in U.

Proof. We first observe that, if g G S*(a) then

9i(z) = ff(2) and <72(2) = z ff(z) l/d-c)

(1 - z)2a

are in S* . Further, for <f> defined by (6),

[0(z)]1/(1-a) = fl2(z) and [^z)]1/2(1-a) = h(z),
z z

where g2 is defined above and h G S*(l/2) . From [5] we deduce that 
[</>(z)]1/(1_o) and [</>(z)]1/2(1_o) are close-to-convex if <j> is not a constant. 
Notice that

z^'(z) _ z</>'(z) z 
</>(z) ~ 5i(z) (1 - z)2 ’ 9\ G S

/

(7)
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and

9^)
-a)

Hence

1 + 2 
1 - 2 '

1 z<ft(z) 
1 - « i/l(z)

1 - z2 (1 - z)2 1
2 2 1 - a

Therefore Re ¿gjz) } > 0 and *s close-to-convex. From (7) we

also conclude that log <£(2) is close-to-convex.

The following yields some interesting coefficient bounds.

Theorem 3. If f e Q with

(8)

and

A*) (1 ~ Z)g(2) 
z

00

i + £dn2n, 5€S*(i/2),
n=l

n

(9) sn(2) = l + £dfc2fc, So(z)=l,
k=l

then the functions

(10) 5n-l(z)\ Sn-l(l)

A*) ) A*) n > 1,

are analytic in U and

(H) |0n(z)| < 1.

In particular

(12)

(13) |S„(1)|’+ ¿K+m|2<l + £|i„l2, P>1,

m=l n=l

and

(14) K+i-diSn(l)|<l-|Sn(l)|2.
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Proof. For z, Ç e U , let
<_ g(*)-g(O

Then by [6], Re <j>(z,Ç) >1/2. Hence in view of (8)
)•

Expansion of <t>(z,Ç) in powers of z yields
oo

n=l

where </>„(£) is defined by (9) and (10). As Re</>(z,() > 1/2, (11) follows. 
Notice that

0n(<)= •^n(l) + dn+i£ + ’ ‘ + dn+rnC" + ’ ’ ’

The inequalities (12) and (13) now follow from the fact that |</>n(£)| < 1 
and </>n(O is analytic for ( € U. The inequality (14) is a consequence of 
the fact that, if

0n(O = «0 + Gl£ + + • • • 5 |0n(OI < 1 , C € U ,
then |ai| < 1 — |«o|2 •

If f 6 G, inequality (11) for n = 1 gives

which yields a distortion theorem for functions of the class Q .

Theorem 4. If f(z) = 1 + Z^i dnzn 6 G , then the coefficients dn satisfy 
the following sharp inequalities:

(15)
(16)

(17)

(18) 
(19)
and

(20)

|2d2 + 1 - d?| <1,
|2d2 - (1 + dj)(l + 3di)| <1,

|2<Z2 — 2</i(l + di)| < 1 — |1 + di|2 ,

|3d3 — 3did2 + 1 T d',’| < 1,

|3</3 — d2(4 + 7di) — (1 + di)(l + di — 3dj)| < 1,

|3d3 — d2(8 + lldi) + (1 + di)(l + 7di T 9dj)| < 1.

We need the following for the proof of Theorem 4:
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Lemma 1 [3]. Let f(z) — (ikZk and g(z) = bkZk be analytic
in U . Then |g(z)| < | f(z)|, z € U , if and only if

2
ak^k+j

is positive semidefinite on the family of all sequences {zk} satisfying

lim sup p/fc < 1. 
k—^oo

Proof of Theorem 4. Let d0 = 1 and

ib(z\ = 2 zf'(z) i 1 + 2 _ 1 + [(2n + l)dn + (3 - 2n)dn_i]zn
1-Z H-Z“l(^n-dn-l)^

= 1 + 2(1 + dt)^ + 2(2d2 + 1 - dj)z2 + 2(3d3 - 3djd2 + d2 + 1)? + • • • . 

Then ip e P. Hence

<¿(2) = ^(z) ~ _ (1 + di)^ + 2(d2z2 + (3d3 — d2)z3 + • • •
V’('2) + 1 1 + 2d3z + (3d2 — d\)z2 + • • •

is analytic in U and satisfies |</>(^)| < 1.
Applying Lemma 1 to the function (p^z^/z with

zq = 6(1 — d3) + A(di — d2), zi = b, 22 = A, Zk = 0 , k > 3

gives

|h(l — d2 + 2d2) + A {(di — d2)(l + di) + (3d3 — d2)}|

— I^|2 + |6 + 2Adj|" — |A(1 + d3)|2 .

I he choice A = 0 gives (15) and the choice b = A(1 — dj) gives (18). 
Further, the choice b = -A(l + 3dJ gives (19).

If we choose

Zo — -6(1 + 3d - 1) - A(5d2 - dj , Zi = b, z2 = X, Zk = 0, k > 3 

and apply Lemma 1 again to <^>(z)/z, we obtain

|6{(2d2 - (1 + dj)(l + 3d!)} + A {3d3 - d2 - (5d2 - d!)(1 + d!)}|2 

— I-M” + |6 + 2Adi|2 — |A(1 + d3)|2.
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For A = 0 this gives (16) and the choice b = -A(l + 3di) yields (20). 
Similarly, for zo — 1, zi = y, Zk = 0, k > 2, Lemma 1 yields

(l — |1 + di|2) + 4 Re {j/(di — ¿2(1 + di))}
+ li/P (3|d1p-4|d2p-2Red1) >0.

Upon completing squares, we deduce that
(3|di|" — 4|d21” ~ 2 Redi) (l — |1 + dj2) > 4|di — d2(l + di)P ,

that is
(l — |1 + dip) (4|d2p — 4|dip) + 4 |d2(l + di) — di| <(l —|l + djp) . 

Since
4 |d2(1 + di) — di| — 4|d21“11 4- di|“ — 4|dip = — 8 Re {d2dj(l + di)} , 

this establishes (17).
Sharpness of the above inequalities follows from the fact that the defining 

equation (1) yields

1 + 2 
1 - ZV»(«) = 2 +

00

= l + YJPn2n, 
n=l

and it is readily seen that (15) and (18) are respectively equivalent to 
|p2| < 2 and |p3| <2.

The inequality (17) corresponds to the well-known inequality 
|p2-p?/2|<2-|Plp/2.

If we take the relationship (3) for / and take
00

h(z) = z + anzn , h € S* 
n=2

then inequalities (15) and (16) are easily seen to be equivalent to the in
equalities |a3 — a2/2| < 1 and |a3 — a2| < 1.

It appears that the inequalities involving coefficients of functions f Ç. G 
not only give the familiar well-known inequalities for coefficients of functions 
with positive real part and S*, but they also give rise to some less-known 
results. Thus (19) is seen equivalent to

|?3 - P1P2I < 2
and (17) to
(21) |a3-3a2/4| < l-|a2p/4.
The inequality (21) is identical with an inequality proved by Trimble [7] for 
convex functions.
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